To appear in Proceedings of IEEE International

Conferemc®ata Engineering (ICDE), April 2008.

Nearest Neighbor Retrieval Using Distance-Based
Hashing

Vassilis Athitsos !, Michalis Potamia8, Panagiotis Papapetréuand George Kolliog

LComputer Science and Engineering Department, Universifferas at Arlington
Arlington, Texas, USA

2Computer Science Department, Boston University
Boston, Massachusetts, USA

Abstract— A method is proposed for indexing spaces with ar-
bitrary distance measures, so as to achieve efficient appronrate
nearest neighbor retrieval. Hashing methods, such as Lod&y
Sensitive Hashing (LSH), have been successfully applied rfo
similarity indexing in vector spaces and string spaces undethe
Hamming distance. The key novelty of the hashing technique
proposed here is that it can be applied to spaces with arbitrgy
distance measures, including non-metric distance measwseFirst,
we describe a domain-independent method for constructing a
family of binary hash functions. Then, we use these functios
to construct multiple multibit hash tables. We show that the
LSH formalism is not applicable for analyzing the behavior d
these tables as index structures. We present a novel formulan,
that uses statistical observations from sample data to angte
retrieval accuracy and efficiency for the proposed indexing
method. Experiments on several real-world data sets demotrate
that our method produces good trade-offs between accuracynal
efficiency, and significantly outperforms VP-trees, which & a
well-known method for distance-based indexing.

I. INTRODUCTION

Answering a nearest neighbor query consists of identifying
for a given query object, the most similar database objects.
Nearest neighbor retrieval is a common and indispensable

operation in a wide variety of real systems. A few examp
applications are nearest neighbor classification (e.§.,[2],
[3]), analysis of biological sequences (e.g., [4], [5]),dan

content-based access to multimedia databases (e.g.,/T8], [

Given ever-increasing database sizes, there is a need

efficient and scalable indexing methods, that can fadlitat

accurate and efficient nearest neighbor retrieval.

Locality Sensitive Hashing (LSH) [8], [9] is a framework

for hash-based indexing, with appealing theoretical pribgee

A key requirement for applying LSH to a particular space
and distance measure is to identify a family lfcality
sensitivefunctions, satisfying the properties specified in [8].
As a consequence, LSH is only applicable for specific spaces
and distance measures where such families of functions have
been identified, such as real vector spaces Mithdistance
measures, bit vectors with the Hamming distance, or strings
with a substitution-based distance measure (that does not
allow insertions or deletions) [12], [13]. This is in cordta
to distance-based indexing methods, that build indexing:st
tures based only on distances between objects, and thus can
be readily applied to any space and distance measure.

In this paper we introduce Distance-Based Hashing (DBH),
a novel indexing method for efficient approximate nearest
neighbor retrieval. Compared to LSH, DBH has several simi-
larities but also some important differences. Overall ,rfan
novelties of DBH are the following:

« DBH is a hash-based indexing method thatlistance-
based Consequently, DBH can be applied in arbitrary
(and not necessarily metric) spaces and distance mea-
sures, whereas LSH cannot.

Indexing performance (in terms of retrieval accuracy and
retrieval efficiency) is estimated and optimized using
statistics obtained from sample data, whereas in LSH per-
formance guarantees are obtained by using some known
geometric properties of a specific space and distance
measure. Dependence on known geometric properties
is exactly what makes LSH not applicable in arbitrary
spaces.

le ®

for

An additional contribution of this paper is a description of

and empirical performance. LSH is an approximate techniquwo techniques for further improving DBH performance in
it does not guarantee finding the true nearest neighbor fyiectice: we describe a hierarchical version of DBH, where

100% of the queries. At the same time, LSH provides
statistical guarantee of producing a correct result witihhi
probability. Theoretically, for a database af vectors of

gifferent index structures are tuned to different parts hof t
space of queries, and we also describe a method for signifi-
cantly reducing the cost of computing the hash values fon eac

d dimensions, the time complexity of finding the nearestuery object.

neighbor of an object using LSH is sublinearsnand only

Experiments with several real-world data sets demonstrate

polynomial ind. The theoretical advantages of LSH have beghat DBH provides very good trade-offs between retrieval

also empirically demonstrated in several applicationsliving
high-dimensional data [10], [8], [2], [11], [3]-

accuracy and efficiency, and that DBH outperforms VP-trees,
a well-known distance-based method for indexing arbitrary

spaces. Furthermore, no known method exists for applyiagd non-metric spaces, and can be applied in extremely high-
LSH on those data sets, and this fact further demonstrages dimensional settings. An alternative method is proposed by
need for a distance-based hashing scheme that DBH addresSkspal in [43]. In that method, distances are directly medifi
in a nonlinear way, to become more or less metric, i.e.,
II. RELATED WORK conform more or less with the triangle inequality. That noeth
. . can be combined with any distance-based indexing scheme and
Various methods have been employed for speeding up ngarprthogonal to such schemes, including the method prapose
est neighbor retrieval. Comprehensive reviews on the stibjg, this paper.
include [14], [15], [16], [17]. A large amount of work focuse | gy [9], [8] is the method most closely related to DBH,
on efficient neargst neighbo_r retrieval in multidimensionghe method proposed in this paper. As pointed out in the in-
vector spaces using ah, metric [18], [19_]’ [20], [21], [22], troduction, the key difference is that LSH can only be agplie
[23]. However, many commonly used distance measures g especific spaces, where a family of locality sensitive fragh
not L, metrics, and thus cannot be indexed with such methoggnctions is available. The formulation of DBH is distance-
Popular examples of nofi;, distance measures include the edisased, and thus DBH can be applied for indexing arbitrary
distance for strings [24], dynamic time warping for timessr gistance measures. The remainder of the paper describes DBH

[25], the chamfer distance [26] and shape context matchify getail, highlighting similarities and differences betn
[1] for edge images, and the Kullback-Leibler (KL) distance sy and DBH.

for probability distributions [27].
A number of nearest neighbor methods can be applied for [1l. L OCALITY SENSITIVE HASHING

indexing arbitrary metric spaces; the reader is referred t0| ot ¥ pe a space of objects, to which database and query
[28], [29], [16] for surveys of such methods. VP-trees [30hpjects belong. LeD be a distance measure defined %n
metric trees [31] and MVP-trees [32] hierarchically paotit |, ihis paper we also use notati¢i, D) to jointly specify

the database into a tree structure by splitting, at each,nogg, space and distance measure. Hebe a family of hash
the set of objects based on their distances to pivot objeGinctionsh : X — 7. whereZ is the set of integers. As
M-trees [33] and slim-trees [34] are variants of metric $'€qyescribed in [8],H is called locality sensitiveif there exist

explicitly designed for dynamic databases. An approximatg, numbers , 72, p1, p2 such that, < 7o, p1 > pa, and for
variant of M-trees is proposed in [35], and achieves aduitio 5, X, X, e X:

speed-ups by sacrificing the guarantee of always retrieving

the true nearest neighbors. A general problem with the above D(X1, X2) <71 = Prien(h(X1) = h(X2)) > p1 . (1)
mentioned tree-based indexing methods is that they sufer f D(X1,X3) > 712 = Prpen(h(X1) = h(X2)) < p2 . (2)
the curse of dimensionality: performance tends to approach

brute-force search as the intrinsic dimensionality of thace ~ Given a locality sensitive family, Locality Sensitive
exceeds a few tens of dimensions. Hashing (LSH) indexing works as follows: first, we pick inte-

In domains with a computationally expensive distance me@€ersk andl. Then, we construéthash functiong, g2, . . ., g,
sure, significant speed-ups can be obtained by embedding 8-concatenations df functions chosen randomly frofh:
jects into another space with a more efficient distance nreasu .

Several methods have been proposed for embedding arbitrary 9i(X) = (hia (X), hia(X), ... hir(X)) - 3)
spaces into a Euclidean or pseudo-Euclidean space [34], [37ach database objedf is stored in each of thehash tables

[38], [39], [40]. However, used by themselves, embeddingefined by the functiong;. Given a query objeof) € X, the
methods simply substitute a fast approximate distanceh®r tretrieval process first identifies all database objects thiat
original distance, and still use brute force to compare the the same bucket as Q in at least one of tHesh tables,
query to all database objects, albeit using the fast apprabté and then exact distances are measured between the query and
distance instead of the original one. those database objects.

Non-metric distance measures are frequently used in patter As shown in [8], if ¥ and [are chosen appropriately,
recognition. Examples of non-metric distance measurethare then a near neighbor a is retrieved with high probability
chamfer distance [26], shape context matching [1], dynam(igote that LSH isnot an exact indexing method, as it may
time warping [25], or the Kullback-Leibler (KL) distanceproduce the wrong result for some queries). The method can be
[27]. Methods that are designed for general metric spacasplied both for near-neighbor retrieval (for range querand
can still be applied when the distance measure is non-metriearest-neighbor retrieval (for similarity queries). lmclidean
However, methods that are exact for metric spaces becospaceR?, the time complexity of retrieval using LSH is linear
inexact in non-metric spaces, and no theoretical guaramtee in the dimensionalityd and sublinear in the number of
performance can be made. database objects [9].

A method explicitly designed for indexing non-metric Applying the LSH framework to a specific space and dis-
spaces is DynDex [41], which is designed for a specific notence measure requires identifying a locality sensitivailfa
metric distance measure, and is not applicable to arbitrely Such families have been identified for certain spaces, such
spaces. SASH [42] is a method that can be used in both met& vector spaces witlh,, metrics [9], [8], or strings with a

substitution-based distance measure [12], [13]. An imefov In practice,t; andt, should be chosen so thﬁff}t;x2 (X)
ment that can drastically reduce the memory requirementsrméps approximately half the objects ¥hto 0 and half to 1,

LSH in Euclidean spaces is described in [44]. so that we can build balanced hash tables. We can formalize
this notion by defining, for each paik,, X, € X, the set
IV. DISTANCE-BASED HASHING V(X1, X2) of intervals|ty, to] such thatr; }** (X) splits the

In this section we introduce Distance-Based Hashirgpace in half:
(DBH), a method for applying hash-based indexing in arbjtra
spaces and distance measures. In order to make our methoWleX?) = {[t17t2]|PrX€X(Ft)1(=ltéX2 (X)=0)=05}.
applicable to arbitrary spaces, a key requirement is to luse t .] . (6)
distance measure as a black box. Therefore, the definition O;\Iot(; tr}(at, in most cases, for everyhere exists &' such
the hash functions should only depend on distances betwd@ft I/~ '~> maps half the objects ok either to(t, ¢'] or to
objects. To keep the method general, no additional assangptill» tl- For @ set ofn objects, there are/2 ways to split those
are made about the distance measure. In particular, trendist OPIECtS into two equal-sized subsets fifis even) based on
measure imotassumed to have Euclidean or metric propertied!€ choice o1, t>] € V(X;, X5). One of s)e(ve;{ral alternatives

The first step in our formulation is to propose a fanty S 0 Choose an intervat,, oo] such thatt”™ 2 (X) is less
of hash functions. These functions are indeed defined usifignt: for half the objects € X. Anc_)therXaI;ernatlve Is to
only distances between objects, and thus they can be defif8@0Se an intervaly, t,] such that, using"™"+*2, one sixth

in arbitrary spaces. The second and final step is to introdutletn® Objects inX are mapped to a value less thanand

a framework for analyzing indexing performance and pickiny/0 sixths of the objects are mapped to a value greater than
parameters. We shall see that the proposed fafilgf hash 2- The setV(Xl_, X>) includes intervals for all these possible
functions isnot always locality sensitive (depending on thdVays t0 splitX into two equal subsets. ,
space and distance measure), and therefore our methodtcannSing the above definitions, we are now ready to define a
be analyzed using the LSH framework. Consequently, W@Mily Hpgu of hash functions for an arbitrary spacg, D):
introduce a different framework, whereby indexing behaiso X1,Xz

. L . ={F 072X, X X, [t1,t X1, X . (7
analyzed using statistical data collected from sample abbje Hosm = {F75,71X0, X2 € X, [, 1] € V(X Xo)} - (7)

of X. Using random binary hash functiohssampled fronHpgy
we can defing:-bit hash functiong; by applying Equation 3.

This way, indexing and retrieval can be performed as in LSH,
In existing literature, several methods have been proposgd

for defining functions that map an arbitrary spd&e D) into
the real lineR. An example is the pseudo line projections
proposed in [38]: given two arbitrary objec§;, Xo € X,
we define a “line projection” functiod*-*2 : X — R as
follows:

A. A Distance-Based Family of Hash Functions

« Choosing parametefs and|.

« Constructingl k-bit hash tables, and storing pointers to
each database object at the appropriateckets.

« Comparing the query object with the database objects
found in thel hash table buckets that the query is mapped

D(X,X1)2+D(X1,X2)2—D(X,XQ)Q to.

FX1,X2 (X) = 2D(X1 X2)

(4) B. Differences between LSH and DBH
If (X, D) is a Euclidean space, then*:-X2(X) computes . , .)
the projection of pointX on the unigue line defined by In the previous paragraphs we have defined a distance-based

: . . indexing scheme that uses hash functions. We call that detho
points &, and X». If X is a general non-Euclidean SPACEH;ctance-Based Hashin (DBH). What DBH has in common
then FX1:-X2(X) does not have a geometric interpretation; 9 '

However, as long as a distance measiiie available FX1X2 With LSH is the indexing structure: we defiiehash tables

can still be defined and provides a simple way to project usmgl hash functionsy;, anq each_gz- 'S a concatenation of
into R k simple, discrete-valued (binary, in our case) functiéns

. . ' . H
We should note that the family of functions defined using If the function family Hpgy were locality sensitive, then

Equation 4 is a very rich family. Any pair of objects define%BH would be a special case of LSH, and we would be able

a different function. Given a databageof n objects, we can . .
. 9 . : . \ to use the LSH framework to optimally pick parametkrand
define about?/2 unique functions by applying Equation 4 to . . .
. . [and provide guarantees of accuracy and efficiency. The main
pairs of objects froniU.

. ' . . difference between DBH and LSH stems from the fact that we
Functions defined using Equation 4 are real-valued, Whereoas

hash functions need to be discrete-valued. We can easﬁt}robtlSoar(‘:(t)l'j;ISS?OT?”?B;TS%%O;?H&S deens:rl]\&es; XY\ht?]tgiir?dBHl
discrete-valued hash functions froRX*-X2 using thresholds y y P ooy

DBH-

space and distance measure. Since we want to use DBH for

btz € R: indexing arbitrary spaces, we need to provide a method for
FX0Xe(x) = 0 if FX0X2(X) € [ty,ta] . (5) anaI)_/z_ing performance without requirirtgppn to be locality
t1,t2 1 otherwise. sensitive.

From an alternative perspective the difference between LSHAs before, let(X, D) be the underlying space and distance
and DBH is that applying LSH on a particular space requireseasure. LetU ¢ X be a database of objects frok Let
knowledge of the geometry of that space. This knowledge t#¢ppy be the family of binary hash functions defined in
used to construct a famil§{ of hash functions for that spaceEquation 7. A key quantity for analyzing the behavior of DBH
and to prove thatH is locality sensitive. If the goal is to is the probabilityC'(X;, X2) of collision between any two
design an indexing scheme for arbitrary spaces, then glearl objects ofX over all binary hash functions i ppxu:

eometric information can be exploited, since arbitra
Eave arbitrary geometries. P o C(X1, X2) = Pracnppn (R(X1) = h(X2)) - (8)

A simple example to illustrate that the famil{psn Given family Hppr and the two objects(; and X, quantity
defined in Section IV-A is not alWayS |Oca|ity sensitive |%’(X17X2) can be measured direct|y by app|y|ng all functions
the following: let us construct a finite spad&, D), by 1, ¢ Hppy to X; and X, if Hpp is finite. Alternatively,
defining a distance matrix/, where entry); ; is the distance ¢(x;, X,) can be estimated by applying only a sample of
D(X;, X;) between the-th andj-th object ofX. We set the functionsh € Hppy to X; and Xo.
diagonal entriesM;; to zero, we set all off-diagonal entries syppose that we have chosen parameterand {, and
to random numbers from the intervl, 2], and we enforce that we construct k-bit hash tables by choosing randomly,
that M be symmetric. Under that construction, spa&e D) yniformly, and with replacement! functions from Hpg.

is metric, as it satisfies symmetry and the triangle inetyiali The probabilityC, (X1, X») of collision between two objects
In such a scenario, for any two objecfs;, X; € X, gn ak-bit hash table is:

the probabilityPryecr ey (R(X;) = h(X;)) does not depend
at all on the distance betweek; and X, and in practice Cr(X1, Xo) = O(X1, X2)* .)
Pricrpsu (R(X:) = h(X;)) is expected to be very close to
0.5, especially as the size &f becomes larger. Consequently.
regardless of our choice of andr,, there is no reason for
appropriatepy, po to exist so as to satisfy the locality sensitive Cra(X1,X2) =1—(1—-C(X1, Xo)*)". (20)
conditions expressed in Equations 1 and 2. - .
More generally, the random manner in which we con- Suppose that we have a databdsec X of finite size
structed matrixM violates the fundamental assumption of — |Ul: and let@ < X be a query object. We denote
any distance-based indexing method: the assumption tR¥t’V(Q) the nearest neighbor ap in U. The probability
knowing D(X;, X;) and D(X;, X;,) provides useful informa- that we will successfully retrievé/ (Q) using DBH is S|mpl_¥
tion/constraints abouD(X;, X}). The reason that distance-Ck=l(Q’N(Q)_)' The accuracy of I_DBH' i.e., the probgblllty
based methods work in practice is that, in many metric afye’ a!l .querlesQ that we will retrieve the nearest neighbor

nonmetric spaces of interest, distances are indeed nobmand Q) is:

and knowing distances between some pairs of objects we can

obtain useful information about distances between othizs pa CCWaCYk = e Cra(Q, N(Q))Pr(Q)d@ , (11)
of objects.] -))

Based on the above discussion, designing a useful distantg€rePr(Q) is the probability density of) being chosen as
based indexing method requires identifying and exploithg & AUery: Th|s. probability density is assumed to be uniform in
information that distances between objects provide, wieh s (€ rest of this paper. _ _
information is indeed present. When geometric constraintsQuantity Accuracy,,; can be easily estimated by:

(such as Euclidean properties and/or the triangle ineyyiali 1) sampling querie§) € X,

are not available, we can still exploit statistical infotina ~ 2) finding the nearest neighbofé(QQ) of those queries in
obtained from sample data, i.e., from known objects sampled the databas#l,

from the space of interest. We now proceed to describe how3) estimatingC(Q, N(Q)) for each sample Q by sampling
to obtain and use such statistical information in the canéx from Hpgm,

DBH. 4) using the estimated'(Q, N(Q)), and applying Equa-
.) tions 9 and 10 to comput€} ;(Q, N(Q)) for each
C. Statistical Analysis of DBH sample Q, and

An important question in analyzing any indexing scheme is 5) computing the average value 6%, ;(Q, N(Q)) over all
identifying the factors that determine indexing performan sample queries).

i.e., the factors that determine: Besides accuracy, the other important performance measure
« Retrieval accuracy: how often is the true nearest neighbfe DBH is efficiency. In particular, we want to know how
retrieved using this indexing scheme? many database objects we need to consider for each query
« Retrieval efficiency: how much time does nearest neighising DBH. Naturally, in brute force search we need to
bor retrieval take? What fraction of the database is prunednsider every single database object. The expected nuwhber
by the indexing scheme? database objects we need to consider for a q@eiy denoted
We now proceed to perform this analysis for DBH. as LookupCost(Q) and is simply the expected number of

Finally, the probabilityC}, ; (X1, X2) that two objects collide
in at least one of thé hash tables is:

objects that fall in the same bucket with in at least one Therefore, the optimak can be identified as the last for
of the [hash tables. This quantity can be computed as: which efficiency improves.
In summary, given a desired retrieval accuracy rate, the
LookupCosty, (@) = Z Cra(Q, X) - (12) optimal parameters and! can be computed by searching over
Xxel possiblek and! and identifying the combination that, while
For efficiency, an estimate fdtookupCost(Q) can be com- yielding the desired accuracy, also maximizes efficientye T
puted based on a sample of database objects, as opposesttwuracy and efficiency attained for edgh pair is estimated
computingC (@, X) for all database objecty € U. as described in Section IV-C. Computing the optinkaand
An additional cost incurred by retrieval using DBH is thé is naturally done off-line, as a preprocessing step, and the
cost of computing the outpuig(Q) of the! k-bit hash func- costs of that computation have no bearing on the €ast,
tions g;. Overall, we need to appl¥/ binary hash functions of the online retrieval stage.
h € Hpeu on @. Since each such functiam is of the form
specified in Equation 5, computing such afQ) involves V. ADDITIONAL OPTIMIZATIONS
computing the distance®(Q, X;) and D(Q, X2) between The previous section described a complete implementation
the query and the two objects; and X, used to definei. of DBH. In this section we consider some practical methods
We denote byHashCosty; the number of such distances weor further improving performance. In particular, we délser
need to compute, in order to compuit@)) for all binary hash a way to apply DBH in a hierarchical manner, using multiple
functions. Note thaHashCosty,; is independent of the querypairs of (k,l) parameters, and we also describe a practical
Q, as HashCosty; is simply the number of unique objectsmethod for drastically reducingashCosty, ;.
used asX; and X, in the definitions of theki binary hash]]]
functions k. In the worst caseHashCosty; = 2k, but in A APPlying DBH Hierarchically
practiceHashCosty,; can be smaller because the same object The accuracy and efficiency of DBH for a particular query
X can be used a¥; or X, in the definitions of multiple objectQ essentially depends on the collision r&t&Q, N(Q))

binary hash functiona. between the query and its nearest neighbor, and the callisio
The total cosCosty ;(Q) of processing a query is thereforeratesC(Q, X)) between and the rest of the database objects
the sum of the two separate costs: X € U. In an arbitrary spac&, without a priori knowledge

of the geometry of that space, these collision rates canlmaly
estimated statistically, and they can differ widely forfeiient

Finally, the average query cost can be computed using samf#ery objects.

queries, as was done for computing indexing accuracy. InThe key motivation for designing a hierarchical version of
particular: DBH is the observation that, typically, different choicesio

and! may be optimal for different query objects. Empirically,
Costy,; = Costr, 1 (Q)Pr(Q)dQ . (14) we have found that the optimal choice bfand! depends
QeX mainly on the distancd(Q, N(Q)). This correlation makes

In conclusion, the accuracy and efficiency of DBH, givefense intuitively: the closer two objects are to each other t
parameterg: and !, can be measured by sampling from th&ore likely it is that these objects are mapped to the same bit
space of queries, sampling from the set of database objebtga random binary hash function. Therefore [2g), N (Q))
and sampling from the sétpgy of binary hash functions. decreases, we expect the optimal parameteasd! for that

o . guery object to lead to increasingly fewer collisions foe th
D. Finding Optimal Parameters same indexing accuracy.

Given parametek, clearly indexing accuracy increases and Based on the above observations, a natural strategy is to
efficiency decreases as we incredseConsequently, given create multiple DBH indexes, so that each index is optimized
a desired retrieval accuracy, and givenwe can choosé for a different set of queries and corresponds to a different
by computingAccuracy,,; for I = 1,2,... until we identify choice of parameters, . In particular, we rank query objects
an [that yields the desired accuracy. Instead of successivély according toD(Q, N(Q)), and we divide the spacX

Costy,1(Q) = LookupCosty, ;(Q) + HashCosty; . (13)

measuring accuracy for ea¢hbinary search can also be usedof possible queries into disjoint subseXg, Xo, ..., X, S0
as a more efficient method for identifying the smalleghat that X; contains queries ranked in the tdp — 1)/s to
yields the desired accuracy. i/s percentiles according td(Q, N(Q)). Then, given the

To find the optimak we repeat the above process (of searcldlatabasé) and the desired accuracy rate, we choose optimal
ing for anl givenk) for different values: = 1,2, Different parameters:; and/; for each query seK;, and we create a
pairs of k, ! that yield roughly the same indexing accuracPBH index structure for that query set. We denoteBythe
Accuracy,, , are likely to yield different cost€ost ;. Thus smallest value such that for all objedts € X; it holds that
it is beneficial to choose the combination kfl that, while D(Q,N(Q)) < D;.
achieving the desired accuracy, minimiZésst; ;. In practice, Naturally, at runtime, given a previously unseen query
for a given accuracy, as we consider= 1,2, ..., efficiency object@, we cannot know whaX; @) belongs to, since we do
typically improves up to a point and then it starts decreasinnot know D(Q, N(Q)). What we can do is perform nearest

neighbor retrieval successively using the DBH indexesterka %o,
for X{,Xo,... If using the DBH index created foK; we ™ % ° o
retrieve a database objektsuch thatD(Q, X) < D;, thenwe = o o
know that D(Q, N(Q)) < D(Q,X) < D;. In that case, the s =xeexxe> o ° °
retrieval process does not proceed to the DBH indexXfary,
and the system simply returns the nearest neighbor found ¢_,
far, using the DBH indexes faXy, ..., X;.

In practice, what we typically observe with this hierarchic
sgheme is this: the first DBH indexes, _designed for qu_erig@ 1. Left: Example of a “seven” in the UNIPEN data set. @isc
with small D(Q, N(Q)), successfully retrieve (at the desiredienote “pen-down” locations, x’s denote “pen-up” locasioRight: The same
accuracy rate) the nearest neighbors for such queriese wigitample, after preprocessing.
achieving a lookup cost much lower than that of using a
single global DBH index. For query object3 with large o
D(Q,N(Q)), in addition to the lookup cost incurred whileSince the lookup cost starts dominating the total cost of
using the DBH index for that particulab(Q, N(Q)), the Processing a query.
hierarchical process also incurs the lookup cost of usimg th
previous DBH indexes as well. However, we expect this addi-
tional lookup cost to be small, since the previous DBH indexe In the experiments we evaluate DBH by applying it to
typically lead to significantly fewer collisions for objscwith three different real-world data sets: the isolated digéadh-
large D(Q, N(@)). So, overall, compared to using a globamark (category 1a) of the UNIPEN Train-R01/V0O7 online
DBH index, the hierarchical scheme should significantly inhandwriting database [45] with dynamic time warping [46]
prove efficiency for queries with lowD(Q, N(Q)), and only as the distance measure, the MNIST database of handwritten
mildly decrease efficiency for queries with high(Q, N(Q)). digits [47] with shape context matching [1] as the distance

measure, and a database of hand images with the chamfer
B. Reducing the Hashing Cost distance as the distance measure. We also compare DBH with

As described in Section IV-C, the hashing cHsshCosty, ; VP-trees [30], a well-known distance-based indexing metho
is the number of unique objects used &s and X, in th7e for arbitrary spaces. We modified VP trees as described in
definitions of thekl binary functions needed to construct36] SO as to get different trade-offs between accuracy and
the DBH index. If thosekl binary functions are picked efficiency. We should note that, in all three data sets, the

randomly from the space of all possible such functions, th&fiderlying distance measures are not metric, and thergfere
we expectHashCost;,; to be close to2kl. In practice, we €S cannot guarantee perfect accuracy.
can significantly reduce this cost, by changing the definitioA Datasets

of HDBH-
In Section IV-A we definedHppy to be the set of all Here we provide details about each of the datasets used

possible functionSF‘t)flt;X2 defined using anyX;, X» € X. in the experiments._We should specify in gdvance that, in all
In practice, however, we can obtain a sufficiently large arfiftasets and experiments, the set of queries used to measure
rich family Hppu using a relatively small Subs&,an ¢ X: performance (retrieval accuracy and retrieval efficienogs

completely disjoint from the database and from the set of
HpBH = {Fffﬁ’zXQ | X1, X2 € Xomall, sample queries used to pick optinkadnd/ parameters during
[t1,t2] € V(X1,X5)} . (15) DBH construction. Specifically, the set of queries used to
measure performance was completely disjoint from the sampl
If we use the above definition, the number of functions iqueries that were used, offline, in Equations 11 and 14 to
Hppn is at least equal to the number of unique palis X, estimateAccuracy,; and Costy ;.
we can choose froXyman, and is actually larger in practice, The UNIPEN data set.We use the isolated digits bench-
since in addition to choosing’;, X, we can also choose anmark (category l1a) of the UNIPEN Train-R01/V07 online
interval [¢t1, t2]. At any rate, the size of{pgy iS quadratic to handwriting database [45], which consists of 15,953 digit
the size ofXsman. At the same time, regardless of the choicexamples (see Figure 1). The digits have been randomly and
of parameterst, !, the hashing cosHashCost;; can never disjointly divided into training and test sets with a 2:lioat
exceed the size aKgman, Since only elements dkgn.n are (or 10,630:5,323 examples). We use the training set as our
used to define functions ik ppu. database, and the test set as our set of queries. The target
In practice, we have found that good results can be obtainggbplication for this dataset is automatic real-time recigm
with sets Xg,.n1 containing as few as 50 or 100 elementof the digit corresponding to each query. The distance nteasu
The significance of this is that, in practice, the hashing co® used is dynamic time warping [46]. On an AMD Athlon
is bounded by a relatively small number. Furthermore, tt20GHz processor, we can compute on average DTW
hashing cost actually becomes increasingly negligiblehas tdistances per second. Therefore, nearest neighbor atassifi
database becomes larger and the sizEgf,; remains fixed, using brute-force search takes about 12 seconds per query.

-2
2700 2750 2800 2850 2900 %2 -15 -1 -05 0 05 1 15 2

VI. EXPERIMENTS

NEANNARHEERE
BEENSNBARN
FilxiFFEEEFE
Glelals19]0]0]0l0]0

Fig. 2. Example images from the MNIST dataset of handwriti@gits.

The nearest neighbor error obtained using brute-forceckear
is 2.05%.

The MN_IST d‘_at_a set. The W_e”'known MNI_ST de_ltaset Fig. 4. Examples of different appearance of a fixed 3D handesha
of handwritten digits [47] contains 60,000 training imagesorresponding to different 3D orientations of the shape.
which we use as the database, and 10,000 test images, which
we use as our set of queries. Each image is a 28x28 im- o)
age displaying an isolated digit betweénand 9. Example distances per second. _Consequently, finding the nearegt-nei
images are shown in Figure 2. The distance measure tR8fS Of each query using brute force search takes about 112
we use in this dataset is shape context matching [1], whi€gconds.
involves using th?:l Hungatr)ian algorfithm to find hoptimalionq_:)_ Implementation Details
to-one correspondences between features in the two 'MAYEF ¢ each data set we constructed a fanfily,gp of bi-
The time complexity of the Hungarian algorithm is cubic to

. . nary hash functions as described in Section V-B. We first

the number of image features. As reported in [48], neares .

: o . . . constructed a seXg,. by picking randomly 100 database
neighbor classification using shape context matching 3|eI8

an error rate 00.54%. As can be seen on the MNIST webCPJECts. Then, for each pair of objeck, X; € Xsman We

site (it t p: // yann. | ecun. cond exdb/ mi st /), shape created a binary hash function by applying Equation 5 and

’ ; choosing randomly an intervaty,ts] € V(X1,X3). As a
context matching outperforms in accuracy a large number © 4 : . .
. result, Hpgua contained one hinary function for each pair of
other methods that have been applied to the MNIST dataset.. . :
. : o . i jects inXqman, for a total 0f4950 functions.
Using our own heavily optimized C++ implementation o

h text matchi d . AMD Ont To estimate retrieval accuracy using Equation 11, we used
shape context maiching, and running on an P erclrb,OOO database objects as sample queries. To estimate the
2.2GHz processor, we can compute on average 15 sh

@Kup cost using Equation 12 we used the same 10,000

context distances per second. As a result, using brute for&& b bi . :
. . t both I Equation 12
search to find the nearest neighbors of a query takes on zwergE abase objects as both sample querdgsn(Equation 12)

. . : d sample database objeckS ih Equation 12). The retrieval
approximately 66 minutes when using the full database rformance attained by each pdirl of parameters was
60,000 images.

- .) estimated by applying Equations 11 and 14, and thus the
The hand image data set.This dataset consists of a

At optimal k, [was identified for each desired retrieval accuracy
database of 80,640 synthetic images of hands, generategl usi;q

the Poser 5 software [49], and a test set of 71_0 real imagesye should emphasize that Equations 11, 12 and 14 were
of hands, used as queries. Both the database images and,{}¢ ;sed in the offline stage to choose optiral parameters.
query images display the hand in one of 20 different 3Ppe accuracy and efficiency values shown in Figure 5 were
handshape configurations. Those configurations are showndl5sured experimentally using previously unseen quehias,

Figure 3. For each of the 20 different handshapes, the ds#abgere completely disjoint from the samples used to estinfete t
contains 4,032 database images that correspond to difféen optimal k, | parameters.

orientations of the hand, for a total number of 80,640 images ko the hierarchical version of DBH, described in Section
Figure 4 displays example images of a single handshape\iny e useds = 5 for all data sets, i.e., the hierarchical

different 3D orientations. _ _ DBH index structure consisted of five separate DBH indexes,
The query images are obtained from video sequences ofghstructed using different choices forand!.
native ASL signer, and hand locations were extracted from

those sequences automatically using the method describe&i Results

[50]. The distance measure that we use to compare imagefigure 5 shows the results obtained on the three data sets for
is the chamfer distance [26]. On an AMD Athlon processdrierarchical DBH, single-level DBH (where a single, global
running at 2.0GHz, we can compute on average 715 chamidBH index is built), and VP-trees. For each data set we

2200

2000 -

1800

P N =
1N} N @
=] 5] =]
=] =] =]

=
o
)
=]

object comparisons per query

800

35

results on UNIPEN dataset
T T

T
= = =\P-trees

== Single-level DBH
Hierarchical DBH

accuracy
results on MNIST dataset
T T

0.99

= N
& [N o

object comparisons per query

[

0.5

T
= = = \/P-trees

= = Single-level DBH
Hierarchical DBH

8000

7000

N o o
o =] o
] =] =]
=] S =]

object comparisons per query

w
o
s]
=]

2000

1000
0.

Fig. 5.

accuracy

results on hands dataset

0.99

= = =VP-trees
== Single-level DBH
Hierarchical DBH

75 0.8

Results on our three data sets, for VP-trees, siegtd-DBH, and
hierarchical DBH. The x-axis is retrieval accuracy, i.bg fraction of query
objects for which the true nearest neighbor is retrievede Vkaxis is the

0.85 0.9
accuracy

0.95

0.99

average number of distances that need to be measured pgrahject.

The number of distances includes both the hashing cost and
the lookup cost for each query. To convert the number of

distances to actual retrieval time, one simply has to divide

the number of distances by 890 distances/sec for UNIPEN, 15
distances/sec for MNIST, and 715 distances/sec for theshand

data set. Retrieval accuracy is simply the fraction of query

objects for which the true nearest neighbor was returned by
the retrieval process.

As we see in Figure 5, hierarchical DBH gives overall
the best trade-offs between efficiency and accuracy. The onl
exceptions are a very small part of the plot for the MNIST data
set, where the single layer DBH gives slightly better result
and a small part of the plot for the hands data set, where VP-
trees give slightly better results. On the other hand, othadle
data sets, for the majority of accuracy settings, hieraahi
DBH significantly outperforms VP-trees, and oftentimes DBH
is more than twice as fast, or even close to three times as
fast, compared to VP-trees. We also see that, almost always,
hierarchical DBH performs somewhat better than singlellev
DBH.

Interestingly, the hands data set, where for high accuracy
settings VP-trees perform slightly better, is the only data
set that, strictly speaking, violates the assumption onckwvhi
DBH optimization is based: the assumption that the sample
gueries that we use for estimating indexing performance are
representative of the queries that are presented to thensyst
at runtime. As explained in the description of the hands
data set, the sample queries are database objects, which are
synthetically generated and relatively clean and noise;fr
whereas the query objects presented to the system at runtime
are real images of hands, that contain significant amounts of
noise.

In conclusion, DBH, and especially its hierarchical vensio
produces good trade-offs between retrieval accuracy and ef
ficiency, and significantly outperforms VP-trees in our #re
real-world data sets. We should note and emphasize that all
three data sets use non-metric distance measures, and no
known method exists for applying LSH on those data sets.

VII. CONCLUSIONS

We have presented DBH, a novel method for approximate
nearest neighbor retrieval in arbitrary spaces. DBH is aihgs
method, that creates multiple hash tables into which databa
objects and query objects are mapped. A key feature of DBH
is that the formulation is applicable to arbitrary spaced an
distance measures. DBH is inspired by LSH, and a primary
goal in developing DBH has been to create a method that
allows some of the key concepts and benefits of LSH to be
applied in arbitrary spaces.

The key difference between DBH and LSH is that LSH can
only be applied to spaces where locality sensitive famities
hashing functions have been demonstrated to exist; inasmtr
DBH uses a family of binary hashing functions that is dis&anc

plot retrieval time versus retrieval accuracy. Retrievalet is based, and thus can be constructed in any space. As DBH
completely dominated by the number of distances we needlexing performance cannot be analyzed using geometric
to measure between the query object and database objgutsperties, performance analysis and optimization is dhase

statistics collected from sample data. In experiments thitee [19] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold, lt&ering

real-world, non-metric data sets, DBH has yieIded goodet{ad for apprqximate similarity search in high-(_jimer_\sional s’ |IEEE
. . . Transactions on Knowledge and Data Engineeyingl. 14, no. 4, pp.
offs between retrieval accuracy and retrieval efficieneyd a 795_g0s 2002.

DBH has significantly outperformed VP-trees in all threeadat20] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “Thdree: An

sets. Furthermore, no known method exists for applying LSH index‘structure ‘for high-dimensional spaces using redatipproxima-
. tion,” in International Conference on Very Large Data Bas2800, pp.
on those data sets, and this fact demonstrates the need for ag;g 5oq
distance-based hashing scheme that DBH addresses. [21] E. Tuncel, H. Ferhatosmanoglu, and K. Rose, “VQ-indéxx index
structure for similarity searching in multimedia datalsgsé Proc. of
ACM Multimedia 2002, pp. 543-552.
[22] R. Weber and K. Bohm, “Trading quality for time with meat-neighbor
; search,” ininternational Conference on Extending Database Technpolog
This work was supported by NSF grant IS 0308213. Advances in Database Technologi00, pp. 21-35.
[23] R. Weber, H.-J. Schek, and S. Blott, “A quantitative lges and

ACKNOWLEDGEMENTS

REFERENCES performance study for similarity-search methods in higheahsional
spaces,” ininternational Conference on Very Large Data Bas&398,
[1] S. Belongie, J. Malik, and J. Puzicha, “Shape matchindj@ject recog- pp. 194-205.
nition using shape contextdEEE Transactions on Pattern Analysis and[24] V. I. Levenshtein, “Binary codes capable of correctiejetions, inser-
Machine Intelligencevol. 24, no. 4, pp. 509-522, 2002. tions, and reversalsSoviet Physicsvol. 10, no. 8, pp. 707—710, 1966.

[2] K.Grauman and T. J. Darrell, “Fast contour matching gsipproximate [25] E. Keogh, “Exact indexing of dynamic time warping,” nternational
earth mover’s distance,” ilEEE Conference on Computer Vision and Conference on Very Large Data Bas@§02, pp. 406—417.

Pattern Recogpnitionvol. 1, 2004, pp. 220-227. o [26] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parainecor-
[3] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast poseinestion respondence and chamfer matching: Two new techniques fagém
with parameter-sensitive hashing,” IBEE International Conference on matching,” in International Joint Conference on Artificial Intelligence
Computer Vision (ICCV)2003, pp. 750-757. 1977, pp. 659-663.
[4] S. Altschul, W. Gish, W. Miller, E. Myers, and D. LipmanBasic local [27] T. M. Cover and J. A. Thoma&lements of information theary New
alignment search toolJournal of Molecular Biologyvol. 215, no. 3, York, NY, USA: Wiley-Interscience, 1991.
pp. 403-10, 1990. _) [28] E.Chavez, G. Navarro, R. Baeza-Yates, and J. L. Mafirgd'Searching
[5] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, Asteicher, in metric spaces,ACM Computing Surveysol. 33, no. 3, pp. 273-321,

E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, |. Phan 2001.
S. Pilbout, and M. Schneider, “The swiss-prot protein kremgebase [29] E. Chavez and G. Navarro, “Metric databases.” Encyclopedia of

and its supplement TrEMBL in 2003Nucleic Acids Researchol. 31, Database Technologies and Applicatioris C. Rivero, J. H. Doorn,
no. 1, pp. 365-370, 2003. and V. E. Ferraggine, Eds. Idea Group, 2005, pp. 366-371.

[6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huarig, Dom, [30] P. Yianilos, “Data structures and algorithms for neareeighbor search
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and &ker, in general metric spaces,” iACM-SIAM Symposium on Discrete Algo-
“Query by image and video content: The QBIC systefEEE Com- rithms (SODA) 1993, pp. 311-321.
puter, vol. 28, no. 9, 1995. [31] J. Uhlman, “Satisfying general proximity/similarityueries with metric

[7] Y. Zhu and D. Shasha, “Warping indexes with envelope sfarms for trees,’Information Processing Lettersol. 40, no. 4, pp. 175-179, 1991.
query by humming.” inACM International Conference on Managemen{32] T. Bozkaya and ZOzsoyoglu, “Indexing large metric spaces for simi-
of Data (SIGMOD) 2003, pp. 181-192. larity search queriesACM Transactions on Database Systems (TQDS)

[8] A. Gionis, P. Indyk, and R. Motwani, “Similarity searct ihigh vol. 24, no. 3, pp. 361-404, 1999.
dimensions via hashing,” innternational Conference on Very Large [33] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An eéfiti access method
Databases (VLDB)1999, pp. 518-529. for similarity search in metric spaces,” international Conference on

[9] A. Andoni and P. Indyk, “Near-optimal hashing algorithrfor approx- Very Large Data Bases1997, pp. 426-435.
imate nearest neighbor in high dimensions,” I[EEE Symposium on [34] C. Traina, Jr., A. Traina, B. Seeger, and C. Falouts@jni-trees:
Foundations of Computer Science (FOC3)06, pp. 459—-468. High performance metric trees minimizing overlap betweedeas,” in

[10] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, @®ognizing International Conference on Extending Database Technol@&DBT)
objects in range data using regional point descriptors,European 2000, pp. 51-65.
Conference on Computer Visiowol. 3, 2004, pp. 224-237. [35] P. Zezula, P. Savino, G. Amato, and F. Rabitti, “Approate similarity
[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Nul retrieval with M-trees,"The VLDB Journalvol. 4, pp. 275-293, 1998.
probe Ish: Efficient indexing for high-dimensional simitgrsearch,” [36] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. l&mff, “Query-
in International Conference on Very Large Databases (VLDE)07, sensitive embeddingsRCM Transactions on Database Systems (TQDS)
pp. 950-961. vol. 32, no. 2, 2007.

[12] A. Andoni and P. Indyk, “Efficient algorithms for subisty near [37] J. Bourgain, “On Lipschitz embeddings of finite metrmases in Hilbert
neighbor problem,” inACM-SIAM Symposium on Discrete Algorithms space,’Israel Journal of Mathematigsvol. 52, pp. 46-52, 1985.

(SODA) 2006, pp. 1203-1212. [38] C. Faloutsos and K. I. Lin, “FastMap: A fast algorithmr fmdexing,
[13] J. Buhler, “Efficient large-scale sequence comparidmn locality- data-mining and visualization of traditional and multineedatasets,”
sensitive hashing,Bioinformatics vol. 17, no. 5, 2001. in ACM International Conference on Management of Data (SIGNIOD
[14] C. Bdhm, S. Berchtold, and D. A. Keim, “Searching inftidimensional 1995, pp. 163-174.
spaces: Index structures for improving the performance olftimedia [39] G. Hristescu and M. Farach-Colton, “Cluster-presegvembedding of
databases, ACM Computing Surveysol. 33, no. 3, pp. 322-373, 2001. proteins,” CS Department, Rutgers University, Tech. R&350, 1999.
[15] G. Hjaltason and H. Samet, “Properties of embeddinghots for [40] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapimnd
similarity searching in metric spacedEEE Transactions on Pattern K. Zhang, “An index structure for data mining and clustefingnowl-
Analysis and Machine Intelligenceol. 25, no. 5, pp. 530-549, 2003. edge and Information Systemsl. 2, no. 2, pp. 161-184, 2000.
[16] G. R. Hjaltason and H. Samet, “Index-driven similaritgarch in metric [41] K.-S. Goh, B. Li, and E. Chang, “DynDex: a dynamic and metric
spaces,”ACM Transactions on Database Systemwsl. 28, no. 4, pp. space indexer,” ilACM International Conference on Multimedia002,
517-580, 2003. pp. 466-475.

[17] D. A. White and R. Jain, “Similarity indexing: Algoriths and per- [42] M. E. Houle and J. Sakuma, “Fast approximate similasgarch in
formance,” in Storage and Retrieval for Image and Video Databases extremely high-dimensional data sets,1EE International Conference

(SPIE) 1996, pp. 62-73. on Data Engineering (ICDE)2005, pp. 619-630.

[18] K. V. R. Kanth, D. Agrawal, and A. Singh, “Dimensiongliteduction [43] T. Skopal, “On fast non-metric similarity search by nieticcess meth-
for similarity searching in dynamic databases,” ACM International ods,” in International Conference on Extending Database Technolog
Conference on Management of Data (SIGMQDJ98, pp. 166-176. (EDBT), 2006, pp. 718-736.

[44]

[45]

[46]

[47]

(48]

[49]
[50]

R. Panigrahy, “Entropy based nearest neighbor seardhigh dimen-
sions,” INACM-SIAM Symposium on Discrete Algorithms (SO2AQP6,
pp. 1186-1195.

I. Guyon, L. Schomaker, and R. Plamondon, “Unipen mbjef on-
line data exchange and recognizer benchmarks12dth International
Conference on Pattern Recognitjoh994, pp. 29-33.

J. B. Kruskall and M. Liberman, “The symmetric time wengp algo-
rithm: From continuous to discrete,” iime Warps Addison-Wesley,
1983.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradidrased learning
applied to document recognitionProceedings of the IEEEvol. 86,
no. 11, pp. 2278-2324, 1998.

V. Athitsos, “Learning embeddings for indexing, retral, and classi-
fication, with applications to object and shape recognitionimage
databases,” Ph.D. dissertation, Boston University, 2006.

Poser 5 Reference Manudurious Labs, Santa Cruz, CA, August 2002.
Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2D hhatracking
in video sequences.” iIEEE Workshop on Applications of Computer
Vision, 2005, pp. 250-256.

10

