
Nearest Neighbor Search Methods for Handshape
Recognition

Michalis Potamias1 and Vassilis Athitsos2

1 Computer Science Department, Boston University
2 Computer Science and Engineering Department, University of Texas at Arlington

ABSTRACT
Gestures are an important modality for human-machine communi-
cation, and robust gesture recognition can be an important com-
ponent of intelligent homes and assistive environments in general.
An important aspect of gestures is handshape. Handshapes can
hold important information about the meaning of a gesture, for ex-
ample in sign languages, or about the intent of an action, forex-
ample in manipulative gestures or in virtual reality interfaces. At
the same time, recognizing handshape can be a very challenging
task, because the same handshape can look very different in dif-
ferent images, depending on the 3D orientation of the hand and
the viewpoint of the camera. In this paper we examine a database
approach for handshape classification, whereby a large database
of tens of thousands of images is used to represent the wide vari-
ability of handshape appearance. Efficient and accurate indexing
methods are important in such a database approach, to ensurethat
the system can match every incoming image to the large numberof
database images at interactive times. In this paper we examine the
use of embedding-based and hash table-based indexing methods for
handshape recognition, and we experimentally compare these two
approaches on the task of recognizing 20 handshapes commonly
used in American Sign Language (ASL).

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Object Recognition; H.3.1 [Content Anal-
ysis and Indexing]: Indexing methods; H.2.8 [Database Applica-
tions]: Data Mining; H.2.4 [Systems]: Multimedia Databases

Keywords
gesture recognition, hand pose estimation, embeddings, hash-based
indexing, BoostMap, distance-based hashing, DBH

1. INTRODUCTION
Gestures are an important modality for human-machine commu-

nication, and robust gesture recognition can be an important com-
ponent of intelligent homes and assistive environments in general.
An important aspect of gestures is handshape. Handshapes can hold
important information about the meaning of a gesture, for example
in sign languages, or about the intent of an action, for example in
manipulative gestures or in virtual reality interfaces.

Recognizing handshape can be a very challenging task, because
the same handshape can look very different in different images, de-
pending on the 3D orientation of the hand and the viewpoint ofthe

PETRA2008 Athens, Greece
Copyright 2008.

camera. In this paper we examine a database approach for hand-
shape classification, whereby a large database of tens of thousands
of images is used to represent the wide variability of handshape ap-
pearance. A key advantage of the database approach is that itpro-
vides a very natural way to capture the nonparametric distribution
that characterizes the appearance of each handshape class.Fur-
thermore, databases containing tens or hundreds of thousands of
images can be easily generated overnight using off-the-shelf com-
puter graphics software.

Efficient and accurate indexing methods are important in such
a database approach. Given an input image, the system identifies
the most similar image in the database, so that the handshapein
the input image gets classified according to the handshape label of
the best matching database image. This best matching database
image needs to be identified fast enough to allow the system tobe
used in an interactive environment. At the same time, this database
retrieval task can be very challenging, for the following reasons:

• The similarity measures that are most meaningful in com-
paring hand images are typically non-Euclidean, nonmetric,
and computationally expensive. Examples of such nonmetric
distance measures are the chamfer distance [6], shape context
matching [7, 31], and distance measures based on the Viterbi
algorithm [31].

• The majority of database indexing methods are designed for
Euclidean distance measures or metric distance measures (i.e.,
distance measures that obey the reflexivity, symmetry, and
triangle inequality properties). Thus a relatively small num-
ber of indexing methods are available for the nonmetric dis-
tance measures typically used for comparing hand images.

In this paper we examine the use of recently proposed embedding-
based and hash table-based indexing methods for handshape recog-
nition. In particular, we consider the BoostMap embedding method
[3] and Distance-Based Hashing (DBH) [5]. We discuss how to ap-
ply those methods for efficient retrieval of hand images, andwe
compare the performance of both methods on the task recognizing
20 handshapes commonly used in American Sign Language. The
main conclusion is that both methods offer orders-of-magnitude
speedups compared to the naive brute-force method of comparing
the input image to every single database image. Overall, theex-
periments demonstrate that the database approach we describe is
a scalable and feasible approach for handshape recognitionfrom
arbitrary camera viewpoints.

2. RELATED WORK
Computer vision systems that estimate handshape under arbi-

trary 3D orientations typically do it in the context of tracking [18,

1

24, 25, 30, 38]. In that context, the pose can be estimated at the
current frame as long as the system knows the pose at the previ-
ous frame. Since such trackers rely on knowledge about the previ-
ous frame, they need to be manually initialized, and cannot recover
when they lose the track. The method described in this paper can be
used (among other things) to automate the initialization and error
recovery of a hand tracker.

A regression system that estimates hand pose from a single im-
age is described in [26]. However, that method assumes that the
hand silhouette is correctly identified in the input image, whereas
such precise hand detection is often unrealistic to assume in a real-
world application. Another regression method is presentedat [13],
but that method requires that the hand be simultaneously visible
from multiple cameras. The database approach described here has
the advantage that it only requires a single camera, and it can tol-
erate a certain amount of imprecision in hand detection; we still
require the location of the hand to be given as an input to our sys-
tem, but we do not require precise separation of the hand silhouette
from the background.

Another family of methods for hand shape classification are appearance-
based methods, like [15, 37]. Such methods are typically limited
to estimating 2D hand pose from a limited number of viewpoints.
In contrast, the method described in this paper can handle arbitrary
viewpoints.

Our system uses the chamfer distance [6] to compute the similar-
ity between the input hand image and database images. The main
focus of this paper is on identifying efficient indexing methods for
speeding up the task of finding, given the input image, the best
matching database images. Various methods have been employed
for speeding up nearest neighbor retrieval. Comprehensivereviews
on the subject include [8, 19, 20]. A large amount of work focuses
on efficient nearest neighbor retrieval in multidimensional vector
spaces using anLp metric, e.g., [22, 32, 36]. However, that fam-
ily of approaches is not applicable in our setting, since thechamfer
distance (i.e., the distance measure that we use for comparing hand
images) is not anLp measure.

A number of nearest neighbor methods can be applied for in-
dexing arbitrary metric spaces; the reader is referred to [20] for
surveys of such methods. As an example, VP-trees [39] and metric
trees [33] hierarchically partition the database into a tree structure
by splitting, at each node, the set of objects based on their distances
to pivot objects. However, while such methods can offer theoretical
guarantees of performance in metric spaces, the chamfer distance
used in our system is nonmetric, and so are other measures typically
used for comparing hand images to each other, such as shape con-
text matching [7, 31], and distance measures based on the Viterbi
algorithm [31].

In domains with a computationally expensive distance measure,
significant speed-ups can be obtained by embedding objects into
another space with a more efficient distance measure. Several meth-
ods have been proposed for embedding arbitrary spaces into aEu-
clidean or pseudo-Euclidean space [3, 4, 9, 14, 21, 35]. These
methods are indeed applicable to our setting. In this paper we
focus on the BoostMap embedding method [3] and we show that
this method can be successfully employed for efficient matching of
hand images.

Locality Sensitive Hashing (LSH) is an approximate nearestneigh-
bor method that is based on hash tables. LSH has been shown
theoretically to scale well with the number of dimensions and has
produced good results in practice [17, 28]. However, LSH cannot
be applied to arbitrary distance measures, and there is no exist-
ing method that allows applying LSH to the chamfer distance.An
alternative hash-based method that can be applied to arbitrary dis-

Figure 1: The 20 handshapes used in the ASL handshape
dataset.

Figure 2: Examples of different appearance of a fixed 3D hand
shape, obtaining by altering camera viewpoint and image plane
rotation. Top: the ASL “F” handshape rendered from seven
different camera viewpoints. Bottom: the ASL “F” handshape
rendered from a specific camera viewpoint, using seven differ-
ent image plane rotations.

tance measures, such as the chamfer distance, is Distance-Based
Hashing (DBH) [5]. In this paper we explore the usage of DBH
for efficiently identifying the best matching database image for the
input hand image, and we compare the performance of DBH to that
of the BoostMap embedding method.

3. HANDSHAPE RECOGNITION USING A
DATABASE

Our goal is to have a system that can recognize a set of differ-
ent handshapes, such as the 20 handshapes shown on Fig. 1. We
want this system to operate on single images, as opposed to entire
video sequences, or images obtained simultaneously for multiple
cameras. We need to specify up front that, in a real-world sys-
tem, reliable recognition of handshapes of arbitrary 3D orientation
from a single image is beyond the current state of the art. At the
same time, a system that operates on a single image, even if ithas
a relatively low classification accuracy, can be immensely useful in
identifying a relatively small set of likely hypotheses. Such a set of
hypotheses can subsequently be refined:

• using a hand tracker [25, 18, 24, 29, 30, 38],

• using domain-specific knowledge, such as ASL linguistic con-
straints, or

• using knowledge of a specific protocol for human-computer
communication, that can place constraints on the current hand-
shape based on the current communication context.

A key challenge in reliable handshape recognition in an intelli-
gent home setting, or an assistive environment setting, is that the
same handshape can look very different in different images,de-
pending on the 3D orientation of the hand with respect to the cam-
era (Fig. 2). Using a large database of hand images is a natural way
to address this wide variability of the appearance of a single hand-
shape. Since handshape appearance depends on 3D orientation, we

2

can densely sample the space of all possible 3D orientations, and
include a database image for every handshape in every one of the
sampled 3D orientations.

In our system, we include 20 different handshapes (Fig. 1).
Those 20 handshapes are all commonly used in American Sign
Language (ASL). For each handshape, we synthetically generate
a total of 4,032 database images that correspond to different 3D
orientations of the hand. In particular, the 3D orientationdepends
on the viewpoint, i.e., the camera position on the surface ofa view-
ing sphere centered on the hand, and on the image plane rotation.
We sample 84 different viewpoints from the viewing sphere, so
that viewpoints are approximately spaced22.5 degrees apart. We
also sample 48 image plane rotations, so that rotations are spaced
7.5 degrees apart. Therefore, the total number of images is 80,640
images, i.e.,20 handshapes× 84 viewpoints× 48 image plane
rotations. Figure 2 displays example images of a handshape in dif-
ferent viewpoints and different image plane rotations. Each image
is normalized to be of size256 × 256 pixels, and the hand region
in the image is normalized so that the minimum enclosing circle
of the hand region is centered at pixel(128, 128), and has radius
120. All database images are generated using computer graphics,
and in particular using the Poser 5 software [12]. It takes less than
24 hours to generate these thousands of images. Image generation
is a script-based automated process.

4. THE CHAMFER DISTANCE
Given an input image, the system has to identify the database

images that are the closest to the input. In our system we mea-
sure distance between edge images, because edge images tendto
be more stable than intensity images with respect to different light-
ing conditions. Examples of hand images and corresponding edge
images are shown on Fig. 3.

The chamfer distance [6] is a well-known method to measure the
distance between two edge images. Edge images are represented
as sets of points, corresponding to edge pixel locations. Given two
edge images,X andY , the chamfer distanceD(X, Y) is:

D(X, Y) =
1

|X|

X

x∈X

min
y∈Y

‖x−y‖ +
1

|Y |

X

y∈Y

min
x∈X

‖y−x‖ , (1)

where‖a − b‖ denotes the Euclidean distance between two pixel
locationsa and b. D(X, Y) penalizes for points in either edge
image that are far from any point in the other edge image. Fig.4
shows an illustration of the chamfer distance.

The chamfer distance operates on edge images. The synthetic
images generated by Poser can be rendered directly as edge images
by the software. For the test images we simply apply the Canny
edge detector [11].

On an AMD Athlon processor running at 2.0GHz, we can com-
pute on average 715 chamfer distances per second. Consequently,
finding the nearest neighbors of each test image using brute force
search, which requires computing the chamfer distances between
the test image and each database image, takes about 112 seconds.
Taking 112 seconds to match the input image with the databaseis
clearly too long for an interactive application. The need for ef-
ficiency motivates our exploration of database indexing methods,
such as embeddings and hash tables. We now proceed to describe
how such methods can be applied.

5. EMBEDDING-BASED RETRIEVAL
In our application, calculating the chamfer distance between the

input image and all database images takes too long (almost two
minutes) to be used in interactive applications. However, we can

Figure 3: Examples of real and synthetic hand images and their
corresponding edge images.

Figure 4: An example of the chamfer distance. The left im-
age shows two sets of points: points in the first set are shown
as circles, and points in the second set are shown a squares.
The middle image shows a link between each circle and its clos-
est square. The circle-to-square directed chamfer distance is
the average length of those links. The right image shows a
link between each square and its closest circle. The square-to-
circle chamfer distance is the average length of those links. The
chamfer distance (also known asundirected chamfer distance)
between squares and circles is the sum of the two directed dis-
tances.

obtain an efficient approximation of the chamfer distance byem-
bedding edge images into a vector space. Using such an embedding
we can drastically speed up classification time, without anynotice-
able decrease in classification accuracy. In this section wediscuss
how such embeddings can be constructed.

5.1 Background: Lipschitz Embeddings
Embeddings of arbitrary spaces into a vector space are a gen-

eral approach for speeding up nearest neighbor retrieval. Let X be
a set of objects (the set of the edge images of hands in our case,
see Fig. 3 for examples), andD(X1, X2) be a distance measure
between objectsX1, X2 ∈ X. In our case,D is the chamfer dis-
tance (Eq. 1). An embeddingF : X → R

d is a function that
maps objects fromX into thed-dimensional real vector spaceR

d,
where distances are typically measured using anLp or weighted
Lp measure, denoted asD′. Such embeddings are useful when it
is computationally expensive to evaluate distances inX, and it is
more efficient to map points ofX to vectors and compute someLp

distance between those vectors.
Given an objectX ∈ X, a simple 1D embeddingF R : X → R

can be defined as follows:

F R(X) = D(X, R) . (2)

The objectR that is used to defineF R is typically called arefer-
ence objector avantage object[19]. A multidimensional embed-
ding F : X → R

d can be constructed by concatenating such 1D
embeddings: ifF1, . . . , Fd are 1D embeddings, we can define a
d-dimensional embeddingF asF (X) = (F1(X), . . . , Fd(X)).

The basic intuition behind such embeddings is that two objects
that are close to each other typically have similar distances to all

3

other objects. An everyday example that illustrates this property is
looking at distances between cities. The distance from New York
to Boston is about 240 miles, and the distance from New York to
Los Angeles is about 2800 miles. Suppose that we did not know
these two distances. Furthermore, suppose that someone gave us,
for 100 towns spread across the United States, their distances to
New York, Boston and Los Angeles. What would that information
tell us about the distances from New York to Boston and from New
York to Los Angeles?

First we would notice that the distance from each town to New
York is always within 240 miles or less of the distance between that
town and Boston. On the other hand, there are some towns, like
Lincoln, Nebraska, whose distances from Los Angeles and New
York are very similar, and some towns, like Sacramento, whose dis-
tances to Los Angeles and New York are very different (Sacramento-
Los Angeles is 400 miles, Sacramento-New York is 2800 miles).
Given these distances, we could deduce that, most likely, New York
is a lot closer to Boston than it is to Los Angeles.

In our handshape recognition application, suppose that we have
chosen a set ofd database edge imagesR1, R2, ..., Rk as reference
objects. Then, we can define a functionF , mapping the space of
edge images toRd as follows:

F (X) = (D(X, R1), D(X, R2), ..., D(X, Rd)) . (3)

whereD is the chamfer distance, defined in Equation 1, andX is
an edge image. The functionF turns out to be a special case of
Lipschitz embeddings [9, 23].

We define theapproximate chamfer distanceD′ between two
edge imagesX1 andX2 to be theL1 distance betweenF (X1) and
F (X2):

D′(A,B) =

d
X

i=1

|D(X1, Ri) − D(X2, Ri)| . (4)

The actual value ofD′(A,B) is not necessarily similar in scale
to the valueD(A, B). However,D′(A, B) is an approximation
of D(A, B) in the sense that, whenD(A, B) is much smaller than
D(A, G), then we also expectD′(A,B) to be smaller thanD′(A, G).
The intuition is, again, that ifA andB are close to each other, then
they will also have relatively similar distances to each of theRi’s.

The time complexity of computing the approximate distanceD′

between an edge imageX andU database edge images isO(dn log n+
Ud), wheren is the max number of edge pixels in any edge image
andd is the dimensionality of the embedding. In particular, it takes
O(dn log n) time to computeF (X), i.e., to compute thed cham-
fer distances between the edge image and each of thed reference
objects, and it takesO(Ud) time to compute theL1 distance be-
tweenF (X) and the embeddings of all database images (which
just need to be precomputed once, off-line, and stored in memory).
On the other hand, computing the chamfer distanceC betweenX
and all database images takesO(Un log n) time. The complex-
ity savings are substantial whend is much smaller thanU . In our
system it takes on average 112 seconds to compute the chamfer
distances between the input image and all database images (for test
and database images of size 256x256). In contrast, ford = 100,
it takes 0.14 seconds to compute the corresponding approximate
distancesD′.

5.2 BoostMap Embeddings
A simple way to define embeddings for our purposes, i.e., for

efficient matching of hand images, is to apply Eq. 3 for some rea-
sonable embedding dimensionalityd (values between 20 and 100
typically work well in practice), and usingd reference objectsRi

chosen randomly from the database. However, we can significantly
optimize embedding quality using tools available from the machine
learning community. In particular, embedding optimization can be
casted as the machine learning problem of optimizing a binary clas-
sifier, and boosting methods such as AdaBoost [27] can be em-
ployed for embedding optimization [3], as described in the next
paragraphs.

Suppose we have an embeddingF with the following property:
for any Q,A, B ∈ X (whereX is our space of edge images of
hands), ifQ is closer (according to the chamfer distance) toA than
to B, thenF (Q) is closer toF (A) than toF (B). We can easily
derive thatF would also have the following property: for every
input imageQ, if A is the nearest neighbor ofQ in the database,
thenF (A) is the nearest neighbor ofF (Q) among the embeddings
of all database objects. Such an embedding would lead to perfectly
accurate nearest neighbor retrieval.

Finding such a perfect embedding is usually impossible. How-
ever, we can try to construct an embedding that, as much as possi-
ble, tries to behave like a perfect embedding. In other words, we
want to construct an embedding in a way that maximizes the frac-
tion of triples(Q,A, B) such that, ifQ is closer toA than toB,
thenF (Q) is closer toF (A) than toF (B).

More formally, using an embeddingF we can define a classi-
fier F̃ , that estimates (sometimes wrongly) for any three objects
Q, A, B if Q is closer toA or toB. F̃ is defined as follows:

F̃ (Q, A,B) = ‖F (Q) − F (B)‖1 − ‖(F (Q) − F (A)‖1 , (5)

where‖X, Y ‖1 is theL1 distance betweenX andY . A positive
value ofF̃ (Q, A,B) means thatF mapsQ closer toA than toB,
and can be interpreted as a “prediction” thatQ is closer toA than
to B in the original spaceX. If this prediction is always correct,
thenF perfectly preserves the similarity structure ofX.

Simple 1D embeddings, like the one defined in Eq. 2, are ex-
pected to behave asweak classifiers, i.e. classifiers that may have a
high error rate, but at least give answers that are not as bad as ran-
dom guesses (random guesses are wrong 50% of the time). Given
many weak classifiers, a well-studied problem in machine learning
is how to combine such classifiers into a single, strong classifier,
i.e., a classifier with a low error rate. A popular choice is AdaBoost
[27], which has been successfully applied to several domains in
recent years.

The BoostMap algorithm [3] uses AdaBoost to construct an em-
bedding. The input to AdaBoost is a large set of randomly picked
1D embeddings (i.e., embeddings defined by applying Eq. 2 us-
ing reference objectsR picked randomly from our database), and
a large set of training triples(Q,A, B) of objects, for which we
know if Q is closer toA or to B (closer according to the cham-
fer distance, in our case). The output of AdaBoost is a classifier
H =

Pd

j=1
αjF̃j , where each̃Fj is the weak classifier associated

with a 1D embeddingFj . If AdaBoost has been successful, thenH
has a low error rate.

Using H , we can easily define a high-dimensional embedding
Fout and a distance measureD′ with the following property: for
any triple(Q, A,B), if Q is closer toA than toB, H misclassifies
that triple if and only if, according to distance measureD′ (i.e., the
L1 distance measure in the embedding space)Fout(Q) is closer to
Fout(B) than toFout(A). We defineFout andD′ as follows:

Fout(x) = (F1(x), ..., Fd(x)) . (6)

D′(Fout(x), Fout(y)) =
d

X

j=1

(αj |Fj(x) − Fj(y)|) . (7)

4

It is easy to prove thatH andFout fail on the same triples [3].
Therefore, if AdaBoost has successfully produced a classifier H
with low error rate, thenFout inherits the low error rate ofH .

6. DISTANCE-BASED HASHING
In this section we describe Distance-Based Hashing (DBH), a

method for applying hash-based indexing in arbitrary spaces and
distance measures, introduced in [5]. In order to make our method
applicable to arbitrary spaces (such as the space of hand images
under the chamfer distance measure), a key requirement is touse
the distance measure as a black box. Therefore, the definition of the
hash functions should only depend on distances between objects.
To keep the method general, no additional assumptions are made
about the distance measure. In particular, the distance measure is
not assumed to have Euclidean or metric properties.

In existing literature, several methods have been proposedfor
defining functions that map an arbitrary space(X, D) into the real
line R. An example is the pseudo line projections proposed in [14]:
given two arbitrary objectsX1, X2 ∈ X, we define a “line projec-
tion” functionF X1,X2 : X → R as follows:

F X1,X2(X) =
D(X, X1)

2 + D(X1, X2)
2 − D(X, X2)

2

2D(X1, X2)
. (8)

If (X,D) is a Euclidean space, thenF X1,X2(X) computes the
projection of pointX on the unique line defined by pointsX1 and
X2. If X is a general non-Euclidean space, thenF X1,X2(X) does
not have a geometric interpretation. However, as long as a distance
measureD is available,F X1,X2 can still be defined and provides a
simple way to projectX into R.

We should note that the family of functions defined using Equa-
tion 8 is a very rich family. Any pair of objects defines a different
function. Given a databaseU of n objects, we can define about
n2/2 unique functions by applying Equation 8 to pairs of objects
from U.

Functions defined using Equation 8 are real-valued, whereashash
functions need to be discrete-valued. We can easily obtain discrete-
valued hash functions fromF X1,X2 using thresholdst1, t2 ∈ R:

F X1,X2

t1,t2
(X) =



0 if F X1,X2(X) ∈ [t1, t2] .
1 otherwise.

(9)

In practice,t1 andt2 should be chosen so thatF X1,X2

t1,t2
(X) maps

approximately half the objects inX to 0 and half to 1, so that we
can build balanced hash tables. We can formalize this notionby
defining, for each pairX1, X2 ∈ X, the setV(X1, X2) of intervals
[t1, t2] such thatF X1,X2

t1,t2
(X) splits the space in half:

V(X1, X2) = {[t1, t2]|PrX∈X(F X1,X2

t1,t2
(X) = 0) = 0.5} . (10)

Note that, for a set ofn objects, there aren ways to split those ob-
jects into two equal-sized subsets (ifn is even) based on the choice
of [t1, t2] ∈ V(X1, X2). One of several alternatives is to choose
an interval[t1,∞] such thatF X1,X2(X) is less thant1 for half the
objectsX ∈ X. Another alternative is, for example, to choose an
interval [t1, t2] such that, usingF X1,X2 , one sixth of the objects
in X are mapped to a value less thant1 and two sixths of the ob-
jects are mapped to a value greater thant2. The setV(X1, X2)
includes intervals for all these possible ways to splitX into two
equal subsets.

Using the above definitions, we are now ready to define a family
HDBH of hash functions for an arbitrary space(X, D):

HDBH = {F X1,X2

t1,t2
|X1, X2 ∈ X, [t1, t2] ∈ V(X1, X2)} . (11)

Using random binary hash functionshij sampled (with replace-
ment) fromHDBH we can definek-bit hash functionsgi as follows:

gi(X) = (hi1(X), hi2(X), . . . , hik(X)) . (12)

This way, indexing and retrieval can be performed as in Locality
Sensitive Hashing (LSH)[16], by:

• Choosing parametersk andl.

• Constructingl k-bit hash tables, and storing each database
object to the appropriatel buckets.

• Comparing the input image with the database images found
in thel hash table buckets that the input image is mapped to.

Appropriate values fork andl can be computed using a validation
set of test objects (in our case, a validation set of hand images) [5].

While there are important similarities between DBH and LSH
[16], there are also important differences. Applying the LSH frame-
work to a specific space and distance measure requires identifying
a locality sensitive family [16]. Such families have been identified
for certain spaces, such as vector spaces withLp metrics [2, 16],
or strings with a substitution-based distance measure [1, 10]. In
Euclidean spaceRd, the time complexity of retrieval using LSH
is linear in the dimensionalityd and sublinear in the numbern of
database objects [2].

At the same time, LSH cannot be applied to an arbitrary non-
Euclidean distance measure (such as the chamfer distance),unless
a locality sensitive family of hash functions is identified.There
exists no general way of constructing/identifying locality sensitive
families for arbitrary distance measures. In DBH, a rich family
of hashing functions is constructed using Eq. 11. That family of
functions is not locality sensitive, and therefore the LSH theoretical
analysis is not applicable for DBH. However, the key advantage of
DBH is that the family of hashing functions is defined in a domain-
independent way, and can be constructed for any space and any
distance measure. Thus, DBH can be easily applied to index the
chamfer distance.

7. FILTER-AND-REFINE RETRIEVAL
Sections 5.2 and 6 have described two different approaches,Boost-

Map and DBH, for efficient nearest neighbor search. However,
what these methods have in common is that each of them provides
an efficient way to identify a relatively small set of candidate near-
est neighbors out of the entire database of hand images. In this sec-
tion we discuss how to implement an end-to-end retrieval system
using each of these methods. Essentially, both methods are natu-
ral fits for the filter step of the well-known filter-of-refine retrieval
framework [19], which works as follows:

• Offline preprocessing step:compute and store information
about database objects that is useful for indexing. For Boost-
Map, this step involves computing the embeddings of all
database objects. For DBH, preprocessing involves construct-
ing thel hash tables and storing, for each database object, a
pointer to that object in the appropriate bin for each of thel
hash tables.

• Mapping step: given an input imageQ, compute the em-
bedding ofQ (for the BoostMap method), or compute thel
hash keys thatQ corresponds to (for DBH).

• Filter step: identify a small set of candidate nearest neigh-
bors. In BoostMap, this is done by comparingF (Q) with
the embeddings of all database objects (which can be done

5

orders of magnitude faster than computing the chamfer dis-
tance between the input image and the database images), and
selecting a small number of database objects whose embed-
dings are the closest toF (Q). In DBH, we simply select all
the objects found in thel bins that the input image hashes to.

• Refine step: Compute the exact chamfer distance between
Q and each of the database objects selected during the filter
step.

• Output: return the database object (among all objects con-
sidered in the refine step) with the smallest chamfer distance
to the input image.

The filter step provides a preliminary set of candidate nearest
neighbors in an efficient manner, that avoids computing the exact
chamfer distance between the input image and the vast majority of
database images. The refine step applies the exact chamfer distance
only to those few candidates. Assuming that the mapping stepand
the filter step take negligible time (a property that is demonstrated
in the experiments), filter-and-refine retrieval is much more effi-
cient than brute-force retrieval.

8. EXPERIMENTS
The database of hand images used in the experiments has been

constructed as described in Sec. 3. The test set consists of 710
images. All test images were obtained from video sequences of a
native ASL signer either performing individual handshapesin iso-
lation or signing in ASL. The hand locations were extracted from
those sequences using the method described in [40]. The testim-
ages are obtained from the original frames by extracting thesub-
window corresponding to the hand region, and then performing the
same normalization that we perform for database images, so that
the image size is256×256 pixels, and the minimum enclosing cir-
cle of the hand region is centered at pixel(128, 128), and has radius
120. Examples of test images and their corresponding edge images
(edge images are used for the chamfer distance computation)are
shown in Fig. 3.

For each test image, filter-and-refine retrieval is performed to
identify the nearest neighbor of the test image. BoostMap orDBH
are used for the filter step. The test image is considered to have
been classified correctly if the handshape of the nearest neighbor is
the same as the handshape of the test image. The ground truth for
the test images is manually provided. The total number of hand-
shapes is 20, so our classification task consists of recognizing 20
distinct classes.

Figures 5 and 6 illustrate the results obtained with BoostMap
and DBH on our data set. There are two types of results: results on
retrieval accuracy, and results on classification accuracy. Nearest
neighborretrieval accuracyis the fraction of test images (out of the
710 images in our test set) for which the retrieved nearest neighbor
(using filter-and-refine retrieval) was the true nearest neighbor (ac-
cording to the chamfer distance) that would have been found using
brute-force search. Nearest neighborclassification accuracyis the
fraction of test images for which the retrieved nearest neighbor is
an image of the same handshape as the handshape of the test image.

In terms of retrieval performance, Fig. 5 shows that both Boost-
Map and DBH achieve remarkable speedups over brute-force search
at the cost of some losses in retrieval accuracy (naturally,brute-
force search has a retrieval accuracy of 100%). At the same time,
we notice that BoostMap performs significantly better than DBH.
For example, for 90% retrieval accuracy, BoostMap yields a speedup
factor of about 300 over brute-force search, whereas DBH yields a
speedup factor of about 26. Similarly, for 99% retrieval accuracy,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

nearest neighbor retrieval accuracy

sp
ee

du
p

fa
ct

or
 o

ve
r

br
ut

e
fo

rc
e

se
ar

ch

BoostMap
DBH

Figure 5: Retrieval speed-up vs. accuracy for BoostMap and
DBH. For each accuracy, the plot shows the corresponding
speedup factor obtained using BoostMap and DBH. Brute-
force nearest neighbor search yields a retrieval accuracy of 1
and an average retrieval time of 112 seconds per query, corre-
sponding to a speedup factor of 1.

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

handshape classification accuracy

sp
ee

du
p

fa
ct

or
 o

ve
r

br
ut

e
fo

rc
e

se
ar

ch

BoostMap
DBH

Figure 6: Classification speed-up vs. accuracy for BoostMap
and DBH. For each accuracy, the plot shows the correspond-
ing speedup factor obtained using BoostMap and DBH. Brute-
force nearest neighbor search yields a classification accuracy of
33.1% and an average retrieval time of 112 seconds per query,
corresponding to a speedup factor of 1.

BoostMap yields a speedup factor of about 59, and DBH yields a
speedup factor of about 10.

We get a similar picture when we look at classification perfor-
mance in Fig. 6. An important thing to note here is that the classifi-
cation accuracy of brute force search (i.e., before we introduce any
errors caused by our indexing schemes) is only 33.1%. This accu-
racy rate reflects the upper limit of how well we can do using our
indexing schemes: even if we have an indexing scheme that gives
perfect retrieval accuracy with enormous speedups, the classifica-
tion accuracy is it still going to be the same as that of brute-force

6

search. At the same time, it is important to note that this accuracy
rate is obtained without using any domain-specific constraints, and
such constraints are oftentimes available, and highly informative,
in concrete real-world applications. In Section 9 we discuss some
frequently encountered types of constraints, and how they can be
used to improve handshape classification accuracy.

With respect to the classification performance obtained using
our indexing schemes (BoostMap and DBH), we notice that the
speedups that we obtain over brute-force search are impressive, es-
pecially for the BoostMap method. With BoostMap, we can get
the exact same accuracy rate (33.1%) as with brute-force search,
but about 800 times faster. This means that classification time is
reduced from 112 seconds per query (using brute-force search) to
0.14 seconds per query. With DBH, we obtain a speedup factor of
about 26 for a classification accuracy of 30.7%, which is a slight
decrease over the 33.1% accuracy rate of brute-force search.

While the experiments show the need for more research, to de-
sign image matching methods that are more accurate that the cham-
fer distance (some recent progress on that topic is reportedat [34]),
the experiments also illustrate the power of BoostMap and DBH
as indexing methods. BoostMap yields a classification time that
is about three orders of magnitude faster than that of brute-force
search. While DBH does not perform as well, it also achieves sig-
nificant speedups with respect to brute-force search.

There is one advantage of DBH over BoostMap that is masked
by these experiments. In BoostMap,L1 distances must be com-
puted between the embedding of the query image and the embed-
dings of all database images. The overhead of computing these
distances takes negligible time in our experiments, but in certain
cases (larger datasets, very high-dimensional embeddings, distance
measures more efficient than the chamfer distance), this overhead
can become significant. DBH does not incur such an overhead.

In summary, the experiments demonstrate that using a large database
of hand images is a scalable and feasible approach for recogniz-
ing handshapes at arbitrary 3D orientations. Indexing methods can
allow database retrieval to operate at interactive speeds.Incorpo-
rating informative domain-specific constraints, as discussed in the
next section, can bring classification accuracy up to a satisfactory
level for specific real-world applications.

9. DISCUSSION AND FUTURE WORK
Our topic in this paper has been robust recognition of hand-

shapes, for the purpose of human computer interaction in real-
world applications such as intelligent homes and assistiveenvi-
ronments. The same handshape can have very different appear-
ances depending on the 3D orientation of the hand with respect to
the camera, and the database-based method described here iswell
suited to the task of capturing this wide variability in appearance
for each handshape.

Recognizing handshapes in arbitrary 3D orientations remains a
challenging task, as evidenced by the high error rates in ourexper-
iments. However, these error rates correspond, in some sense, to
a worst-case scenario, where no prior information is available as
to what 3D orientations and handshapes are most likely to be ob-
served. Such prior information is oftentimes available in real-world
systems, and can come from the following sources:

• Specific usage scenarios, where the user is typically facing
in a certain direction with respect to the camera and makes
handshapes with a limited range of 3D orientations.

• Knowledge of specific human-computer communication pro-
tocols, that involve a relatively small number of gestures,
thus restricting possible handshapes and 3D orientations.

• Use of multiple cameras, which can resolve ambiguities that
are unavoidable in systems that only use a single camera.

• Use of linguistic constraints in the context of sign language
recognition. For example, given the handshape of the domi-
nant hand there is a relatively small number of possible hand-
shapes for the non-dominant hand.

• Use of information from multiple consecutive frames in a
video sequence. The method described in this paper can be
a source of hypotheses for initializing a hand tracker. Sucha
tracker can use information from multiple frames to improve
upon the accuracy of estimates made based on a single frame.

As our goal in this paper has been to describe a general-purpose
handshape recognition method, incorporating such domain-specific
knowledge is beyond the scope of this paper. At the same time,
evaluating the method presented here in real-world applications is
a very interesting direction for future work. We are particularly
interested in integrating our method into a computer vision-based
sign language recognition system, for the purpose of designing ef-
ficient information access tools for users of sign languages.

10. CONCLUSION
This paper has presented a database-based method for handshape

recognition in the context of human computer interaction inreal-
world applications. We have shown that using a large database
of synthetic hand images is a feasible and promising method for
capturing the wide range of variability in the appearance ofeach
individual handshape. A key issue that this paper has addressed
is the ability of such a method to operate at interactive speeds,
given the large number of database images that need to be matched
with each input image. We have discussed two nearest neighbor
search methods, BoostMap and Distance-Based Hashing, and we
have shown that these methods are effective and allow input im-
ages to be processed at interactive speeds, with relativelysmall de-
creases in recognition accuracy. We believe that integrating this
approach with well-grounded domain-specific constraints available
for specific applications can lead to efficient and robust handshape
recognition in real-world environments.

11. REFERENCES
[1] A. Andoni and P. Indyk. Efficient algorithms for substring

near neighbor problem. InACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1203–1212, 2006.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithmsfor
approximate nearest neighbor in high dimensions. InIEEE
Symposium on Foundations of Computer Science (FOCS),
pages 459–468, 2006.

[3] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap:
An embedding method for efficient nearest neighbor
retrieval.IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 30(1):89–104, 2008.

[4] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff.
Query-sensitive embeddings.ACM Transactions on
Database Systems (TODS), 32(2), 2007.

[5] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios.
Nearest neighbor retrieval using distance-based hashing.In
IEEE International Conference on Data Engineering
(ICDE), 2008.

[6] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf.
Parametric correspondence and chamfer matching: Two new
techniques for image matching. InInternational Joint
Conference on Artificial Intelligence, pages 659–663, 1977.

7

[7] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts.IEEE Transactions
on Pattern Analysis and Machine Intelligence,
24(4):509–522, 2002.

[8] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improving the
performance of multimedia databases.ACM Computing
Surveys, 33(3):322–373, 2001.

[9] J. Bourgain. On Lipschitz embeddings of finite metric spaces
in Hilbert space.Israel Journal of Mathematics, 52:46–52,
1985.

[10] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing.Bioinformatics, 17(5), 2001.

[11] J. Canny. A computational approach to edge detection.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, 1986.

[12] Curious Labs, Santa Cruz, CA.Poser 5 Reference Manual,
August 2002.

[13] T. E. de Campos and D. W. Murray. Regression-based hand
pose estimation from multiple cameras. InIEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 782–789, 2006.

[14] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. InACM International Conference on
Management of Data (SIGMOD), pages 163–174, 1995.

[15] W. Freeman and M. Roth. Computer vision for computer
games. InAutomatic Face and Gesture Recognition, pages
100–105, 1996.

[16] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. InInternational Conference on
Very Large Databases, pages 518–529, 1999.

[17] K. Grauman and T. J. Darrell. Fast contour matching using
approximate earth mover’s distance. InIEEE Conference on
Computer Vision and Pattern Recognition, pages I: 220–227,
2004.

[18] T. Heap and D. Hogg. Towards 3D hand tracking using a
deformable model. InFace and Gesture Recognition, pages
140–145, 1996.

[19] G. Hjaltason and H. Samet. Properties of embedding
methods for similarity searching in metric spaces.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
25(5):530–549, 2003.

[20] G. R. Hjaltason and H. Samet. Index-driven similarity search
in metric spaces.ACM Transactions on Database Systems,
28(4):517–580, 2003.

[21] G. Hristescu and M. Farach-Colton. Cluster-preserving
embedding of proteins. Technical Report 99-50, CS
Department, Rutgers University, 1999.

[22] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.
Clustering for approximate similarity search in
high-dimensional spaces.IEEE Transactions on Knowledge
and Data Engineering, 14(4):792–808, 2002.

[23] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applications. InIEEE
Symposium on Foundations of Computer Science, pages
577–591, 1994.

[24] S. Lu, D. Metaxas, D. Samaras, and J. Oliensis. Using
multiple cues for hand tracking and model refinement. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 443–450, 2003.

[25] J. Rehg.Visual Analysis of High DOF Articulated Objects
with Application to Hand Tracking. PhD thesis, Electrical
and Computer Eng., Carnegie Mellon University, 1995.

[26] R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff. 3D hand
pose reconstruction using specialized mappings. InICCV,
volume 1, pages 378–385, 2001.

[27] R. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions.Machine Learning,
37(3):297–336, 1999.

[28] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose
estimation with parameter-sensitive hashing. InIEEE
International Conference on Computer Vision, pages
750–757, 2003.

[29] N. Shimada, K. Kimura, and Y. Shirai. Real-time 3-D hand
posture estimation based on 2-D appearance retrieval using
monocular camera. InRecognition, Analysis and Tracking of
Faces and Gestures in Realtime Systems, pages 23–30, 2001.

[30] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla.
Model-based hand tracking using a hierarchical bayesian
filter. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(9):1372–1384, 2006.

[31] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla.
Shape context and chamfer matching in cluttered scenes. In
IEEE Conference on Computer Vision and Pattern
Recognition, pages 127–133, 2003.

[32] E. Tuncel, H. Ferhatosmanoglu, and K. Rose. VQ-index: An
index structure for similarity searching in multimedia
databases. InProc. of ACM Multimedia, pages 543–552,
2002.

[33] J. Uhlman. Satisfying general proximity/similarity queries
with metric trees.Information Processing Letters,
40(4):175–179, 1991.

[34] J. Wang, V. Athitsos, S. Sclaroff, and M. Betke. Detecting
objects of variable shape structure with hidden state shape
models.IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 30(3):477–492, 2008.

[35] X. Wang, J. T. L. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,
and K. Zhang. An index structure for data mining and
clustering.Knowledge and Information Systems,
2(2):161–184, 2000.

[36] R. Weber and K. Böhm. Trading quality for time with
nearest-neighbor search. InInternational Conference on
Extending Database Technology: Advances in Database
Technology, pages 21–35, 2000.

[37] Y. Wu and T. Huang. View-independent recognition of hand
postures. InCVPR, volume 2, pages 88–94, 2000.

[38] Y. Wu, J. Lin, and T. Huang. Capturing natural hand
articulation. InICCV, volume 2, pages 426–432, 2001.

[39] P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. InACM-SIAM
Symposium on Discrete Algorithms, pages 311–321, 1993.

[40] Q. Yuan, S. Sclaroff, and V. Athitsos. Automatic 2D hand
tracking in video sequences. InIEEE Workshop on
Applications of Computer Vision, pages 250–256, 2005.

8

