
To appear in Proceedings of IEEE International Conference on Data Engineering (ICDE), April 2008.

Nearest Neighbor Retrieval Using Distance-Based
Hashing

Vassilis Athitsos 1, Michalis Potamias2, Panagiotis Papapetrou2, and George Kollios2

1Computer Science and Engineering Department, University of Texas at Arlington
Arlington, Texas, USA

2Computer Science Department, Boston University
Boston, Massachusetts, USA

Abstract— A method is proposed for indexing spaces with ar-
bitrary distance measures, so as to achieve efficient approximate
nearest neighbor retrieval. Hashing methods, such as Locality
Sensitive Hashing (LSH), have been successfully applied for
similarity indexing in vector spaces and string spaces under the
Hamming distance. The key novelty of the hashing technique
proposed here is that it can be applied to spaces with arbitrary
distance measures, including non-metric distance measures. First,
we describe a domain-independent method for constructing a
family of binary hash functions. Then, we use these functions
to construct multiple multibit hash tables. We show that the
LSH formalism is not applicable for analyzing the behavior of
these tables as index structures. We present a novel formulation,
that uses statistical observations from sample data to analyze
retrieval accuracy and efficiency for the proposed indexing
method. Experiments on several real-world data sets demonstrate
that our method produces good trade-offs between accuracy and
efficiency, and significantly outperforms VP-trees, which are a
well-known method for distance-based indexing.

I. I NTRODUCTION

Answering a nearest neighbor query consists of identifying,
for a given query object, the most similar database objects.
Nearest neighbor retrieval is a common and indispensable
operation in a wide variety of real systems. A few example
applications are nearest neighbor classification (e.g., [1], [2],
[3]), analysis of biological sequences (e.g., [4], [5]), and
content-based access to multimedia databases (e.g., [6], [7]).
Given ever-increasing database sizes, there is a need for
efficient and scalable indexing methods, that can facilitate
accurate and efficient nearest neighbor retrieval.

Locality Sensitive Hashing (LSH) [8], [9] is a framework
for hash-based indexing, with appealing theoretical properties
and empirical performance. LSH is an approximate technique;
it does not guarantee finding the true nearest neighbor for
100% of the queries. At the same time, LSH provides a
statistical guarantee of producing a correct result with high
probability. Theoretically, for a database ofn vectors of
d dimensions, the time complexity of finding the nearest
neighbor of an object using LSH is sublinear inn and only
polynomial ind. The theoretical advantages of LSH have been
also empirically demonstrated in several applications involving
high-dimensional data [10], [8], [2], [11], [3].

A key requirement for applying LSH to a particular space
and distance measure is to identify a family oflocality
sensitivefunctions, satisfying the properties specified in [8].
As a consequence, LSH is only applicable for specific spaces
and distance measures where such families of functions have
been identified, such as real vector spaces withLp distance
measures, bit vectors with the Hamming distance, or strings
with a substitution-based distance measure (that does not
allow insertions or deletions) [12], [13]. This is in contrast
to distance-based indexing methods, that build indexing struc-
tures based only on distances between objects, and thus can
be readily applied to any space and distance measure.

In this paper we introduce Distance-Based Hashing (DBH),
a novel indexing method for efficient approximate nearest
neighbor retrieval. Compared to LSH, DBH has several simi-
larities but also some important differences. Overall , themain
novelties of DBH are the following:

• DBH is a hash-based indexing method that isdistance-
based. Consequently, DBH can be applied in arbitrary
(and not necessarily metric) spaces and distance mea-
sures, whereas LSH cannot.

• Indexing performance (in terms of retrieval accuracy and
retrieval efficiency) is estimated and optimized using
statistics obtained from sample data, whereas in LSH per-
formance guarantees are obtained by using some known
geometric properties of a specific space and distance
measure. Dependence on known geometric properties
is exactly what makes LSH not applicable in arbitrary
spaces.

An additional contribution of this paper is a description of
two techniques for further improving DBH performance in
practice: we describe a hierarchical version of DBH, where
different index structures are tuned to different parts of the
space of queries, and we also describe a method for signifi-
cantly reducing the cost of computing the hash values for each
query object.

Experiments with several real-world data sets demonstrate
that DBH provides very good trade-offs between retrieval
accuracy and efficiency, and that DBH outperforms VP-trees,
a well-known distance-based method for indexing arbitrary

1

spaces. Furthermore, no known method exists for applying
LSH on those data sets, and this fact further demonstrates the
need for a distance-based hashing scheme that DBH addresses.

II. RELATED WORK

Various methods have been employed for speeding up near-
est neighbor retrieval. Comprehensive reviews on the subject
include [14], [15], [16], [17]. A large amount of work focuses
on efficient nearest neighbor retrieval in multidimensional
vector spaces using anLp metric [18], [19], [20], [21], [22],
[23]. However, many commonly used distance measures are
notLp metrics, and thus cannot be indexed with such methods.
Popular examples of non-Lp distance measures include the edit
distance for strings [24], dynamic time warping for timeseries
[25], the chamfer distance [26] and shape context matching
[1] for edge images, and the Kullback-Leibler (KL) distance
for probability distributions [27].

A number of nearest neighbor methods can be applied for
indexing arbitrary metric spaces; the reader is referred to
[28], [29], [16] for surveys of such methods. VP-trees [30],
metric trees [31] and MVP-trees [32] hierarchically partition
the database into a tree structure by splitting, at each node,
the set of objects based on their distances to pivot objects.
M-trees [33] and slim-trees [34] are variants of metric trees
explicitly designed for dynamic databases. An approximate
variant of M-trees is proposed in [35], and achieves additional
speed-ups by sacrificing the guarantee of always retrieving
the true nearest neighbors. A general problem with the above-
mentioned tree-based indexing methods is that they suffer from
the curse of dimensionality: performance tends to approach
brute-force search as the intrinsic dimensionality of the space
exceeds a few tens of dimensions.

In domains with a computationally expensive distance mea-
sure, significant speed-ups can be obtained by embedding ob-
jects into another space with a more efficient distance measure.
Several methods have been proposed for embedding arbitrary
spaces into a Euclidean or pseudo-Euclidean space [36], [37],
[38], [39], [40]. However, used by themselves, embedding
methods simply substitute a fast approximate distance for the
original distance, and still use brute force to compare the
query to all database objects, albeit using the fast approximate
distance instead of the original one.

Non-metric distance measures are frequently used in pattern
recognition. Examples of non-metric distance measures arethe
chamfer distance [26], shape context matching [1], dynamic
time warping [25], or the Kullback-Leibler (KL) distance
[27]. Methods that are designed for general metric spaces
can still be applied when the distance measure is non-metric.
However, methods that are exact for metric spaces become
inexact in non-metric spaces, and no theoretical guarantees of
performance can be made.

A method explicitly designed for indexing non-metric
spaces is DynDex [41], which is designed for a specific non-
metric distance measure, and is not applicable to arbitrary
spaces. SASH [42] is a method that can be used in both metric

and non-metric spaces, and can be applied in extremely high-
dimensional settings. An alternative method is proposed by
Skopal in [43]. In that method, distances are directly modified
in a nonlinear way, to become more or less metric, i.e.,
conform more or less with the triangle inequality. That method
can be combined with any distance-based indexing scheme and
is orthogonal to such schemes, including the method proposed
in this paper.

LSH [9], [8] is the method most closely related to DBH,
the method proposed in this paper. As pointed out in the in-
troduction, the key difference is that LSH can only be applied
to specific spaces, where a family of locality sensitive hashing
functions is available. The formulation of DBH is distance-
based, and thus DBH can be applied for indexing arbitrary
distance measures. The remainder of the paper describes DBH
in detail, highlighting similarities and differences between
LSH and DBH.

III. L OCALITY SENSITIVE HASHING

Let X be a space of objects, to which database and query
objects belong. LetD be a distance measure defined onX.
In this paper we also use notation(X, D) to jointly specify
the space and distance measure. LetH be a family of hash
functions h : X → Z, where Z is the set of integers. As
described in [8],H is called locality sensitiveif there exist
real numbersr1, r2, p1, p2 such thatr1 < r2, p1 > p2, and for
any X1, X2 ∈ X:

D(X1, X2) < r1 ⇒ Prh∈H(h(X1) = h(X2)) ≥ p1 . (1)

D(X1, X2) > r2 ⇒ Prh∈H(h(X1) = h(X2)) ≤ p2 . (2)

Given a locality sensitive familyH, Locality Sensitive
Hashing (LSH) indexing works as follows: first, we pick inte-
gersk andl. Then, we constructl hash functionsg1, g2, . . . , gl,
as concatenations ofk functions chosen randomly fromH:

gi(X) = (hi1(X), hi2(X), . . . , hik(X)) . (3)

Each database objectX is stored in each of thel hash tables
defined by the functionsgi. Given a query objectQ ∈ X, the
retrieval process first identifies all database objects thatfall
in the same bucket as Q in at least one of thel hash tables,
and then exact distances are measured between the query and
those database objects.

As shown in [8], if k and l are chosen appropriately,
then a near neighbor ofQ is retrieved with high probability
(note that LSH isnot an exact indexing method, as it may
produce the wrong result for some queries). The method can be
applied both for near-neighbor retrieval (for range queries) and
nearest-neighbor retrieval (for similarity queries). In Euclidean
spaceRd, the time complexity of retrieval using LSH is linear
in the dimensionalityd and sublinear in the numbern of
database objects [9].

Applying the LSH framework to a specific space and dis-
tance measure requires identifying a locality sensitive family
H. Such families have been identified for certain spaces, such
as vector spaces withLp metrics [9], [8], or strings with a

2

substitution-based distance measure [12], [13]. An improve-
ment that can drastically reduce the memory requirements of
LSH in Euclidean spaces is described in [44].

IV. D ISTANCE-BASED HASHING

In this section we introduce Distance-Based Hashing
(DBH), a method for applying hash-based indexing in arbitrary
spaces and distance measures. In order to make our method
applicable to arbitrary spaces, a key requirement is to use the
distance measure as a black box. Therefore, the definition of
the hash functions should only depend on distances between
objects. To keep the method general, no additional assumptions
are made about the distance measure. In particular, the distance
measure isnotassumed to have Euclidean or metric properties.

The first step in our formulation is to propose a familyH
of hash functions. These functions are indeed defined using
only distances between objects, and thus they can be defined
in arbitrary spaces. The second and final step is to introduce
a framework for analyzing indexing performance and picking
parameters. We shall see that the proposed familyH of hash
functions isnot always locality sensitive (depending on the
space and distance measure), and therefore our method cannot
be analyzed using the LSH framework. Consequently, we
introduce a different framework, whereby indexing behavior is
analyzed using statistical data collected from sample objects
of X.

A. A Distance-Based Family of Hash Functions

In existing literature, several methods have been proposed
for defining functions that map an arbitrary space(X, D) into
the real lineR. An example is the pseudo line projections
proposed in [38]: given two arbitrary objectsX1, X2 ∈ X,
we define a “line projection” functionFX1,X2 : X → R as
follows:

FX1,X2(X) =
D(X, X1)

2 + D(X1, X2)
2 − D(X, X2)

2

2D(X1, X2)
.

(4)
If (X, D) is a Euclidean space, thenFX1,X2(X) computes

the projection of pointX on the unique line defined by
points X1 and X2. If X is a general non-Euclidean space,
then FX1,X2(X) does not have a geometric interpretation.
However, as long as a distance measureD is available,FX1,X2

can still be defined and provides a simple way to projectX

into R.
We should note that the family of functions defined using

Equation 4 is a very rich family. Any pair of objects defines
a different function. Given a databaseU of n objects, we can
define aboutn2/2 unique functions by applying Equation 4 to
pairs of objects fromU.

Functions defined using Equation 4 are real-valued, whereas
hash functions need to be discrete-valued. We can easily obtain
discrete-valued hash functions fromFX1,X2 using thresholds
t1, t2 ∈ R:

FX1,X2

t1,t2
(X) =

{

0 if FX1,X2(X) ∈ [t1, t2] .
1 otherwise.

(5)

In practice,t1 andt2 should be chosen so thatFX1,X2

t1,t2
(X)

maps approximately half the objects inX to 0 and half to 1,
so that we can build balanced hash tables. We can formalize
this notion by defining, for each pairX1, X2 ∈ X, the set
V(X1, X2) of intervals[t1, t2] such thatFX1,X2

t1,t2
(X) splits the

space in half:

V(X1, X2) = {[t1, t2]|PrX∈X(FX1,X2

t1,t2
(X) = 0) = 0.5} .

(6)
Note that, in most cases, for everyt there exists at′ such

that FX1,X2 maps half the objects ofX either to [t, t′] or to
[t’, t]. For a set ofn objects, there aren/2 ways to split those
objects into two equal-sized subsets (ifn is even) based on
the choice of[t1, t2] ∈ V(X1, X2). One of several alternatives
is to choose an interval[t1,∞] such thatFX1,X2(X) is less
than t1 for half the objectsX ∈ X. Another alternative is to
choose an interval[t1, t2] such that, usingFX1,X2 , one sixth
of the objects inX are mapped to a value less thant1 and
two sixths of the objects are mapped to a value greater than
t2. The setV(X1, X2) includes intervals for all these possible
ways to splitX into two equal subsets.

Using the above definitions, we are now ready to define a
family HDBH of hash functions for an arbitrary space(X, D):

HDBH = {FX1,X2

t1,t2
|X1, X2 ∈ X, [t1, t2] ∈ V(X1, X2)} . (7)

Using random binary hash functionsh sampled fromHDBH

we can definek-bit hash functionsgi by applying Equation 3.
This way, indexing and retrieval can be performed as in LSH,
by:

• Choosing parametersk and l.
• Constructingl k-bit hash tables, and storing pointers to

each database object at the appropriatel buckets.
• Comparing the query object with the database objects

found in thel hash table buckets that the query is mapped
to.

B. Differences between LSH and DBH

In the previous paragraphs we have defined a distance-based
indexing scheme that uses hash functions. We call that method
Distance-Based Hashing (DBH). What DBH has in common
with LSH is the indexing structure: we definel hash tables
using l hash functionsgi, and eachgi is a concatenation of
k simple, discrete-valued (binary, in our case) functionsh ∈
HDBH.

If the function familyHDBH were locality sensitive, then
DBH would be a special case of LSH, and we would be able
to use the LSH framework to optimally pick parametersk and
l and provide guarantees of accuracy and efficiency. The main
difference between DBH and LSH stems from the fact that we
do not assumeHDBH to be locality sensitive. WhetherHDBH

is actually locality sensitive or not depends on the underlying
space and distance measure. Since we want to use DBH for
indexing arbitrary spaces, we need to provide a method for
analyzing performance without requiringHDBH to be locality
sensitive.

3

From an alternative perspective the difference between LSH
and DBH is that applying LSH on a particular space requires
knowledge of the geometry of that space. This knowledge is
used to construct a familyH of hash functions for that space
and to prove thatH is locality sensitive. If the goal is to
design an indexing scheme for arbitrary spaces, then clearly no
geometric information can be exploited, since arbitrary spaces
have arbitrary geometries.

A simple example to illustrate that the familyHDBH

defined in Section IV-A is not always locality sensitive is
the following: let us construct a finite space(X, D), by
defining a distance matrixM , where entryMi,j is the distance
D(Xi, Xj) between thei-th andj-th object ofX. We set the
diagonal entriesMi,i to zero, we set all off-diagonal entries
to random numbers from the interval[1, 2], and we enforce
that M be symmetric. Under that construction, space(X, D)
is metric, as it satisfies symmetry and the triangle inequality.

In such a scenario, for any two objectsXi, Xj ∈ X,
the probabilityPrh∈HDBH

(h(Xi) = h(Xj)) does not depend
at all on the distance betweenXi and Xj, and in practice
Prh∈HDBH

(h(Xi) = h(Xj)) is expected to be very close to
0.5, especially as the size ofX becomes larger. Consequently,
regardless of our choice ofr1 and r2, there is no reason for
appropriatep1, p2 to exist so as to satisfy the locality sensitive
conditions expressed in Equations 1 and 2.

More generally, the random manner in which we con-
structed matrixM violates the fundamental assumption of
any distance-based indexing method: the assumption that
knowingD(Xi, Xj) andD(Xj , Xk) provides useful informa-
tion/constraints aboutD(Xi, Xk). The reason that distance-
based methods work in practice is that, in many metric and
nonmetric spaces of interest, distances are indeed not random,
and knowing distances between some pairs of objects we can
obtain useful information about distances between other pairs
of objects.

Based on the above discussion, designing a useful distance-
based indexing method requires identifying and exploitingthe
information that distances between objects provide, when such
information is indeed present. When geometric constraints
(such as Euclidean properties and/or the triangle inequality)
are not available, we can still exploit statistical information
obtained from sample data, i.e., from known objects sampled
from the space of interest. We now proceed to describe how
to obtain and use such statistical information in the context of
DBH.

C. Statistical Analysis of DBH

An important question in analyzing any indexing scheme is
identifying the factors that determine indexing performance,
i.e., the factors that determine:

• Retrieval accuracy: how often is the true nearest neighbor
retrieved using this indexing scheme?

• Retrieval efficiency: how much time does nearest neigh-
bor retrieval take? What fraction of the database is pruned
by the indexing scheme?

We now proceed to perform this analysis for DBH.

As before, let(X, D) be the underlying space and distance
measure. LetU ⊂ X be a database of objects fromX. Let
HDBH be the family of binary hash functions defined in
Equation 7. A key quantity for analyzing the behavior of DBH
is the probabilityC(X1, X2) of collision between any two
objects ofX over all binary hash functions inHDBH:

C(X1, X2) = Prh∈HDBH
(h(X1) = h(X2)) . (8)

Given familyHDBH and the two objectsX1 andX2, quantity
C(X1, X2) can be measured directly by applying all functions
h ∈ HDBH to X1 and X2, if HDBH is finite. Alternatively,
C(X1, X2) can be estimated by applying only a sample of
functionsh ∈ HDBH to X1 andX2.

Suppose that we have chosen parametersk and l, and
that we constructl k-bit hash tables by choosing randomly,
uniformly, and with replacement,kl functions fromHDBH.
The probabilityCk(X1, X2) of collision between two objects
on ak-bit hash table is:

Ck(X1, X2) = C(X1, X2)
k . (9)

Finally, the probabilityCk,l(X1, X2) that two objects collide
in at least one of thel hash tables is:

Ck,l(X1, X2) = 1 − (1 − C(X1, X2)
k)l . (10)

Suppose that we have a databaseU ⊂ X of finite size
n = |U|, and let Q ∈ X be a query object. We denote
by N(Q) the nearest neighbor ofQ in U. The probability
that we will successfully retrieveN(Q) using DBH is simply
Ck,l(Q, N(Q)). The accuracy of DBH, i.e., the probability
over all queriesQ that we will retrieve the nearest neighbor
N(Q) is:

Accuracyk,l =

∫

Q∈X

Ck,l(Q, N(Q))Pr(Q)dQ , (11)

wherePr(Q) is the probability density ofQ being chosen as
a query. This probability density is assumed to be uniform in
the rest of this paper.

QuantityAccuracyk,l can be easily estimated by:

1) sampling queriesQ ∈ X,
2) finding the nearest neighborsN(Q) of those queries in

the databaseU,
3) estimatingC(Q, N(Q)) for each sample Q by sampling

from HDBH,
4) using the estimatedC(Q, N(Q)), and applying Equa-

tions 9 and 10 to computeCk,l(Q, N(Q)) for each
sample Q, and

5) computing the average value ofCk,l(Q, N(Q)) over all
sample queriesQ.

Besides accuracy, the other important performance measure
for DBH is efficiency. In particular, we want to know how
many database objects we need to consider for each query
using DBH. Naturally, in brute force search we need to
consider every single database object. The expected numberof
database objects we need to consider for a queryQ is denoted
as LookupCost(Q) and is simply the expected number of

4

objects that fall in the same bucket withQ in at least one
of the l hash tables. This quantity can be computed as:

LookupCostk,l(Q) =
∑

X∈U

Ck,l(Q, X) . (12)

For efficiency, an estimate forLookupCost(Q) can be com-
puted based on a sample of database objects, as opposed to
computingCk,l(Q, X) for all database objectsX ∈ U.

An additional cost incurred by retrieval using DBH is the
cost of computing the outputsgi(Q) of the l k-bit hash func-
tions gi. Overall, we need to applykl binary hash functions
h ∈ HDBH on Q. Since each such functionh is of the form
specified in Equation 5, computing such anh(Q) involves
computing the distancesD(Q, X1) and D(Q, X2) between
the query and the two objectsX1 and X2 used to defineh.
We denote byHashCostk,l the number of such distances we
need to compute, in order to computeh(Q) for all binary hash
functions. Note thatHashCostk,l is independent of the query
Q, as HashCostk,l is simply the number of unique objects
used asX1 and X2 in the definitions of thekl binary hash
functions h. In the worst case,HashCostk,l = 2kl, but in
practiceHashCostk,l can be smaller because the same object
X can be used asX1 or X2 in the definitions of multiple
binary hash functionsh.

The total costCostk,l(Q) of processing a query is therefore
the sum of the two separate costs:

Costk,l(Q) = LookupCostk,l(Q) + HashCostk,l . (13)

Finally, the average query cost can be computed using sample
queries, as was done for computing indexing accuracy. In
particular:

Costk,l =

∫

Q∈X

Costk,l(Q)Pr(Q)dQ . (14)

In conclusion, the accuracy and efficiency of DBH, given
parametersk and l, can be measured by sampling from the
space of queries, sampling from the set of database objects,
and sampling from the setHDBH of binary hash functions.

D. Finding Optimal Parameters

Given parameterk, clearly indexing accuracy increases and
efficiency decreases as we increasel. Consequently, given
a desired retrieval accuracy, and givenk, we can choosel
by computingAccuracyk,l for l = 1, 2, . . . until we identify
an l that yields the desired accuracy. Instead of successively
measuring accuracy for eachl, binary search can also be used,
as a more efficient method for identifying the smallestl that
yields the desired accuracy.

To find the optimalk we repeat the above process (of search-
ing for anl givenk) for different valuesk = 1, 2, Different
pairs of k, l that yield roughly the same indexing accuracy
Accuracyk,l are likely to yield different costsCostk,l. Thus
it is beneficial to choose the combination ofk, l that, while
achieving the desired accuracy, minimizesCostk,l. In practice,
for a given accuracy, as we considerk = 1, 2, . . ., efficiency
typically improves up to a point and then it starts decreasing.

Therefore, the optimalk can be identified as the lastk for
which efficiency improves.

In summary, given a desired retrieval accuracy rate, the
optimal parametersk andl can be computed by searching over
possiblek and l and identifying the combination that, while
yielding the desired accuracy, also maximizes efficiency. The
accuracy and efficiency attained for eachk, l pair is estimated
as described in Section IV-C. Computing the optimalk and
l is naturally done off-line, as a preprocessing step, and the
costs of that computation have no bearing on the costCostk,l

of the online retrieval stage.

V. A DDITIONAL OPTIMIZATIONS

The previous section described a complete implementation
of DBH. In this section we consider some practical methods
for further improving performance. In particular, we describe
a way to apply DBH in a hierarchical manner, using multiple
pairs of (k, l) parameters, and we also describe a practical
method for drastically reducingHashCostk,l.

A. Applying DBH Hierarchically

The accuracy and efficiency of DBH for a particular query
objectQ essentially depends on the collision rateC(Q, N(Q))
between the query and its nearest neighbor, and the collision
ratesC(Q, X) betweenQ and the rest of the database objects
X ∈ U. In an arbitrary spaceX, without a priori knowledge
of the geometry of that space, these collision rates can onlybe
estimated statistically, and they can differ widely for different
query objects.

The key motivation for designing a hierarchical version of
DBH is the observation that, typically, different choices of k
andl may be optimal for different query objects. Empirically,
we have found that the optimal choice ofk and l depends
mainly on the distanceD(Q, N(Q)). This correlation makes
sense intuitively: the closer two objects are to each other the
more likely it is that these objects are mapped to the same bit
by a random binary hash function. Therefore, asD(Q, N(Q))
decreases, we expect the optimal parametersk and l for that
query object to lead to increasingly fewer collisions for the
same indexing accuracy.

Based on the above observations, a natural strategy is to
create multiple DBH indexes, so that each index is optimized
for a different set of queries and corresponds to a different
choice of parametersk, l. In particular, we rank query objects
Q according toD(Q, N(Q)), and we divide the spaceX
of possible queries into disjoint subsetsX1, X2, . . . , Xs, so
that Xi contains queries ranked in the top(i − 1)/s to
i/s percentiles according toD(Q, N(Q)). Then, given the
databaseU and the desired accuracy rate, we choose optimal
parameterski and li for each query setXi, and we create a
DBH index structure for that query set. We denote byDi the
smallest value such that for all objectsQ ∈ Xi it holds that
D(Q, N(Q)) ≤ Di.

Naturally, at runtime, given a previously unseen query
objectQ, we cannot know whatXi Q belongs to, since we do
not know D(Q, N(Q)). What we can do is perform nearest

5

neighbor retrieval successively using the DBH indexes created
for X1, X2, . . . If using the DBH index created forXi we
retrieve a database objectX such thatD(Q, X) ≤ Di, then we
know thatD(Q, N(Q)) ≤ D(Q, X) ≤ Di. In that case, the
retrieval process does not proceed to the DBH index forXi+1,
and the system simply returns the nearest neighbor found so
far, using the DBH indexes forX1, . . . , Xi.

In practice, what we typically observe with this hierarchical
scheme is this: the first DBH indexes, designed for queries
with small D(Q, N(Q)), successfully retrieve (at the desired
accuracy rate) the nearest neighbors for such queries, while
achieving a lookup cost much lower than that of using a
single global DBH index. For query objectsQ with large
D(Q, N(Q)), in addition to the lookup cost incurred while
using the DBH index for that particularD(Q, N(Q)), the
hierarchical process also incurs the lookup cost of using the
previous DBH indexes as well. However, we expect this addi-
tional lookup cost to be small, since the previous DBH indexes
typically lead to significantly fewer collisions for objects with
large D(Q, N(Q)). So, overall, compared to using a global
DBH index, the hierarchical scheme should significantly im-
prove efficiency for queries with lowD(Q, N(Q)), and only
mildly decrease efficiency for queries with highD(Q, N(Q)).

B. Reducing the Hashing Cost

As described in Section IV-C, the hashing costHashCostk,l

is the number of unique objects used asX1 and X2 in the
definitions of thekl binary functions needed to construct
the DBH index. If thosekl binary functions are picked
randomly from the space of all possible such functions, then
we expectHashCostk,l to be close to2kl. In practice, we
can significantly reduce this cost, by changing the definition
of HDBH.

In Section IV-A we definedHDBH to be the set of all
possible functionsFX1,X2

t1,t2
defined using anyX1, X2 ∈ X.

In practice, however, we can obtain a sufficiently large and
rich family HDBH using a relatively small subsetXsmall ⊂ X:

HDBH = {FX1,X2

t1,t2
| X1, X2 ∈ Xsmall,

[t1, t2] ∈ V(X1, X2)} . (15)

If we use the above definition, the number of functions in
HDBH is at least equal to the number of unique pairsX1, X2

we can choose fromXsmall, and is actually larger in practice,
since in addition to choosingX1, X2 we can also choose an
interval [t1, t2]. At any rate, the size ofHDBH is quadratic to
the size ofXsmall. At the same time, regardless of the choice
of parametersk, l, the hashing costHashCostk,l can never
exceed the size ofXsmall, since only elements ofXsmall are
used to define functions inHDBH.

In practice, we have found that good results can be obtained
with setsXsmall containing as few as 50 or 100 elements.
The significance of this is that, in practice, the hashing cost
is bounded by a relatively small number. Furthermore, the
hashing cost actually becomes increasingly negligible as the
database becomes larger and the size ofXsmall remains fixed,

2700 2750 2800 2850 2900
100

150

200

250

300

350

400

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−1.5

−0.5

0.5

1.5

Fig. 1. Left: Example of a “seven” in the UNIPEN data set. Circles
denote “pen-down” locations, x’s denote “pen-up” locations. Right: The same
example, after preprocessing.

since the lookup cost starts dominating the total cost of
processing a query.

VI. EXPERIMENTS

In the experiments we evaluate DBH by applying it to
three different real-world data sets: the isolated digits bench-
mark (category 1a) of the UNIPEN Train-R01/V07 online
handwriting database [45] with dynamic time warping [46]
as the distance measure, the MNIST database of handwritten
digits [47] with shape context matching [1] as the distance
measure, and a database of hand images with the chamfer
distance as the distance measure. We also compare DBH with
VP-trees [30], a well-known distance-based indexing method
for arbitrary spaces. We modified VP trees as described in
[36] so as to get different trade-offs between accuracy and
efficiency. We should note that, in all three data sets, the
underlying distance measures are not metric, and thereforeVP
trees cannot guarantee perfect accuracy.

A. Datasets

Here we provide details about each of the datasets used
in the experiments. We should specify in advance that, in all
datasets and experiments, the set of queries used to measure
performance (retrieval accuracy and retrieval efficiency)was
completely disjoint from the database and from the set of
sample queries used to pick optimalk andl parameters during
DBH construction. Specifically, the set of queries used to
measure performance was completely disjoint from the sample
queries that were used, offline, in Equations 11 and 14 to
estimateAccuracyk,l andCostk,l.

The UNIPEN data set.We use the isolated digits bench-
mark (category 1a) of the UNIPEN Train-R01/V07 online
handwriting database [45], which consists of 15,953 digit
examples (see Figure 1). The digits have been randomly and
disjointly divided into training and test sets with a 2:1 ratio
(or 10,630:5,323 examples). We use the training set as our
database, and the test set as our set of queries. The target
application for this dataset is automatic real-time recognition
of the digit corresponding to each query. The distance measure
D used is dynamic time warping [46]. On an AMD Athlon
2.0GHz processor, we can compute on average890 DTW
distances per second. Therefore, nearest neighbor classification
using brute-force search takes about 12 seconds per query.

6

Fig. 2. Example images from the MNIST dataset of handwrittendigits.

The nearest neighbor error obtained using brute-force search
is 2.05%.

The MNIST data set. The well-known MNIST dataset
of handwritten digits [47] contains 60,000 training images,
which we use as the database, and 10,000 test images, which
we use as our set of queries. Each image is a 28x28 im-
age displaying an isolated digit between0 and 9. Example
images are shown in Figure 2. The distance measure that
we use in this dataset is shape context matching [1], which
involves using the Hungarian algorithm to find optimal one-
to-one correspondences between features in the two images.
The time complexity of the Hungarian algorithm is cubic to
the number of image features. As reported in [48], nearest
neighbor classification using shape context matching yields
an error rate of0.54%. As can be seen on the MNIST web
site (http://yann.lecun.com/exdb/mnist/), shape
context matching outperforms in accuracy a large number of
other methods that have been applied to the MNIST dataset.

Using our own heavily optimized C++ implementation of
shape context matching, and running on an AMD Opteron
2.2GHz processor, we can compute on average 15 shape
context distances per second. As a result, using brute force
search to find the nearest neighbors of a query takes on average
approximately 66 minutes when using the full database of
60,000 images.

The hand image data set.This dataset consists of a
database of 80,640 synthetic images of hands, generated using
the Poser 5 software [49], and a test set of 710 real images
of hands, used as queries. Both the database images and the
query images display the hand in one of 20 different 3D
handshape configurations. Those configurations are shown in
Figure 3. For each of the 20 different handshapes, the database
contains 4,032 database images that correspond to different 3D
orientations of the hand, for a total number of 80,640 images.
Figure 4 displays example images of a single handshape in
different 3D orientations.

The query images are obtained from video sequences of a
native ASL signer, and hand locations were extracted from
those sequences automatically using the method described in
[50]. The distance measure that we use to compare images
is the chamfer distance [26]. On an AMD Athlon processor
running at 2.0GHz, we can compute on average 715 chamfer

Fig. 3. The 20 handshapes used in the ASL handshape dataset.

Fig. 4. Examples of different appearance of a fixed 3D hand shape,
corresponding to different 3D orientations of the shape.

distances per second. Consequently, finding the nearest neigh-
bors of each query using brute force search takes about 112
seconds.

B. Implementation Details

For each data set we constructed a familyHDBH of bi-
nary hash functions as described in Section V-B. We first
constructed a setXsmall by picking randomly 100 database
objects. Then, for each pair of objectsX1, X2 ∈ Xsmall we
created a binary hash function by applying Equation 5 and
choosing randomly an interval[t1, t2] ∈ V(X1, X2). As a
result,HDBH contained one binary function for each pair of
objects inXsmall, for a total of4950 functions.

To estimate retrieval accuracy using Equation 11, we used
10,000 database objects as sample queries. To estimate the
lookup cost using Equation 12 we used the same 10,000
database objects as both sample queries (Q in Equation 12)
and sample database objects (X in Equation 12). The retrieval
performance attained by each pairk, l of parameters was
estimated by applying Equations 11 and 14, and thus the
optimal k, l was identified for each desired retrieval accuracy
rate.

We should emphasize that Equations 11, 12 and 14 were
only used in the offline stage to choose optimalk, l parameters.
The accuracy and efficiency values shown in Figure 5 were
measured experimentally using previously unseen queries,that
were completely disjoint from the samples used to estimate the
optimal k, l parameters.

For the hierarchical version of DBH, described in Section
V-A, we useds = 5 for all data sets, i.e., the hierarchical
DBH index structure consisted of five separate DBH indexes,
constructed using different choices fork and l.

C. Results

Figure 5 shows the results obtained on the three data sets for
hierarchical DBH, single-level DBH (where a single, global
DBH index is built), and VP-trees. For each data set we

7

0.75 0.8 0.85 0.9 0.95 0.99
200

400

600

800

1000

1200

1400

1600

1800

2000

2200
results on UNIPEN dataset

accuracy

ob
je

ct
 c

om
pa

ris
on

s
pe

r
qu

er
y

VP−trees
Single−level DBH
Hierarchical DBH

0.75 0.8 0.85 0.9 0.95 0.99
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 results on MNIST dataset

accuracy

ob
je

ct
 c

om
pa

ris
on

s
pe

r
qu

er
y

VP−trees
Single−level DBH
Hierarchical DBH

0.75 0.8 0.85 0.9 0.95 0.99
1000

2000

3000

4000

5000

6000

7000

8000
results on hands dataset

accuracy

ob
je

ct
 c

om
pa

ris
on

s
pe

r
qu

er
y

VP−trees
Single−level DBH
Hierarchical DBH

Fig. 5. Results on our three data sets, for VP-trees, single-level DBH, and
hierarchical DBH. The x-axis is retrieval accuracy, i.e., the fraction of query
objects for which the true nearest neighbor is retrieved. The y-axis is the
average number of distances that need to be measured per query object.

plot retrieval time versus retrieval accuracy. Retrieval time is
completely dominated by the number of distances we need
to measure between the query object and database objects.

The number of distances includes both the hashing cost and
the lookup cost for each query. To convert the number of
distances to actual retrieval time, one simply has to divide
the number of distances by 890 distances/sec for UNIPEN, 15
distances/sec for MNIST, and 715 distances/sec for the hands
data set. Retrieval accuracy is simply the fraction of query
objects for which the true nearest neighbor was returned by
the retrieval process.

As we see in Figure 5, hierarchical DBH gives overall
the best trade-offs between efficiency and accuracy. The only
exceptions are a very small part of the plot for the MNIST data
set, where the single layer DBH gives slightly better results,
and a small part of the plot for the hands data set, where VP-
trees give slightly better results. On the other hand, on allthree
data sets, for the majority of accuracy settings, hierarchical
DBH significantly outperforms VP-trees, and oftentimes DBH
is more than twice as fast, or even close to three times as
fast, compared to VP-trees. We also see that, almost always,
hierarchical DBH performs somewhat better than single-level
DBH.

Interestingly, the hands data set, where for high accuracy
settings VP-trees perform slightly better, is the only data
set that, strictly speaking, violates the assumption on which
DBH optimization is based: the assumption that the sample
queries that we use for estimating indexing performance are
representative of the queries that are presented to the system
at runtime. As explained in the description of the hands
data set, the sample queries are database objects, which are
synthetically generated and relatively clean and noise-free,
whereas the query objects presented to the system at runtime
are real images of hands, that contain significant amounts of
noise.

In conclusion, DBH, and especially its hierarchical version,
produces good trade-offs between retrieval accuracy and ef-
ficiency, and significantly outperforms VP-trees in our three
real-world data sets. We should note and emphasize that all
three data sets use non-metric distance measures, and no
known method exists for applying LSH on those data sets.

VII. C ONCLUSIONS

We have presented DBH, a novel method for approximate
nearest neighbor retrieval in arbitrary spaces. DBH is a hashing
method, that creates multiple hash tables into which database
objects and query objects are mapped. A key feature of DBH
is that the formulation is applicable to arbitrary spaces and
distance measures. DBH is inspired by LSH, and a primary
goal in developing DBH has been to create a method that
allows some of the key concepts and benefits of LSH to be
applied in arbitrary spaces.

The key difference between DBH and LSH is that LSH can
only be applied to spaces where locality sensitive familiesof
hashing functions have been demonstrated to exist; in contrast,
DBH uses a family of binary hashing functions that is distance-
based, and thus can be constructed in any space. As DBH
indexing performance cannot be analyzed using geometric
properties, performance analysis and optimization is based on

8

statistics collected from sample data. In experiments withthree
real-world, non-metric data sets, DBH has yielded good trade-
offs between retrieval accuracy and retrieval efficiency, and
DBH has significantly outperformed VP-trees in all three data
sets. Furthermore, no known method exists for applying LSH
on those data sets, and this fact demonstrates the need for a
distance-based hashing scheme that DBH addresses.

ACKNOWLEDGEMENTS

This work was supported by NSF grant IIS 0308213.

REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[2] K. Grauman and T. J. Darrell, “Fast contour matching using approximate
earth mover’s distance,” inIEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, 2004, pp. 220–227.

[3] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation
with parameter-sensitive hashing,” inIEEE International Conference on
Computer Vision (ICCV), 2003, pp. 750–757.

[4] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local
alignment search tool,”Journal of Molecular Biology, vol. 215, no. 3,
pp. 403–10, 1990.

[5] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher,
E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan,
S. Pilbout, and M. Schneider, “The swiss-prot protein knowledgebase
and its supplement TrEMBL in 2003.”Nucleic Acids Research, vol. 31,
no. 1, pp. 365–370, 2003.

[6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker,
“Query by image and video content: The QBIC system,”IEEE Com-
puter, vol. 28, no. 9, 1995.

[7] Y. Zhu and D. Shasha, “Warping indexes with envelope transforms for
query by humming.” inACM International Conference on Management
of Data (SIGMOD), 2003, pp. 181–192.

[8] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” inInternational Conference on Very Large
Databases (VLDB), 1999, pp. 518–529.

[9] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” inIEEE Symposium on
Foundations of Computer Science (FOCS), 2006, pp. 459–468.

[10] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” inEuropean
Conference on Computer Vision, vol. 3, 2004, pp. 224–237.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: Efficient indexing for high-dimensional similarity search,”
in International Conference on Very Large Databases (VLDB), 2007,
pp. 950–961.

[12] A. Andoni and P. Indyk, “Efficient algorithms for substring near
neighbor problem,” inACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006, pp. 1203–1212.

[13] J. Buhler, “Efficient large-scale sequence comparisonby locality-
sensitive hashing,”Bioinformatics, vol. 17, no. 5, 2001.

[14] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,”ACM Computing Surveys, vol. 33, no. 3, pp. 322–373, 2001.

[15] G. Hjaltason and H. Samet, “Properties of embedding methods for
similarity searching in metric spaces,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 5, pp. 530–549, 2003.

[16] G. R. Hjaltason and H. Samet, “Index-driven similaritysearch in metric
spaces,”ACM Transactions on Database Systems, vol. 28, no. 4, pp.
517–580, 2003.

[17] D. A. White and R. Jain, “Similarity indexing: Algorithms and per-
formance,” in Storage and Retrieval for Image and Video Databases
(SPIE), 1996, pp. 62–73.

[18] K. V. R. Kanth, D. Agrawal, and A. Singh, “Dimensionality reduction
for similarity searching in dynamic databases,” inACM International
Conference on Management of Data (SIGMOD), 1998, pp. 166–176.

[19] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold, “Clustering
for approximate similarity search in high-dimensional spaces,” IEEE
Transactions on Knowledge and Data Engineering, vol. 14, no. 4, pp.
792–808, 2002.

[20] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “TheA-tree: An
index structure for high-dimensional spaces using relative approxima-
tion,” in International Conference on Very Large Data Bases, 2000, pp.
516–526.

[21] E. Tuncel, H. Ferhatosmanoglu, and K. Rose, “VQ-index:An index
structure for similarity searching in multimedia databases,” in Proc. of
ACM Multimedia, 2002, pp. 543–552.

[22] R. Weber and K. Böhm, “Trading quality for time with nearest-neighbor
search,” inInternational Conference on Extending Database Technology:
Advances in Database Technology, 2000, pp. 21–35.

[23] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” inInternational Conference on Very Large Data Bases, 1998,
pp. 194–205.

[24] V. I. Levenshtein, “Binary codes capable of correctingdeletions, inser-
tions, and reversals,”Soviet Physics, vol. 10, no. 8, pp. 707–710, 1966.

[25] E. Keogh, “Exact indexing of dynamic time warping,” inInternational
Conference on Very Large Data Bases, 2002, pp. 406–417.

[26] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric cor-
respondence and chamfer matching: Two new techniques for image
matching,” in International Joint Conference on Artificial Intelligence,
1977, pp. 659–663.

[27] T. M. Cover and J. A. Thomas,Elements of information theory. New
York, NY, USA: Wiley-Interscience, 1991.

[28] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n, “Searching
in metric spaces,”ACM Computing Surveys, vol. 33, no. 3, pp. 273–321,
2001.

[29] E. Chávez and G. Navarro, “Metric databases.” inEncyclopedia of
Database Technologies and Applications, L. C. Rivero, J. H. Doorn,
and V. E. Ferraggine, Eds. Idea Group, 2005, pp. 366–371.

[30] P. Yianilos, “Data structures and algorithms for nearest neighbor search
in general metric spaces,” inACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 1993, pp. 311–321.

[31] J. Uhlman, “Satisfying general proximity/similarityqueries with metric
trees,”Information Processing Letters, vol. 40, no. 4, pp. 175–179, 1991.

[32] T. Bozkaya and Z.̈Ozsoyoglu, “Indexing large metric spaces for simi-
larity search queries,”ACM Transactions on Database Systems (TODS),
vol. 24, no. 3, pp. 361–404, 1999.

[33] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” inInternational Conference on
Very Large Data Bases, 1997, pp. 426–435.

[34] C. Traina, Jr., A. Traina, B. Seeger, and C. Faloutsos, “Slim-trees:
High performance metric trees minimizing overlap between nodes,” in
International Conference on Extending Database Technology (EDBT),
2000, pp. 51–65.

[35] P. Zezula, P. Savino, G. Amato, and F. Rabitti, “Approximate similarity
retrieval with M-trees,”The VLDB Journal, vol. 4, pp. 275–293, 1998.

[36] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff, “Query-
sensitive embeddings,”ACM Transactions on Database Systems (TODS),
vol. 32, no. 2, 2007.

[37] J. Bourgain, “On Lipschitz embeddings of finite metric spaces in Hilbert
space,”Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

[38] C. Faloutsos and K. I. Lin, “FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets,”
in ACM International Conference on Management of Data (SIGMOD),
1995, pp. 163–174.

[39] G. Hristescu and M. Farach-Colton, “Cluster-preserving embedding of
proteins,” CS Department, Rutgers University, Tech. Rep. 99-50, 1999.

[40] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,and
K. Zhang, “An index structure for data mining and clustering,” Knowl-
edge and Information Systems, vol. 2, no. 2, pp. 161–184, 2000.

[41] K.-S. Goh, B. Li, and E. Chang, “DynDex: a dynamic and non-metric
space indexer,” inACM International Conference on Multimedia, 2002,
pp. 466–475.

[42] M. E. Houle and J. Sakuma, “Fast approximate similaritysearch in
extremely high-dimensional data sets,” inIEEE International Conference
on Data Engineering (ICDE), 2005, pp. 619–630.

[43] T. Skopal, “On fast non-metric similarity search by metric access meth-
ods,” in International Conference on Extending Database Technology
(EDBT), 2006, pp. 718–736.

9

[44] R. Panigrahy, “Entropy based nearest neighbor search in high dimen-
sions,” inACM-SIAM Symposium on Discrete Algorithms (SODA), 2006,
pp. 1186–1195.

[45] I. Guyon, L. Schomaker, and R. Plamondon, “Unipen project of on-
line data exchange and recognizer benchmarks,” in12th International
Conference on Pattern Recognition, 1994, pp. 29–33.

[46] J. B. Kruskall and M. Liberman, “The symmetric time warping algo-
rithm: From continuous to discrete,” inTime Warps. Addison-Wesley,
1983.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,”Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[48] V. Athitsos, “Learning embeddings for indexing, retrieval, and classi-
fication, with applications to object and shape recognitionin image
databases,” Ph.D. dissertation, Boston University, 2006.

[49] Poser 5 Reference Manual, Curious Labs, Santa Cruz, CA, August 2002.
[50] Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2D hand tracking

in video sequences.” inIEEE Workshop on Applications of Computer
Vision, 2005, pp. 250–256.

10

