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ABSTRACT

Gestures are an important modality for human-machine cammu
cation, and robust gesture recognition can be an impor@mt ¢
ponent of intelligent homes and assistive environmentseirecal.

An important aspect of gestures is handshape. Handshapes ca

hold important information about the meaning of a gestuwreek-
ample in sign languages, or about the intent of an actionefer
ample in manipulative gestures or in virtual reality inteds. At
the same time, recognizing handshape can be a very chaltengi
task, because the same handshape can look very differeift in d
ferent images, depending on the 3D orientation of the harld an
the viewpoint of the camera. In this paper we examine a databa
approach for handshape classification, whereby a largdatsda
of tens of thousands of images is used to represent the widle va
ability of handshape appearance. Efficient and accuratxing
methods are important in such a database approach, to ghatire
the system can match every incoming image to the large nuaiber
database images at interactive times. In this paper we exatne
use of embedding-based and hash table-based indexingasédtro
handshape recognition, and we experimentally compare thes
approaches on the task of recognizing 20 handshapes commonl
used in American Sign Language (ASL).

Categories and Subject Descriptors

1.4.8 [Scene Analysi§ Object Recognition; H.3.1Jontent Anal-
ysis and Indexing: Indexing methods; H.2.8jatabase Applica-
tions]: Data Mining; H.2.4 Bystem$: Multimedia Databases
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gesture recognition, hand pose estimation, embeddingb; lhased
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1. INTRODUCTION

Gestures are an important modality for human-machine commu
nication, and robust gesture recognition can be an impoctamn-
ponent of intelligent homes and assistive environmentsirecal.
Animportant aspect of gestures is handshape. Handshapbsica
important information about the meaning of a gesture, fangxle
in sign languages, or about the intent of an action, for exarmp
manipulative gestures or in virtual reality interfaces.

Recognizing handshape can be a very challenging task, $ecau
the same handshape can look very different in different eaade-
pending on the 3D orientation of the hand and the viewpoithef
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camera. In this paper we examine a database approach for hand
shape classification, whereby a large database of tensudahds
of images is used to represent the wide variability of haagstap-
pearance. A key advantage of the database approach is pinat it
vides a very natural way to capture the nonparametric Higign
that characterizes the appearance of each handshape Elasss.
thermore, databases containing tens or hundreds of thdsisg#n
images can be easily generated overnight using off-thi-ctie-
puter graphics software.

Efficient and accurate indexing methods are important i suc
a database approach. Given an input image, the systemfidgnti
the most similar image in the database, so that the handshape
the input image gets classified according to the handshaeédé
the best matching database image. This best matching databa
image needs to be identified fast enough to allow the systewa to
used in an interactive environment. At the same time, thisluese
retrieval task can be very challenging, for the followinggens:

e The similarity measures that are most meaningful in com-
paring hand images are typically non-Euclidean, nonmetric
and computationally expensive. Examples of such nonmetric
distance measures are the chamfer distance [6], shapetonte
matching [7, 31], and distance measures based on the Viterbi
algorithm [31].

The majority of database indexing methods are designed for
Euclidean distance measures or metric distance measies (i
distance measures that obey the reflexivity, symmetry, and
triangle inequality properties). Thus a relatively smalhm

ber of indexing methods are available for the nonmetric dis-
tance measures typically used for comparing hand images.

In this paper we examine the use of recently proposed embgddi
based and hash table-based indexing methods for handsegae r
nition. In particular, we consider the BoostMap embeddirggirad
[3] and Distance-Based Hashing (DBH) [5]. We discuss howpto a
ply those methods for efficient retrieval of hand images, aed
compare the performance of both methods on the task redogniz
20 handshapes commonly used in American Sign Language. The
main conclusion is that both methods offer orders-of-mtagie
speedups compared to the naive brute-force method of camgpar
the input image to every single database image. Overallexhe
periments demonstrate that the database approach webdescri
a scalable and feasible approach for handshape recogfiition
arbitrary camera viewpoints.

2. RELATED WORK

Computer vision systems that estimate handshape under arbi
trary 3D orientations typically do it in the context of tréeg [18,



24, 25, 30, 38]. In that context, the pose can be estimategeat t

current frame as long as the system knows the pose at the previ

ous frame. Since such trackers rely on knowledge about #é-pr
ous frame, they need to be manually initialized, and carewver
when they lose the track. The method described in this parebe
used (among other things) to automate the initializaticsh emor
recovery of a hand tracker.

A regression system that estimates hand pose from a single im
age is described in [26]. However, that method assumeshikat t
hand silhouette is correctly identified in the input imagéeveas
such precise hand detection is often unrealistic to assnraedal-
world application. Another regression method is preseatdd3],
but that method requires that the hand be simultaneousibleis
from multiple cameras. The database approach describechasr
the advantage that it only requires a single camera, ancdhitata
erate a certain amount of imprecision in hand detection; tille s
require the location of the hand to be given as an input to ys&# s
tem, but we do not require precise separation of the handuglite
from the background.

Figure 1: The 20 handshapes used in the ASL handshape
dataset.

Another family of methods for hand shape classification ppearance-

based methods, like [15, 37]. Such methods are typicalljtdiin
to estimating 2D hand pose from a limited number of viewpoint
In contrast, the method described in this paper can hanbligay
viewpoints.

Our system uses the chamfer distance [6] to compute theasimil
ity between the input hand image and database images. Time mai
focus of this paper is on identifying efficient indexing meadis for
speeding up the task of finding, given the input image, thé bes
matching database images. Various methods have been exdploy
for speeding up nearest neighbor retrieval. Comprehemnsiiews
on the subject include [8, 19, 20]. A large amount of work feesl
on efficient nearest neighbor retrieval in multidimensiorector
spaces using ah, metric, e.g., [22, 32, 36]. However, that fam-
ily of approaches is not applicable in our setting, sincectiemfer
distance (i.e., the distance measure that we use for congplaaind
images) is not arl,, measure.

A number of nearest neighbor methods can be applied for in-
dexing arbitrary metric spaces; the reader is referred @ f@r
surveys of such methods. As an example, VP-trees [39] andamet
trees [33] hierarchically partition the database into a s&ucture
by splitting, at each node, the set of objects based on tistaretes
to pivot objects. However, while such methods can offer tbgcal
guarantees of performance in metric spaces, the chamtandes
used in our system is nonmetric, and so are other measuiealtyp
used for comparing hand images to each other, such as shape co
text matching [7, 31], and distance measures based on thebVit
algorithm [31].

In domains with a computationally expensive distance nreasu
significant speed-ups can be obtained by embedding objeitts i
another space with a more efficient distance measure. $avetta
ods have been proposed for embedding arbitrary spaces ke a
clidean or pseudo-Euclidean space [3, 4, 9, 14, 21, 35]. &hes
methods are indeed applicable to our setting. In this paper w

focus on the BoostMap embedding method [3] and we show that

this method can be successfully employed for efficient miagcbf
hand images.
Locality Sensitive Hashing (LSH) is an approximate neaneggh-

bor method that is based on hash tables. LSH has been shown

theoretically to scale well with the number of dimensiond aas
produced good results in practice [17, 28]. However, LSHoan
be applied to arbitrary distance measures, and there is isb ex
ing method that allows applying LSH to the chamfer distarfe.
alternative hash-based method that can be applied toasbiis-

Figure 2: Examples of different appearance of a fixed 3D hand
shape, obtaining by altering camera viewpoint and image plae
rotation. Top: the ASL “F” handshape rendered from seven
different camera viewpoints. Bottom: the ASL “F” handshape
rendered from a specific camera viewpoint, using seven diffe
entimage plane rotations.

tance measures, such as the chamfer distance, is DistarseetB
Hashing (DBH) [5]. In this paper we explore the usage of DBH
for efficiently identifying the best matching database imégr the
input hand image, and we compare the performance of DBH to tha
of the BoostMap embedding method.

3. HANDSHAPE RECOGNITION USING A
DATABASE

Our goal is to have a system that can recognize a set of differ-
ent handshapes, such as the 20 handshapes shown on Fig. 1. We
want this system to operate on single images, as opposedite en
video sequences, or images obtained simultaneously fatipteul
cameras. We need to specify up front that, in a real-world sys
tem, reliable recognition of handshapes of arbitrary 3@rmrtion
from a single image is beyond the current state of the art.hAt t
same time, a system that operates on a single image, evdras it
a relatively low classification accuracy, can be immensesfui in
identifying a relatively small set of likely hypotheses.cBa set of
hypotheses can subsequently be refined:

e using a hand tracker [25, 18, 24, 29, 30, 38],

e using domain-specific knowledge, such as ASL linguistic.con
straints, or

e using knowledge of a specific protocol for human-computer
communication, that can place constraints on the curretdt-ha
shape based on the current communication context.

A key challenge in reliable handshape recognition in arllinte
gent home setting, or an assistive environment settindpaisthe
same handshape can look very different in different imagdes,
pending on the 3D orientation of the hand with respect to &m-c
era (Fig. 2). Using a large database of hand images is a hataya
to address this wide variability of the appearance of a sihghd-
shape. Since handshape appearance depends on 3D orientatio



can densely sample the space of all possible 3D orientatanmts
include a database image for every handshape in every ome of t
sampled 3D orientations.

In our system, we include 20 different handshapes (Fig. 1).
Those 20 handshapes are all commonly used in American Sign
Language (ASL). For each handshape, we synthetically gener
a total of 4,032 database images that correspond to diff&en
orientations of the hand. In particular, the 3D orientatigpends
on the viewpoint, i.e., the camera position on the surfagewdéw-
ing sphere centered on the hand, and on the image planeorptati
We sample 84 different viewpoints from the viewing sphere, s
that viewpoints are approximately spacz2l5 degrees apart. We
also sample 48 image plane rotations, so that rotationspaced
7.5 degrees apart. Therefore, the total number of images i€80,6
images, i.e.20 handshapes< 84 viewpoints x 48 image plane
rotations. Figure 2 displays example images of a handsimeqié- i
ferent viewpoints and different image plane rotations. tHatage
is normalized to be of siz856 x 256 pixels, and the hand region
in the image is normalized so that the minimum enclosingleirc
of the hand region is centered at piXeR8, 128), and has radius
120. All database images are generated using computer graphics
and in particular using the Poser 5 software [12]. It takss than
24 hours to generate these thousands of images. Image genera
is a script-based automated process.

4. THE CHAMFER DISTANCE

Given an input image, the system has to identify the database
images that are the closest to the input. In our system we mea-
sure distance between edge images, because edge imagés tend
be more stable than intensity images with respect to diffdight-
ing conditions. Examples of hand images and correspondigg e
images are shown on Fig. 3.

The chamfer distance [6] is a well-known method to measiee th
distance between two edge images. Edge images are regesent
as sets of points, corresponding to edge pixel locationgeriwo
edge imagesX andY’, the chamfer distancB(X,Y) is:

DIX.Y) = g 3 min =yl +pr 3 min ly—al . @)
zeX yey

where|la — b|| denotes the Euclidean distance between two pixel

locationsa andb. D(X,Y) penalizes for points in either edge

image that are far from any point in the other edge image. #ig.

shows an illustration of the chamfer distance.

Figure 3: Examples of real and synthetic hand images and thei

corresponding edge images.
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Figure 4: An example of the chamfer distance. The left im-
age shows two sets of points: points in the first set are shown
as circles, and points in the second set are shown a squares.
The middle image shows a link between each circle and its clos
est square. The circle-to-square directed chamfer distarecis
the average length of those links. The right image shows a
link between each square and its closest circle. The squate-
circle chamfer distance is the average length of those link§he
chamfer distance (also known asundirected chamfer distance)
between squares and circles is the sum of the two directed dis
tances.
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obtain an efficient approximation of the chamfer distancestny
bedding edge images into a vector space. Using such an embedd
we can drastically speed up classification time, withoutrsotjce-
able decrease in classification accuracy. In this sectiodisass
how such embeddings can be constructed.

5.1 Background: Lipschitz Embeddings

Embeddings of arbitrary spaces into a vector space are a gen-
eral approach for speeding up nearest neighbor retrieeXbe
a set of objects (the set of the edge images of hands in our case
see Fig. 3 for examples), and( X1, X2) be a distance measure

The chamfer distance operates on edge images. The synthetiqyanveen objects(1, X € X. In our caseD is the chamfer dis-

images generated by Poser can be rendered directly as edgesm
by the software. For the test images we simply apply the Canny
edge detector [11].

On an AMD Athlon processor running at 2.0GHz, we can com-
pute on average 715 chamfer distances per second. Contlgquen
finding the nearest neighbors of each test image using boute f
search, which requires computing the chamfer distancegeceet
the test image and each database image, takes about 112secon
Taking 112 seconds to match the input image with the database
clearly too long for an interactive application. The need &
ficiency motivates our exploration of database indexinghoes,

such as embeddings and hash tables. We now proceed to describ

how such methods can be applied.

5. EMBEDDING-BASED RETRIEVAL

In our application, calculating the chamfer distance betwine
input image and all database images takes too long (almast tw
minutes) to be used in interactive applications. However,can

tance (Eq. 1). An embedding : X — R? is a function that
maps objects fronk into thed-dimensional real vector spat¥,
where distances are typically measured using.gror weighted
L, measure, denoted d3'. Such embeddings are useful when it
is computationally expensive to evaluate distanceX,imnd it is
more efficient to map points &f to vectors and compute soniig
distance between those vectors.

Given an objectX € X, a simple 1D embedding” : X — R
can be defined as follows:

FR(X)=D(X,R). @)

The objectR that is used to defin&'? is typically called arefer-
ence objecbr avantage objecf19]. A multidimensional embed-
ding F : X — R% can be constructed by concatenating such 1D
embeddings: iffy,..., F; are 1D embeddings, we can define a
d-dimensional embedding asF'(X) = (F1(X), ..., Fa(X)).

The basic intuition behind such embeddings is that two abjec
that are close to each other typically have similar distartoeall



other objects. An everyday example that illustrates thigperty is
looking at distances between cities. The distance from Nevk Y
to Boston is about 240 miles, and the distance from New York to

chosen randomly from the database. However, we can signtifjca
optimize embedding quality using tools available from ttechine
learning community. In particular, embedding optimizat@an be

Los Angeles is about 2800 miles. Suppose that we did not know casted as the machine learning problem of optimizing a pidas-

these two distances. Furthermore, suppose that someoaauigav
for 100 towns spread across the United States, their dissatoc
New York, Boston and Los Angeles. What would that informatio
tell us about the distances from New York to Boston and fromNe
York to Los Angeles?

First we would notice that the distance from each town to New
York is always within 240 miles or less of the distance betwiat

sifier, and boosting methods such as AdaBoost [27] can be em-
ployed for embedding optimization [3], as described in tleatn
paragraphs.

Suppose we have an embeddifigrith the following property:
for any Q, A, B € X (whereX is our space of edge images of
hands), ifQ is closer (according to the chamfer distanceptthan
to B, thenF(Q) is closer toF'(A) than toF'(B). We can easily

town and Boston. On the other hand, there are some towns, likederive thatF’ would also have the following property: for every
Lincoln, Nebraska, whose distances from Los Angeles and New input imageQ, if A is the nearest neighbor @ in the database,

York are very similar, and some towns, like Sacramento, wltlis
tances to Los Angeles and New York are very different (Saerdo:
Los Angeles is 400 miles, Sacramento-New York is 2800 miles)
Given these distances, we could deduce that, most likely, Yek

is a lot closer to Boston than it is to Los Angeles.

In our handshape recognition application, suppose thatawve h
chosen a set af database edge imag8&s, Rs, ..., Ry, as reference
objects. Then, we can define a functiéh mapping the space of
edge images t&? as follows:

F(X)=(D(X,R1),D(X,R2),...,D(X, Rq)) . 3)

where D is the chamfer distance, defined in Equation 1, &hes
an edge image. The functiafi turns out to be a special case of
Lipschitz embeddings [9, 23].

We define theapproximate chamfer distancB’ between two
edge images(; and X, to be thel, distance betweef'(X;) and
F(Xz):

d
D'(A,B) =) |D(X1,Ri) — D(Xs, Ri)| .

i=1

4)

The actual value ofD’(A, B) is not necessarily similar in scale
to the valueD(A, B). However, D’(A, B) is an approximation
of D(A, B) in the sense that, whel(A, B) is much smaller than
D(A, G), thenwe also expedd’ (A, B) to be smaller tha’ (A, G).
The intuition is, again, that it and B are close to each other, then
they will also have relatively similar distances to eachh&#R;’s.

The time complexity of computing the approximate distahte
between an edge imagéandU database edge imagesi$dn log n+
Ud), wheren is the max number of edge pixels in any edge image
andd is the dimensionality of the embedding. In particular, kes
O(dnlogn) time to computeF'(X), i.e., to compute thed cham-
fer distances between the edge image and each of théerence
objects, and it take®(Ud) time to compute thd.; distance be-
tween F'(X) and the embeddings of all database images (which
just need to be precomputed once, off-line, and stored inangm
On the other hand, computing the chamfer distafideetweenX
and all database images take@$Un logn) time. The complex-
ity savings are substantial whens much smaller thad/. In our

thenF'(A) is the nearest neighbor éf(Q) among the embeddings
of all database objects. Such an embedding would lead teqibrf
accurate nearest neighbor retrieval.

Finding such a perfect embedding is usually impossible. How
ever, we can try to construct an embedding that, as much a$ pos
ble, tries to behave like a perfect embedding. In other wongs
want to construct an embedding in a way that maximizes the fra
tion of triples (Q, A, B) such that, ifQ is closer toA than toB,
thenF'(Q) is closer toF’'(A) than toF'(B).

More formally, using an embedding we can define a classi-
fier F', that estimates (sometimes wrongly) for any three objects
Q, A, Bif Qis closer toA or to B. F' is defined as follows:

F(Q,A,B) =|IF(Q) = F(B) | = I(F(Q) = F(A)l:, (5)

where|| X, Y1 is the L, distance betweeX andY. A positive
value of F(Q, A, B) means thaf” maps(Q closer toA than toB,
and can be interpreted as a “prediction” thats closer toA than
to B in the original spaceX. If this prediction is always correct,
thenF perfectly preserves the similarity structuref

Simple 1D embeddings, like the one defined in Eq. 2, are ex-
pected to behave ageak classifiers.e. classifiers that may have a
high error rate, but at least give answers that are not as$eaha
dom guesses (random guesses are wrong 50% of the time). Given
many weak classifiers, a well-studied problem in machinmlag
is how to combine such classifiers into a single, strong iflags
i.e., a classifier with a low error rate. A popular choice iasRdost
[27], which has been successfully applied to several dosnain
recent years.

The BoostMap algorithm [3] uses AdaBoost to construct an em-
bedding. The input to AdaBoost is a large set of randomly gaick
1D embeddings (i.e., embeddings defined by applying Eq. 2 us-
ing reference object®& picked randomly from our database), and
a large set of training triple§R, A, B) of objects, for which we
know if Q is closer toA or to B (closer according to the cham-
fer distance, in our case). The output of AdaBoost is a diassi
H= Z?zl a; F;, where eaclF); is the weak classifier associated
with a 1D embedding;. If AdaBoost has been successful, thén
has a low error rate.

Using H, we can easily define a high-dimensional embedding

system it takes on average 112 seconds to compute the chamfer;, = and a distance measuf@ with the following property: for

distances between the input image and all database imagee<f
and database images of size 256x256). In contrasy fer 100,

it takes 0.14 seconds to compute the corresponding appatxim
distancesD’.

5.2 BoostMap Embeddings

A simple way to define embeddings for our purposes, i.e., for
efficient matching of hand images, is to apply Eq. 3 for sonae re
sonable embedding dimensionalify(values between 20 and 100
typically work well in practice), and using reference object#;

any triple(Q, A, B), if Q is closer toA than toB, H misclassifies
that triple if and only if, according to distance measie(i.e., the
L, distance measure in the embedding spd¢g)(Q) is closer to
F,u(B) than toF,,(A). We defineF,,; andD’ as follows:

Foue(2) = (Fi(2), ..., Fa(a)) . ©)

d
D' (Fout (), Fout (y)) = Z(aﬂFj(l’) - Fh. O



It is easy to prove thall and Fy,: fail on the same triples [3].
Therefore, if AdaBoost has successfully produced a clesdifi
with low error rate, therd,.+ inherits the low error rate aff.

6. DISTANCE-BASED HASHING

In this section we describe Distance-Based Hashing (DBH), a
method for applying hash-based indexing in arbitrary spacel
distance measures, introduced in [5]. In order to make ouhode
applicable to arbitrary spaces (such as the space of hamgesna
under the chamfer distance measure), a key requirementuiseto
the distance measure as a black box. Therefore, the defioitibe
hash functions should only depend on distances betweeitsbje
To keep the method general, no additional assumptions ade ma
about the distance measure. In particular, the distanceureis
notassumed to have Euclidean or metric properties.

In existing literature, several methods have been propfsed
defining functions that map an arbitrary spg&e D) into the real
lineR. An example is the pseudo line projections proposed in [14]:
given two arbitrary object(;, X> € X, we define a “line projec-
tion” function FX+X2 : X — R as follows:

D(X, X1)* + D(X1,X2)* — D(X, Xp)*
2D (X1, Xo)

FX%2(x) = . (8)

If (X, D) is a Euclidean space, the*1*2(X) computes the
projection of pointX on the unique line defined by poinfs; and
Xs. If X is a general non-Euclidean space, theht~2(X) does
not have a geometric interpretation. However, as long astaruie
measureD is available FX1-*2 can still be defined and provides a
simple way to projecK into R.

We should note that the family of functions defined using Equa
tion 8 is a very rich family. Any pair of objects defines a difat
function. Given a databadé of n objects, we can define about
n?/2 unique functions by applying Equation 8 to pairs of objects
from U.

Functions defined using Equation 8 are real-valued, whéuasts
functions need to be discrete-valued. We can easily obtaineate-
valued hash functions frofX1-*2 using thresholds, , t> € R:

X1, Xs v | O i FX0X2(X) € [th,to] .
Fiay 2 (X) = { 1 otherwise. ©)
In practice¢; andt, should be chosen so thl?u‘ltxl’2 2(X) maps

approximately half the objects X to 0 and half to 1, so that we
can build balanced hash tables. We can formalize this ndtyon
defining, for each paiX, X» € X, the setV (X, X») of intervals
[t1, 2] such that; ;2 (X) splits the space in half:

V(X1, X2) = {[t1, t2]|Pracex(F ;2

f 2 (X) =0)=05}. (10)

Note that, for a set of objects, there are ways to split those ob-
jects into two equal-sized subsetsitifs even) based on the choice
of [t1,t2] € V(X1, X2). One of several alternatives is to choose
an interval[t:, oo] such thatF*1-*2(X) is less thart; for half the
objectsX € X. Another alternative is, for example, to choose an
interval [t1, t2] such that, using"*+*2, one sixth of the objects
in X are mapped to a value less thanand two sixths of the ob-
jects are mapped to a value greater than The setV(X1, X»)
includes intervals for all these possible ways to sjlitinto two
equal subsets.

Using the above definitions, we are now ready to define a family
Hpeau of hash functions for an arbitrary spaCe, D):

‘HpBH = {Ft)flt;Q

[X1, X2 € X, [t1,t2] € V(X1, X2)}. (11)

Using random binary hash functiohs; sampled (with replace-
ment) fromHper We can definé-bit hash functiong; as follows:

9i(X) = (hir(X), hiz(X), ..., hair (X)) - (12)

This way, indexing and retrieval can be performed as in Ligcal
Sensitive Hashing (LSH)[16], by:

e Choosing parametefsand].

e Constructingl k-bit hash tables, and storing each database
object to the appropriatebuckets.

e Comparing the input image with the database images found
in thel hash table buckets that the input image is mapped to.

Appropriate values fok andl can be computed using a validation
set of test objects (in our case, a validation set of hand @s)&].
While there are important similarities between DBH and LSH
[16], there are also important differences. Applying thédf&ame-
work to a specific space and distance measure requiresfidegti
a locality sensitive family [16]. Such families have beearitified
for certain spaces, such as vector spaces Wjthmetrics [2, 16],
or strings with a substitution-based distance measure(]L, h
Euclidean spac®?, the time complexity of retrieval using LSH
is linear in the dimensionality and sublinear in the number of
database objects [2].
At the same time, LSH cannot be applied to an arbitrary non-
Euclidean distance measure (such as the chamfer distamie$s
a locality sensitive family of hash functions is identifiedhere
exists no general way of constructing/identifying logaensitive
families for arbitrary distance measures. In DBH, a richifgm
of hashing functions is constructed using Eq. 11. That famwil
functions is not locality sensitive, and therefore the L&efaretical
analysis is not applicable for DBH. However, the key advgetaf
DBH is that the family of hashing functions is defined in a doma
independent way, and can be constructed for any space and any
distance measure. Thus, DBH can be easily applied to index th
chamfer distance.

7. FILTER-AND-REFINE RETRIEVAL

Sections 5.2 and 6 have described two different approaBloest-
Map and DBH, for efficient nearest neighbor search. However,
what these methods have in common is that each of them psovide
an efficient way to identify a relatively small set of cand&laear-
est neighbors out of the entire database of hand imagesisiset-
tion we discuss how to implement an end-to-end retrievalesys
using each of these methods. Essentially, both methodsatwe n
ral fits for the filter step of the well-known filter-of-refinetrieval
framework [19], which works as follows:

e Offline preprocessing step:compute and store information
about database objects that is useful for indexing. For Boos
Map, this step involves computing the embeddings of all
database objects. For DBH, preprocessing involves camstru
ing thel hash tables and storing, for each database object, a
pointer to that object in the appropriate bin for each ofithe
hash tables.

Mapping step: given an input image&), compute the em-
bedding of@ (for the BoostMap method), or compute the
hash keys thaf) corresponds to (for DBH).

Filter step: identify a small set of candidate nearest neigh-
bors. In BoostMap, this is done by compariff@) with
the embeddings of all database objects (which can be done



orders of magnitude faster than computing the chamfer dis-

tance between the input image and the database images), and
selecting a small number of database objects whose embed-

dings are the closest t8(Q). In DBH, we simply select all
the objects found in thebins that the input image hashes to.

Refine step: Compute the exact chamfer distance between
Q@ and each of the database objects selected during the filter
step.

Output: return the database object (among all objects con-
sidered in the refine step) with the smallest chamfer digtanc
to the input image.

The filter step provides a preliminary set of candidate reare
neighbors in an efficient manner, that avoids computing Kaete
chamfer distance between the input image and the vast rtyajbri
database images. The refine step applies the exact chasttanak
only to those few candidates. Assuming that the mappingastep
the filter step take negligible time (a property that is destated
in the experiments), filter-and-refine retrieval is much eneffi-
cient than brute-force retrieval.

8. EXPERIMENTS

The database of hand images used in the experiments has bee
constructed as described in Sec. 3. The test set consists0of 7
images. All test images were obtained from video sequentas o
native ASL signer either performing individual handshapeiso-
lation or signing in ASL. The hand locations were extractexirf
those sequences using the method described in [40]. Thartest
ages are obtained from the original frames by extractingstte
window corresponding to the hand region, and then perfagrttie
same normalization that we perform for database imagedhato t
the image size i856 x 256 pixels, and the minimum enclosing cir-
cle of the hand region is centered at pig&28, 128), and has radius
120. Examples of test images and their corresponding edge snage
(edge images are used for the chamfer distance computatien)
shown in Fig. 3.

For each test image, filter-and-refine retrieval is perfaee
identify the nearest neighbor of the test image. BoostMapRid
are used for the filter step. The test image is consideredve ha
been classified correctly if the handshape of the neareghbei is
the same as the handshape of the test image. The grounddruth f
the test images is manually provided. The total number ofithan
shapes is 20, so our classification task consists of reciogn0
distinct classes.

Figures 5 and 6 illustrate the results obtained with BoogtMa
and DBH on our data set. There are two types of results: sesnlt
retrieval accuracy, and results on classification accurBarest
neighborretrieval accuracyis the fraction of testimages (out of the
710 images in our test set) for which the retrieved neardghber
(using filter-and-refine retrieval) was the true nearegjnmor (ac-
cording to the chamfer distance) that would have been fosimju
brute-force search. Nearest neighbtassification accuracis the
fraction of test images for which the retrieved nearest mgig is
an image of the same handshape as the handshape of the st ima

In terms of retrieval performance, Fig. 5 shows that bothdoo
Map and DBH achieve remarkable speedups over brute-foecelse
at the cost of some losses in retrieval accuracy (naturailyte-
force search has a retrieval accuracy of 100%). At the same ti
we notice that BoostMap performs significantly better tha&HD
For example, for 90% retrieval accuracy, BoostMap yieldseedup
factor of about 300 over brute-force search, whereas DBHyia
speedup factor of about 26. Similarly, for 99% retrievaluaecy,
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Figure 5: Retrieval speed-up vs. accuracy for BoostMap and
DBH. For each accuracy, the plot shows the corresponding
speedup factor obtained using BoostMap and DBH. Brute-
force nearest neighbor search yields a retrieval accuracyfdl
and an average retrieval time of 112 seconds per query, corfe
8ponding to a speedup factor of 1.
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Figure 6: Classification speed-up vs. accuracy for BoostMap
and DBH. For each accuracy, the plot shows the correspond-
ing speedup factor obtained using BoostMap and DBH. Brute-
force nearest neighbor search yields a classification accacy of
33.1% and an average retrieval time of 112 seconds per query,
corresponding to a speedup factor of 1.

BoostMap yields a speedup factor of about 59, and DBH yields a
speedup factor of about 10.

We get a similar picture when we look at classification perfor
mance in Fig. 6. Animportant thing to note here is that thegifa
cation accuracy of brute force search (i.e., before we dhice any
errors caused by our indexing schemes) is only 33.1%. Tlgis-ac
racy rate reflects the upper limit of how well we can do using ou
indexing schemes: even if we have an indexing scheme thes giv
perfect retrieval accuracy with enormous speedups, thesifilea-
tion accuracy is it still going to be the same as that of bfatee



search. At the same time, it is important to note that thisiemy
rate is obtained without using any domain-specific constsaand
such constraints are oftentimes available, and highlyrin&tive,
in concrete real-world applications. In Section 9 we discsmme
frequently encountered types of constraints, and how theybe
used to improve handshape classification accuracy.

With respect to the classification performance obtainedgusi
our indexing schemes (BoostMap and DBH), we notice that the
speedups that we obtain over brute-force search are inigess-
pecially for the BoostMap method. With BoostMap, we can get
the exact same accuracy rate (33.1%) as with brute-foraelsea
but about 800 times faster. This means that classification 6
reduced from 112 seconds per query (using brute-force lsetrc
0.14 seconds per query. With DBH, we obtain a speedup fator o
about 26 for a classification accuracy of 30.7%, which is ghsli
decrease over the 33.1% accuracy rate of brute-force search

While the experiments show the need for more research, to de-

sign image matching methods that are more accurate thathéme-c
fer distance (some recent progress on that topic is repatt&a]),
the experiments also illustrate the power of BoostMap andiDB
as indexing methods. BoostMap yields a classification tiha t
is about three orders of magnitude faster than that of Horte
search. While DBH does not perform as well, it also achieigs s
nificant speedups with respect to brute-force search.

There is one advantage of DBH over BoostMap that is masked
by these experiments. In BoostMap; distances must be com-

e Use of multiple cameras, which can resolve ambiguities that
are unavoidable in systems that only use a single camera.

Use of linguistic constraints in the context of sign langeiag
recognition. For example, given the handshape of the domi-
nant hand there is a relatively small number of possible hand
shapes for the non-dominant hand.

e Use of information from multiple consecutive frames in a
video sequence. The method described in this paper can be
a source of hypotheses for initializing a hand tracker. Such
tracker can use information from multiple frames to improve

upon the accuracy of estimates made based on a single frame.

As our goal in this paper has been to describe a general-geirpo
handshape recognition method, incorporating such dosyaific
knowledge is beyond the scope of this paper. At the same time,
evaluating the method presented here in real-world agjgitais
a very interesting direction for future work. We are parcly
interested in integrating our method into a computer vidased
sign language recognition system, for the purpose of degjget-
ficient information access tools for users of sign languages

10. CONCLUSION

This paper has presented a database-based method for apadsh
recognition in the context of human computer interactiomeial-
world applications. We have shown that using a large dagabas

puted between the embedding of the query image and the embed-of synthetic hand images is a feasible and promising metbod f

dings of all database images. The overhead of computing thes
distances takes negligible time in our experiments, buteirain
cases (larger datasets, very high-dimensional embeddirsgance
measures more efficient than the chamfer distance), thitead
can become significant. DBH does not incur such an overhead.

In summary, the experiments demonstrate that using a |atgbalse
of hand images is a scalable and feasible approach for reeogn
ing handshapes at arbitrary 3D orientations. Indexing oustitan
allow database retrieval to operate at interactive spekat®rpo-
rating informative domain-specific constraints, as disedsin the
next section, can bring classification accuracy up to afaatmry
level for specific real-world applications.

9. DISCUSSION AND FUTURE WORK

Our topic in this paper has been robust recognition of hand-
shapes, for the purpose of human computer interaction ik rea
world applications such as intelligent homes and assisivg-

capturing the wide range of variability in the appearanceaxth
individual handshape. A key issue that this paper has askelles
is the ability of such a method to operate at interactive dpee
given the large number of database images that need to baedatc
with each input image. We have discussed two nearest naighbo
search methods, BoostMap and Distance-Based Hashing, and w
have shown that these methods are effective and allow imput i
ages to be processed at interactive speeds, with relasuedyl de-
creases in recognition accuracy. We believe that integgatiis
approach with well-grounded domain-specific constraingsiable

for specific applications can lead to efficient and robusdshape
recognition in real-world environments.
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