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Abstract—Today’s data center applications are predominantly
data-intensive, calling for scaling out the workload to a large
number of servers for parallel processing. Unfortunately, the
existing scaling laws, notably, Amdahl’s and Gustafson’s laws
are inadequate to characterize the scaling properties of data-
intensive workloads. To fill this void, in this paper, we put forward
a new scaling model, called In-Proportion and Scale-Out-induced
scaling model (IPSO). IPSO generalizes the existing scaling
models in two important aspects. First, it accounts for the possible
in-proportion scaling, i.e., the scaling of the serial portion of the
workload in proportion to the scaling of the parallelizable portion
of the workload. Second, it takes into account the possible scale-
out-induced scaling, i.e., the scaling of the collective overhead or
workload induced by scaling out. IPSO exposes scaling properties
of data-intensive workloads, rendering the existing scaling laws
its special cases. In particular, IPSO reveals two new pathological
scaling properties. Namely, the speedup may level off even
in the case of the fixed-time workload underlying Gustafson’s
law, and it may peak and then fall as the system scales out.
Extensive MapReduce and Spark-based case studies demonstrate
that IPSO successfully captures diverse scaling properties of data-
intensive applications. As a result, it can serve as a diagnostic
tool to gain insights on or even uncover counter-intuitive root
causes of observed scaling behaviors, especially pathological
ones, for data-intensive applications. Finally, preliminary results
also demonstrate the promising prospects of IPSO to facilitate
effective resource provisioning to achieve the best speedup-versus-
cost tradeoffs for data-intensive applications.

Index Terms—scale-out workload, cloud computing, speedup,
performance evaluation, Amdahl’s Law, Gustafson’s Law

I. INTRODUCTION

Predominant applications in today’s datacenters are data-
intensive and scale-out by design, based on, e.g., MapReduce
[1], Spark [2], and Dryad [3] programming frameworks. For
such applications, job execution may involve one or multiple
rounds of parallel task processing with massive numbers
of tasks and the associated data shards being scaled out
to up to tens of thousands of low-cost commodity servers,
followed by a serial (intermediate) result merging process.
Clearly, from both user’s and datacenter provider’s perspective,
it is imperative to gain good understanding of the scaling
properties of such applications so that informed datacenter
resource provisioning decisions can be made to achieve the
best speedup-versus-cost tradeoffs. Unfortunately, however,
the existing scaling laws that have worked well for paral-
lel, high-performance computing, such as Amdahl’s law [4],

Gustafson’s law [5], and Sun-Ni’s law [6], are no longer ad-
equate to characterize the scaling properties of data-intensive
workloads for two reasons.

First and foremost, the traditional scaling models underlying
these laws are exclusively focused on the scaling of the
parallelizable portion of the workload or external scaling
(e.g., the fixed-size, fixed-time, and memory-bounded external
scaling models underlying Amdahl’s, Gustafson’s, and Sun-
Ni’s laws, respectively), leaving the scaling of the serial
portion of the workload or internal scaling a constant. Fig. 1
illustrates this, i.e., scaling out to three parallel processing
units for the Amdahl’s model in Fig. 1(b) and Gustafson’s or
Sun-Ni’s model in Fig. 1(c) from the sequential execution case
in Fig. 1(a). While the parallelizable portion of the workload
stays unchanged (i.e., fixed-size) and grows by three times
(i.e., fixed-time or memory-bounded), respectively, the serial
portion of the workload remains unchanged. The rationale
behind this assumption is the understanding that the serial
portion of a program mostly occurs in the initialization phase
of the program, which is independent of the program size
[5]. This assumption, however, no longer holds true for data-
intensive workloads. This is because as the parallelizable
portion of a data-intensive workload increases, so does the
serial portion of the workload in general. In other words, the
(intermediate) results to be merged in each round of the job
execution are likely to grow, in proportion to the external
scaling, referred to as in-proportion scaling in this paper.

Second, the existing scaling models do not take the possible
scale-out-induced scaling into account, i.e., the scaling of
the collective overhead or workload induced by the external
scaling. As being widely recognized (see Section 2 for details),
for data-intensive applications, such workloads cannot be
neglected in general and they may be induced for various
reasons, e.g., task dispatching, data broadcasting, reduction
operation, or any types of resource contentions among parallel
tasks. Both in-proportion scaling and scale-out-induced scaling
are responsible for the scalability challenges facing today’s
programming frameworks, such as Hadoop and Spark [7].

To overcome the above inadequacies of the existing scaling
models, in this paper, we put forward a new scaling model,
referred to as In-Proportion and Scale-Out-induced scaling
model (IPSO). IPSO augments the traditional scaling models



Fig. 1: Speedup models: For data-intensive applications, Sun-Ni’s model coincides with Gustafson’s model (see Section IV for details).

with the in-proportion scaling and scale-out-induced scaling,
as illustrated in Fig. 1(d) (note that the shard size can be one,
two, or three), rendering the traditional scaling models and
their respective scaling laws its special cases. In particular,
IPSO reveals two new pathological scaling properties that
are not captured by the existing scaling laws. Namely, the
speedup may level off even in the case of the fixed-time
workload, and it may peak and then fall as the system scales
out, for which Gustafson’s law says that the speedup should
be unbounded. While the former scaling property is due to
the in-proportion scaling, the latter may be attributed to either
in-proportion scaling or scale-out-induced scaling. Moreover,
the scale-out-induced scaling, in the worst case, may lead to
negative speedups, which cannot be captured by the existing
scaling laws.

Our extensive case studies for both MapReduce and Spark-
based applications demonstrate that while the existing scaling
laws fail to capture most of the scaling properties for these
applications, IPSO is able to do so for all the cases studied.
As a result, IPSO can serve as a diagnostic tool that can
gain insights or even uncover counter-intuitive root causes
of the observed scaling behaviors, especially, pathological
ones, for data-intensive applications. Finally, our preliminary
results suggest that as long as the three scaling factors,
including the external, internal, and scale-out-induced scaling
factors, can be accurately estimated at small problem sizes,
the speedups at large problem sizes may be predicted with
high accuracy. This sheds light on the possible development of
efficient, measurement-based resource provisioning algorithms
to achieve the best speedup-versus-cost tradeoffs for data-
intensive workloads.

The remainder of the paper is organized as follows. Sec-
tion II provides the background information to motivate the
current work. Section III introduces IPSO. Section IV char-
acterizes the IPSO solution space. Section V presents the
application of IPSO to the MapReduce and Spark-based case
studies. Finally, Section VI concludes the paper and proposes
future research.

II. BACKGROUND, RELATED WORK AND MOTIVATIONS

The traditional scaling laws for parallel computing were
discovered in the context of high performance computing.
Amdahl’s law [4], Gustafson’s law [5] and Sun-Ni’s law [6] are
the most notable examples of such laws. Recently, extensions
of these laws are being proposed, e.g., in the context of

multicore processors [8], multithreaded multicore processors
[9], power consumption [10], and resource scaling in cloud
[11]. However, none of these extensions takes the possible in-
proportion scaling or scale-out-induced scaling into account.

Meanwhile, with the advent and proliferation of scale-out,
data-intensive applications, rich scaling properties for such
applications continue to reveal themselves, most of which,
however, cannot be adequately characterized by the existing
scaling laws. Here are some examples. It was found [12]
that for a fixed-size iterative computing and broadcast scale-
out Spark-based workload, the job stops scaling at about
n = 60, beyond which the speedup decreases due to linear
increase of the broadcast overhead, where n is the number of
computing nodes for parallel processing. TCP-incast overhead
was found to be responsible for the speedup reduction for
many big data analytics applications [13]. Centralized job
schedulers used in some popular programming frameworks,
such as Hadoop and Spark, were found to pose performance
bottlenecks for job scaling, due to a quadratic increase of the
task scheduling rate as n increases [7]. In fact, a queuing-
network-model-based analysis [9] reveals that any resource
contention among parallel tasks is guaranteed to induce an
effective serial workload, resulting in lower speedup than that
predicted by the existing laws.

The scaling analysis of data mining applications [14] re-
veals that the reduction operations in each merging phase
are induced by external scaling, resulting in much lower
speedup than that predicted by Amdahl’s law. As we shall
demonstrate in Section V, even for some simple MapReduce-
based applications, including Sort and TeraSort, their scaling
properties cannot be captured by the existing scaling laws,
largely due to the in-proportion scaling. The Spark-based case
studies in Section V further reveal that parallel scaling in both
fixed-time and fixed-size dimensions, underlying Gustafson’s
and Amdahl’s laws, respectively, exhibit scaling behaviors that
significantly deviate from those predicted by these scaling
laws.

The above examples clearly demonstrate the inadequacy of
the existing scaling laws in capturing the scaling properties of
data-intensive applications. The importance and the urgency
of the ability to do so cannot be overemphasized for two
main reasons. First, the existing scaling laws may lead to
overly optimistic prediction of the scaling performance for
data-intensive workloads. They may even make qualitatively
incorrect prediction when a pathological situation occurs (see
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Section V for examples). In our opinion, the lack of a sound
scaling model is largely responsible for the unsettled debate
over whether scaling-out is indeed better than scaling-up or
not [15]. Second, as the existing scaling laws are increasingly
being adopted to not only characterize the scaling properties,
but also facilitate resource provisioning for data-intensive
workloads [16], it becomes urgent to develop a comprehensive
scaling model that can help pinpoint the exact conditions under
which the existing scaling laws may be applied.

The importance and the urgency to develop a comprehensive
scaling model for data-intensive applications motivate the
work presented in this paper.

III. IPSO MODELING

First, we must realize that the main goal of scaling analysis
for parallel computing is to capture the scaling properties of
the speedup for parallel computing over sequential computing,
when the problem size becomes large. A scaling model is
considered to be a good one, as long as it captures in a
qualitative fashion (e.g., bounded or unbounded, linear or
non-linear, monotonic or peaked) major scaling properties
of the applications in question. Due to the need to deal
with large problem sizes and the tolerability of quantitative
imprecision, idealized scaling models that overlook much
of the system and workload details are generally adopted,
targeting at analytical results that can scale to large problem
sizes. The IPSO model is depicted in Fig. 1, together with
the Amdahl’s, Gustafson’s and Sun-Ni’s models. Scaling
modeling generally involves the modeling of both the system
and workload.

System Model: In the same spirit as the existing scaling
models, IPSO adopts the same idealized system model that
underlies all three existing scaling laws, i.e., Amdahl’s,
Gustafson’s and Sun-Ni’s laws. This system model, in the
context of data-intensive applications, can be viewed as
a homogeneous Split-Merge model with n + 1 identical
processing units [9], as illustrated in Fig. 1, with n = 3.
There are n processing units in the split phase, processing
the parallelizable portion of the workload in parallel and one
processing unit in the merge phase, processing the serial
portion of the workload sequentially.

Specifically, the Split-Merge model characterizes the
execution of a job composed of one round of parallel task
processing with barrier synchronization in the split phase,
followed by sequential result merging in the merge phase.
Here n is a measure of the degree of scale-out and hence,
called scale-out degree hereafter. This model can also be
applied to the case where there are multiple rounds of the
split and merge phases with the same number of processing
units in each split phase.

Workload Model: The main effort in developing IPSO
is the modeling of the workload. IPSO generalizes and
augments the workload models underlying the three speedup
laws, hence making them the special cases of IPSO.

For data-intensive applications, the offered workload at each
parallel processing unit is proportional to the data shard size
at that unit. As a result, as n increases, the total data shard
remains to be n (i.e., three as in Fig. 1(b)) and increases by
n times (i.e., 9 as in Fig. 1(c)) for the fixed-size and fixed-
time/memory-bounded cases, respectively. The IPSO model al-
lows the fixed-size, fixed-time, or anywhere in between as the
scale-out degree increases, e.g., doubling the total shard size
for the example in Fig. 1(d). In general, the task processing
time for the task mapped to processing unit i in the split phase
is a random variable, denoted as Tp,i(n), serving as a measure
of the workload corresponding to task i, for i = 1, 2, · · · , n.
As a result, Tp,i(n) may grow in (linear) proportion to the
size of the data shard mapped to the processing unit i. The
processing time for serial result merging in the merge phase
is again a random variable, denoted as Ts(n), which, for data-
intensive applications, may grow in proportion to the size of
the total working data set or total shard size mapped to the
split phase, as shown in Fig. 1(d), whereas its counterparts in
Fig. 1(b) and (c) stay unchanged. Now, let Wp(n) and Ws(n)
represent the total parallelizable and serial portions of the job
workload, respectively, and define,

Wp(n) = E[

n∑
i=1

Tp,i(n)] (1)

Ws(n) = E[Ts(n)] (2)

where E[x] represents the mean of random variable x. Here
Wp(n) and Ws(n) should be interpreted as the average amount
of time it takes to process the parallelizable and serial portions
of the job workload sequentially using one processing unit1.
Further define,

Wp(n) = Wp(1) · EX(n) (3)
Ws(n) = Ws(1) · IN(n) (4)

where EX(n) and IN(n) are called external and internal
scaling factors, corresponding to the scaling of the paralleliz-
able and serial portions of the workload, respectively. These
scaling factors enable in-proportion scaling. We further define
in-proportion scaling ratio, ε(n), as follows,

ε(n) =
EX(n)

IN(n)
(5)

As we shall see shortly, a rich set of scaling properties can be
uncovered by properly selecting this ratio.

Now we further introduce the scale-out-induced workload
shown in Fig. 1(d) and denote it as Wo(n). Wo(n) represents
the collective overhead induced by the scale-out itself, e.g.,
due to job scheduling, data shard distribution, and the queuing
effect for result merging. We define,

Wo(n) =
Wp(n)

n
q(n) (6)

1Note that by definition, the sequential job execution does not generate
scale-out-induced workload, hence Wo(n) does not appear in the numerator.



where q(n) is called scale-out-induced scaling factor, which
is a non-decreasing function of n and equals zero at n = 1. It
captures the effective workload induced solely by the scale-out
degree n, independent of the task workload size. In contrast,
its coefficient, Wp(n)

n , i.e., the per-task workload, captures the
possible dependency of Wo(n) on the task workload size. For
example, the data shard distribution overhead grows with both
n and the task workload size or data shard size.

Finally, with the barrier synchronization and randomness
of parallel task processing times, the mean job response time
with respect to parallel task processing is given by the slowest
task, i.e., E[max{Tp,i(n)}].

With the above scaling model, the speedup, S(n), can then
be expressed as follows,

S(n) =
Wp(n) +Ws(n)

E[max{Tp,i(n)}] +Ws(n) +Wo(n)
(7)

While the numerator is the average amount of time it takes
to process the entire job workload sequentially using one
processing unit, the denominator is the average amount of time
it takes to process the entire job workload in parallel with n
processing units, plus the workload due to scale-out-induced
scaling. Substituting Eqs. (1)-(6) into Eq. (7), we have,

S(n) =
ηEX(n) + (1− η)IN(n)

E[max{Tp,i(n)}]
E[Tp,1(1)]+E[Ts(1)] + (1− η)IN(n) + ηEX(n)q(n)

n

(8)
where η is the percentage of the parallelizable portion of the
job workload at n = 1, i.e.,

η =
Wp(1)

Wp(1) +Ws(1)
≡ E[Tp,1(1)]

E[Tp,1(1)] + E[Ts(1)]
(9)

An executable, sequential job execution model must be defined
to allow the numerator in Eq. (7) or (8) to be measurable in
practice. It will be given in Section IV, after the workload
types are defined (i.e., Eq. (13)).

IV. IPSO SOLUTION SPACE CHARACTERIZATION

The IPSO workload model developed above is a statistic
model that accounts for the possible randomness of the task
execution times. The statistic modeling is important in practice
if the scaling analysis attempts to capture the scaling properties
of an application both qualitatively and quantitatively. For
example, to capture the impact of long-tail effects of task
service time on the speedup performance, e.g., due to strag-
glers [17] or the possible task queuing effects [18], the mean
job response time for the split phase must be characterized
statistically by E[max{Tp,i(n)}] (see Eq. (8)). However, since
E[max{Tp,i(n)}] is upper bounded as the problem size in
terms of n becomes large, given that the tail length of the task
response time must be finite in practice, whether to use statistic
or deterministic modeling will not make a difference in terms
of capturing the qualitative scaling properties of an application.
The reason that we formulate IPSO as a statistic model is to
allow accurate scaling prediction that may serve as the basis
for future development of a measurement-based job resource

provisioning approach for data-intensive applications. So in the
rest of the paper, we shall focus on the deterministic model
only for simplicity and ease of presentation. The deterministic
IPSO refers to a special case where Tp,i(n) = tp(n) ∀ i
and Ts(n) = ts(n). Here tp(n) and ts(n) are deterministic
functions of n. In this case, E[max{Tp,i(n)}] = tp(n). Hence,
from Eq. (8), we have,

S(n) =
ηEX(n) + (1− η)IN(n)

ηEX(n)
n (1 + q(n)) + (1− η)IN(n)

(10)

where η in Eq. (9) can be rewritten as,

η =
tp(1)

tp(1) + ts(1)
(11)

Clearly, by viewing Wp(n), Ws(n) and Wo(n) as the sum of
the corresponding workloads in all rounds, the above IPSO
model can be applied to the case involving multiple rounds
of the same scale-out degree, n.

Relation to the well-known speedup laws: With the
notations defined in this paper, the three well-known speedup
laws can be written as,

S(n) =


1

η
n+(1−η) , Amdahl’s law;

ηn+ (1− η) , Gustafson’s law;
ηḡ(n)+(1−η)
ηḡ(n)
n +(1−η)

, Sun-Ni’s law.
(12)

The scaling properties for these laws can be derived from
Eq. (10), by letting IN(n) = 1 and q(n) = 0, ∀ n, i.e., without
considering the possible in-proportion scaling and scale-out-
induced scaling, and,

EX(n) =

 1 , fixed-size: Amdahl’s law;
n , fixed-time: Gustafson’s law;
ḡ(n) , memory-bounded: Sun-Ni’s law.

(13)
meaning that the total parallelizable portion of the workload
stays unchanged for fixed-size workload; linearly increases
for fixed-time workload; and scales with the memory size
for memory-bounded workload, respectively, as the system
scales out or n increases. Here ḡ(n) is the external scaling
factor, constrained by the total memory space, which in turn,
is determined by n, assuming that the maximum affordable
memory space to accommodate part of the working data set
at each parallel processing unit is a given, e.g., 128 MB [6].
For all the cases studied in this paper where the working
data sets are memory bounded, ḡ(n) ≈ n with high precision
(see Fig. 6), i.e., almost the same as that for the fixed-time
workload. For this reason, we assume that the Gustafson’s
and Sun-Ni’s models are the same (see Fig. 1(c)) in the
context of data-intensive applications, and in what follows,
we exclusively focus on fixed-size and fixed-time workload
types only.

A Remark: We observe that in the context of data-intensive
workloads, the fixed-size and fixed-time workload models
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capture two extreme scenarios, i.e., resource-abundant and
resource-constrained, respectively. By resource-abundant, we
mean that the parallelizable portion of the workload can be
processed in its entirety by one processing unit. In this case,
one is interested in characterizing the scaling behaviors when
the fraction of the parallelizable workload on each processing
unit decreases as the scale-out degree, n, increases, i.e.,
the Amdahl’s case. By resource-constrained, we mean that
each processing unit can only handle a fraction of the total
parallelizable portion of the workload, e.g., the case when the
memory allocated to each processing unit is fully occupied
by the data shard assigned to it. In this scenario, the workload
linearly grows with n, i.e., the Gustafson’s case. In general,
however, as the system scales out, a data-intensive workload
may scale in either way or anywhere in between. As a result,
a comprehensive scaling model should be able to cover both
fixed-time and fixed-size workload types, as is the case for
IPSO.

Finally, with the workload types defined in Eq. (13), now
we are in a position to define an executable sequential job
execution model underlying the numerator in Eq. (7) or
(8). For fixed-time workload, our sequential job execution
model works as follows. It first runs n tasks in the split
phase sequentially using one processing unit. It then merges
task results in the merging phase using another processing
unit. Since the merging phase may not start until all the
tasks finish, due to barrier synchronization, this model is
equivalent to using only one processing unit to execute the job
sequentially, which agrees with the common understanding
of what a sequential execution model is supposed to be. For
fixed-size workload, the same sequential job execution model
applies. The only difference is that now n = 1, i.e., only one
task is executed in the map phase over the entire working
data set that is assumed to fit into the memory in a single
processing unit. This model is in line with the sequential job
execution model, implicitly used by Amdahl to evaluate the
numerator in the speedup formula, i.e., the entire workload is
executed as one task using one processing unit.

Analysis of scaling properties of IPSO: We are interested
in exploring major scaling properties of IPSO in the entire
solution space spanned in three dimensions, including EX(n),
IN(n), and q(n). In other words, the scaling behaviors of
IPSO are fully captured so long as these factors are known.
As explained before, for scaling analysis, one is interested
in the qualitative scaling behaviors of the speedup when n
becomes large. In this case, ε(n) in Eq. (5) can be written
approximately as (i.e., only the highest order term is kept),

ε(n) ≈ αnδ as n becomes large. (14)

where α is a nonnegative coefficient and δ determines the
relative order of ”speed” of external scaling versus internal
scaling. Likewise, q(n) can be approximated as follows,

q(n) ≈ βnγ as n becomes large. (15)

where β is a nonnegative coefficient and γ ≥ 0. Here γ = 0
corresponds to the case without scale-out-induced workload,
i.e., q(n) = 0.

With Eqs. (14), (15) and (5), Eq. (10) can be rewritten as
follows,

S(n) ≈ ηαnδ + (1− η)

ηαnδ−1(1 + βnγ) + (1− η)
(16)

Note that for the workload without a serial portion, i.e.,
Ws(n) = 0 or η = 1, Eqs. (14) and (5) are undefined. In
this case, from Eq. (10), we have,

S(n) =
n

1 + βnγ
(17)

With these two formulas, we are now ready to explore the
entire IPSO solution space. We consider fixed-time and
fixed-size workload types, separately.

Fixed-time workload type (EX(n) = n): In this case,
0 ≤ δ ≤ 1. This is because in practice, as the parallel portion
of the workload scales up linearly fast, IN(n) is unlikely to
scale down or scale up superlinearly fast. From Eqs. (16) and
(17), we identify the following four distinct types of speedup
scaling behaviors, as depicted in Fig. 2:
• It: This type is Gustafson-like, i.e., the speedup linearly

grows and degenerates to Gustafson’s law at α = 1. As
shown in Fig. 2, it occurs when there is no scale-out-
induced workload (i.e., γ = 0, or equivalently, q(n) = 0)
and either δ = 1 (i.e., with no internal scaling) or in the
absence of the serial workload (i.e., η = 1);

• IIt: Speedup grows sublinearly but still unbounded. It
occurs when q(n) grows slower than linear, i.e., γ < 1,
and either 0 < δ ≤ 1 or η = 1;

• IIIt : This type is pathological, i.e., the speedup grows
monotonically but is upper-bounded. There are two sub-
types here, i.e., IIIt,1 and IIIt,2, with distinct upper
bounds, as depicted in Fig. 2, corresponding to sublinear
and linear scale-out scalings, respectively;

• IVt: This type is even more pathological as the speedup
peaks and falls, and finally enters negative speedup
region. It occurs when q(n) scales up superlinearly fast,
i.e., γ > 1, regardless of how the other scaling factors
behave.

Fixed-size workload type (EX(n) = 1): In this case, δ =
0. This is because without scaling the parallel portion of the
workload, the serial portion of the workload will not scale, i.e.,
IN(n) = 1, and any workload added as n increases should
be viewed as part of Wo(n), i.e., scale-out-induced workload.
Again, from Eqs. (16) and (17), four distinct types of speedup
scaling behaviors are identified, as depicted in Fig. 3 (note that
although they look the same as their counterparts in Fig. 2,
the associated scaling factors are different):
• Is: S(n) = n. it occurs when there is no scale-out-

induced workload (i.e., γ = 0) and η = 1 (i.e. no serial
portion of the workload), a very special case;



γ 0 && { 1 || 1} :S(n)
n + (1 - )

+ (1 - )

0 < γ < 1 && {0< 1 || =1}

It

IIt

= 1 && { =1 || 0< 1: S(n) 1
β
 || =0: S(n) ��+�1-�)

�����1-	)
III

t,2

III
t,1   γ < 1 && δ = 0: S(n)→ ηα
�1-η)

1-η

 γ > 1
IVt1

n

S(n)

Fig. 2: Four distinct IPSO scaling behaviors for the fixed-time workload type: It:
Gustafson-like linear scaling; IIt: unbounded sublinear scaling; IIIt: pathological,
upper-bounded scaling; and IVt: pathological, peaked scaling.

• IIs: Speedup grows sublinearly and unbounded. It occurs
when q(n) grows slower than linear, i.e., γ < 1 and η =
1, also a special case;

• IIIs : It is Amdahl-like. It grows monotonically and is
upper-bounded. Again, it is composed of two subtypes,
i.e., IIIs,1 and IIIs,2, with distinct upper bounds, similar
to IIIt,1 and IIIt,2, as depicted in Fig. 3. Clearly,
Amdahl’s law is a special case of IIIs,1 at γ = 0 and
α = 1;

• IVs: This type is pathological and behaves similar to
IVt given in Fig. 2. It occurs when q(n) scales up
superlinearly fast, regardless of how the other scaling
factors behave.

In summary, both fixed-time and fixed-size workloads may
suffer from pathological types of scaling, i.e., IVt and IVs,
respectively, which by all means, should be avoided. The
root cause for both IVt and IVs points to the superlinear
scaling of q(n), often seen in the case related to centralized
job scheduling and data shard broadcasting. A case study
of such kind will be given in the following section. The
next scaling behavior that is also pathological and should
be avoided is IIIt. This is because It (or Gustafson’s law)
and IIt suggest that unbounded speedup should be achievable
for the fixed-time workload type. On the other hand, upper-
bounded speedup or IIIs has long been understood to be
inevitable for the fixed-size workload type, since the discovery
of Amdahl’s law. This is because unbounded speedup, i.e., Is
and IIs, for this workload type only occur under very special
circumstances. Nevertheless, the achievable upper bound for
IIIs may vary and effort should be made to attain the highest
possible bound.

V. APPLICATION OF IPSO TO SCALING ANALYSIS OF
DATA-INTENSIVE APPLICATIONS

The main focus of this section is to test the ability of IPSO
in capturing the scaling properties, and hence, its suitability
in serving as a diagnostic tool for scaling analysis of data-
intensive applications. As a byproduct, the ability of IPSO to
predict the scaling properties for some simple cases is also

  γ 1 && η≠1: S n →
ηα+�1-η)

1�η

0 ≤ γ 1 && η 1

γ→ ∞ && η 1: S n nIs

IIs

γ 1: S n →
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ηαβ��1�η	

III
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III
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Fig. 3: Four distinct IPSO scaling behaviors for the fixed-size workload type: Is: linear
scaling; IIs: unbounded sublinear scaling; IIIs: Amdahl-like upper-bounded scaling;
and IVs: pathological, peaked scaling.

explored, demonstrating the promising potentials of IPSO to
facilitate effective resource allocation for data-intensive appli-
cations. This study includes a total of nine cases, including
four Map-Reduce-based and four Spark-based case studies,
performed on the Amazon EC2 cloud, and one Spark-based
case study, extracted from [12]. This allows a sufficiently
wide range of both single-stage (i.e., single-round) and multi-
stage applications with rich scaling properties to be uncovered.
These case studies also reveal the inability of the existing
scaling laws in characterizing the scaling properties of data-
intensive applications in general. In fact, out of the nine
cases studied, only two simplest MapReduce cases follow the
existing scaling laws. Finally, we note that the data presented
are average results of multiple experimental runs.

A. Single-Stage Cases

This section focuses on the cases with only one round of
job execution. They are either fixed-time or fixed-size, which
are studied separately.

Fixed-Time Workload: The cases studied include three
representative micro benchmarks from the HiBench suite
[19], a widely adopted benchmark suite for Hadoop, i.e.,
WordCount, Sort, and TeraSort [20]. The working data sets
for WordCount and Sort are randomly generated text, drawn
from a UNIX dictionary that contains 1000 words. TeraSort
uses a working data set derived directly from an embedded
TeraGen program. Also included in this study is a QMC Pi
program from Apache Hadoop examples [21]. This program
uses Quasi Monte Carlo method (QMC) to estimate the
value of π. These four applications are chosen because
they are among the most widely studied MapReduce-based
applications that involve a single round of parallel processing
and merging.

On the hardware side, all of the four experiments were
carried out on Amazon EC2 cloud with EMR (elastic
MapReduce) support. An m4.4xlarge virtual machine (VM)
instance is chosen as the master node and m4.large VM
instances as processing units. We configure the resource
manager to launch only one container per processing unit.



And all the MapReduce jobs in these experiments are
configured as involving a single reducer with synchronization
barrier.

Results: The measured speedups for the four cases are
presented in Fig. 4, together with the ones predicted by
Gustafson’s law. We make the following observations.

First, the QMC case in Fig. 4(a) matches Gustafson’s law
well. For this case, there is no serial workload, i.e., η = 1
and the fact that it matches Gustafson’s law well means that it
must belong to It, as depicted in Fig. 2. This further implies
that there is little scale-out-induced workload involved, since
γ = 0 for It.

Second, the WordCount case in Fig. 4 (b) must be either
It or IIt, as it is close to linear growth as predicted by
Gustafson’s law, but more data samples at larger scale-out
degree are needed to be certain which one it belongs to.
Nevertheless, at least, we know from It and IIt that for this
case, the scale-out-induced workload is very small and the
speedup is very likely to be unbounded, i.e., a benign case in
terms of scaling.

Third, it is clear that the Sort and TeraSort cases in Fig. 4 (c)
and (d), respectively, significantly deviate from that predicted
by Gustafson’s law and fall into IIIt,1 or IIIt,2, or somewhere
in between. Our detailed scaling factor analysis, as will be
given shortly, indicates that both are more on the IIIt,1 side
than the IIIt,2 side, since δ is close to zero and γ is likely to
be small.

The above case studies clearly demonstrate that IPSO can
provide significant insights on the possible root causes of the
scaling behaviors for data-intensive applications. However
for some cases, to exactly pin down the root cause, the exact
scaling parameters, e.g., δ and γ, must be estimated. In what
follows, we make a first attempt to estimate these parameters
for the above cases. The aim is twofold: (a) demonstrating
the promising potentials of IPSO to serve as a capable means
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Fig. 4: Measured speedups for the four selected intel-HiBench micro benchmarks,
together with the speedups predicted by Gustafson’s law.

for scaling prediction and hence, resource allocation; and (b)
exposing the challenges in this pursuit.

Scaling Prediction: Regardless of the implementation
details, every MapReduce job execution time can be roughly
broken down into four parts: (a) the execution environment
initialization and job scheduling; (b) the map phase (i.e.,
the split phase); (c) the communication between map and
reduce phases; and (d) the reduce phase (i.e., the merge
phase). The reduce phase can be further divided into a shuffle
stage (the stage during which the reducer pulls all mappers’
results from DFS), a merge stage (the stage when the reducer
merges specific amount of mapper results to get intermediate
results), and a reduce stage (the last merging process that
produces the final results). With reference to this background
information, the following describes how we identify, based
on measurement, the scaling behaviors of the three workloads,
Wo(n), Wp(n), and Ws(n), in terms of three scaling factors,
q(n), EX(n), and IN(n), respectively.

First, by comparing the execution times of individual non-
workload processing parts and stages in the scale-out execution
against the corresponding times in the sequential execution, the
scale-out-induced workload, Wo(n), if any, can be identified
(i.e., the overheads that grow with n in the scale-out execution,
which are absent from the sequential job execution). Wo(n)
is more likely to come from parts (a) and (c). By detailed
measurement, we find that Wo(n), if any, is negligibly small
for all four cases, due to the dominance of parts (b) and (d)
and also the fact that the workload is the fixed-time one. We
then further inspect the shuffle stage to see if there is any
discrepancies between the two, which turns out to be negligible
as well.

The next two steps are to measure EX(n) and IN(n). To
this end, we first note that part (b), i.e., the map phase, is
the sole contributor to the parallel processing phase and the
rest can be attributed to the sequential merging phase. With
this understanding, we estimate EX(n) and IN(n) by curve
fitting based on the measured data at problem sizes no greater
than n = 16 for WordCount, Sort, and QMC Pi.
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Fig. 5: The internal-scaling factor of TeraSort demonstrates a step-wise property. As
shown there are two distinct functions: a linearly increasing function IN ′(n) with a
slower growth pace for small problem size, and IN(n) at a faster growing speed when
the problem size grows bigger.

For TeraSort, we use the measured data between n = 16
and n = 64. This is because for TeraSort, the data input size
which grows linearly with n exceeds the preconfigured reducer
memory size (∼2GB) at about n = 15, when the disk I/O is
involved and the internal scaling factor is burst by over 30%



with its slope increasing from 0.15 to 0.25 (Fig. 5). This
phenomenon is reflected in Fig. 4(d) where there is a small
surge of the speedup around n = 15 and then falls back before
it grows again. It indicates that for scaling factor prediction,
one must monitor the possible program execution environment
changes as the problem size increases, e.g., memory capacity
overflow, surging queuing delay, or onset of network or I/O
bottleneck.

The predicted IN(n) and EX(n), together with the mea-
sured ones for the problem size reaching n = 160 are depicted
in Fig. 6. As shown in the figure, the parallelizable workloads
are memory bounded (i.e., using maximal block size of 128
MB per processing unit) and EX(n) closely follows fixed-
time workload, i.e., EX(n) ≈ n, as expected. This confirms
our earlier claim that a memory-bounded workload is no
different from a fix-time workload.
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Fig. 6: EX(n) and IN(n) for the four cases. For all the cases, EX(n) ≈ n, agreeing
with the Gustafson’s assumption on the external scaling (see Eq. (13)).

For IN(n) in Fig. 6, while WordCount and QMC pi follow
the existing workload model, i.e., IN(n) = 1, both Sort and
Terasort do not. For both applications, the predicted IN(n)’s
based on linear regression match the measured data well.

By using both predicted and measured EX(n) and IN(n)
above, as well as measured E[max{Tp,i(n)}], E[Tp,1(1)] and
E[Ts(1)] as input into Eqs. (9) and (8), one arrives at the
speedups for all four cases, as depicted in Fig. 7. As one can
see, overall, IPSO predicts the scaling properties for all four
cases very well.
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Fig. 7: The speedups based on IPSO, measurement, and Gustafson’s law for the four
cases in the case of the fixed-time workloads

With all the scaling factors captured, IPSO can now help
characterize the scaling properties for the above four cases
with much higher precision than before. First, it is now clear
that the in-proportion scaling has led to the IIIt,1 pathological
scaling or upper bounded speedup for Sort and Terasort, which
cannot be predicted by the existing scaling laws. For example,
for TeraSort, even though the scaling ratio is high, i.e., ε(n) =
4.3, meaning that the external scaling is more than 4 times
faster than the internal scaling, the speedup for TeraSort is
upper bounded by the value of 3. In other words, even with
a relatively small internal scaling, compared with the external
scaling, the speedup becomes quite limited and upper bounded.

The above examples demonstrate the promising prospects of
IPSO for scaling prediction and hence, resource provisioning.
In the meantime, we also realize that to this end, it entails
detailed understanding and analysis of the applications and
execution procedures. Clearly, it is very unlikely that an
one-size-fits-all prediction solution exists. Instead, the IPSO
prediction solution may need to be developed on a per
programming framework and per type of applications basis.

Fixed-size Workload: Unfortunately, for all the four
cases studied so far, in the case of fixed-size workload, as
the scale-out factor n grows beyond 8, the parallel task
response times in the map phase drop to subseconds, which
cannot be measured, since in our experiments the precision
of measurement is one second. Hence, instead of studying
the four cases, we consider the following one.

Collaborative Filtering: As explained in [12], some iterative
MapReduce machine learning applications in Spark may
include significant data broadcasts from the master node to
all the worker nodes per iteration. In particular, [12] describes
and provides the experimental data for a collaborative
filtering application (see [12] for detailed description of this
application). In each iteration, there are two feature vectors
to be updated alternately, involving two rounds of broadcast
and two Map phases with barrier synchronization. For this
application, each broadcast is induced as a result of the system
scale-out, generating scale-out-induced workload. Moreover,
the lack of a reduce phase in each iteration means that there is
no sequential merging phase or Ws(n) = 0. Since the scale-
out degrees for both rounds are the same, IPSO can be applied
as aforementioned. Namely, by combining the corresponding
workloads in the two rounds into one, each iteration agrees
with our IPSO model, and hence, experimental data for each
iteration in the form of histograms, as given in Fig. 3 in
[12], can be leveraged by IPSO for the scaling analysis of
this application. We are able to convert the experimental data
in [12] into a table format in Table I and then the data are
plotted in Fig. 8, together with the matched curves based on
nonlinear regression.

First, with Wo(n) given in Fig. 8(a) and according to
Eqs. (6) and (15) (note that Wp(n) = Wp(1) = E[Tp,1(1)]
is a constant for the fixed-size workload), we have, γ = 2.
By inspecting Fig. 3, it becomes clear that the speedup for



TABLE I: Measured external and scale-out-induced workloads for Collaborative Filtering

n E[max{Tp,i(n)}] Wo(n)
10 209.0 5.5
30 79.3 17.7
60 43.7 36.0
90 31.1 54.3

this case must fall into IVs, the worst-case scenario, rather
than the best-case scenario, i.e., Is, as would be predicted by
Amdahl’s law (note that η = 1 as there is no serial workload).

To verify that IPSO indeed predicts the scaling property for
the current case accurately, in what follows, we calculate S(n)
based on the statistic version of the IPSO model.

First, given Wp(n) = Wp(1) = E[Tp,1(1)], the speedup,
S(n), for this application, according to Eq. (7), can then be
written as follows,

S(n) =
E[Tp,i(1)]

E[max{Tp,i(n)}] +Wo(n)
(18)

By extrapolating the matched curve for E[max{Tp,i(n)}] in
Fig. 8(a) to n = 1, we have E[Tp,1(1)] = 1602.5. Finally,
S(n) is evaluated by substituting the matched functions in
Fig. 8(a) into Eq. (18).

Fig. 8(b) depicts the measured speedup and IPSO speedup,
along with the speedup predicted by Amdahl’s law. As one
can see, both measured and IPSO speedups confirm that the
scaling behaviors follow IVs, rather than Is, as predicted by
Amdahl’s law.

(a) (b)

Fig. 8: The measured and IPSO speedups, together with that predicted by Amdahl’s law
for Collaborative Filtering.

The scaling properties, depicted in Fig. 8(a), is pathological
and disappointing. It simply states that even in the absence of
the serial portion of the workload, the linear speedup scaling,
predicted by Amdahl’s law, is not guaranteed. The dismal
speedup, 21, at its peak and continued trending towards zero,
as predicted by IPSO, indicates that the scale-out-induced
scaling can pose serious threats to the scalability of scale-out
applications. Collaborative Filtering deals with a fixed problem
size, i.e., EX(n) = 1, meaning that scaling out beyond n = 60
can only do harm to the parallel computing, hence setting a
hard scale-out degree upper bound, beyond which the parallel
computing performance deteriorates.

B. Multi-Stage Cases

In this section, IPSO is applied to the analysis of Spark-
based applications, involving multiple stages/rounds of parallel
task processing per job execution, where the scale-out degree

may vary from one stage to another. However, as we men-
tioned earlier, the IPSO model can only be directly applied to
the multi-stage cases with the same scale-out degree.

Fortunately, in the Spark-based program, two configuration
parameters, i.e., the problem size, N , and parallel degree,
m, must be set. Here N is the nominal number of tasks
to be executed in a stage and m the nominal number of
executors (i.e., processing units) to run in parallel in a stage.
In general, the actual numbers of tasks and executors in the
first stage are indeed equal to N and m, respectively. In
other words, each of the m executors in the first stage needs
to execute N/m tasks sequentially. Although the numbers
of tasks and executors in the subsequent stages may not be
equal to their respective nominal counterparts, they are strong
functions of these counterparts. This implies that the three
workloads for Spark-based applications can be defined in
terms of N and m, i.e., Wp = Wp(N,m), Ws = Ws(N,m),
and Wo = Wo(N,m) in general.

To allow IPSO to be applied to the cases with multi-stage
without modification, we simply define the fixed-time and
fixed-size cases as when N/m and N are fixed, respectively,
while scaling m, i.e., the scale-out degree, n = m. By doing
so, all the above three workloads become functions of n only
for either case, the same as the ones defined in IPSO. Hence,
all the results derived from IPSO apply to the Spark-based
multi-stage cases. In what follows, we perform case studies
for four representative Spark benchmarks.

We deployed the Intel HiBench suite on EC2 with the
EMR (Elastic MapReduce) service and then launched four
Spark benchmarks including three machine learning applica-
tions:Bayes Classifier (Bayes), Random Forest (RF), Support
Vector Machine (SVM), and one graph application (NWeight).
The hardware configuration is cloned from the previously
stated MapReduce experiment. All the instances are precon-
figured with sufficient storage capacity (100GB per-node) and
bandwidth (≥ 450 Mbps). Executor reuse and logging are
enabled for performance metrics collection. All the input data
sets are generated by the respective data generators provided
by this benchmark suite. We then extract the execution laten-
cies for all stages from the application’s Log file to derive
the speedup. This is done by tracing the timestamps for each
stage in the Spark Log files, which are available in the JSON
format.

To identify the scaling properties using IPSO, we are inter-
ested in the speedups projected onto two different dimensions,
i.e., the fixed-time (with N/m fixed) and fixed-size (with
N fixed) dimensions, while scaling n = m as depicted in
Fig. 9 and Fig. 10 respectively. Along with the data points,
we also plotted the projected curves of the matched two-
dimensional surfaces as functions of N and m based on
nonlinear regression for the ease of identification of trending.

First, one notes that for fixed-time workloads, as depicted
in Fig. 9, the larger the per executor load level, Nm , the higher
the speedup is. In other words, the speedup curve at N

m = 4
is higher than that at 2, which in turn, is higher than that at
1. The detailed analysis of the code paths indicates that this

wangzxx
Sticky Note
speedup of 21 at its peak ...



Fig. 9: Fixed-time dimension

is due to the increased percentage of the scale-out-induced
workload as the number of tasks per executor decreases. More
specifically, the scheduling and deserialization time (i.e., the
communication cost) of the first wave of tasks outweigh the
following waves. Hence, further increasing per-node workload
level effectively reduces the scale-out induced workload per
task. This however, by no means suggests that reducing the
parallel degree always improves speedup performance. In fact,
our study shows that the speedup at Nm = 8 is lower than that
at N

m = 4. This is because the per-node workload level is
constrained by the available resource at the node level. For
example, insufficient RAM may cause the persistent RDDs
to be spilled to the local disk, or even trigger increased task
failure rate, leading to the rollback to the previous stage and
hence poor performance. In other words, the optimal scale-out
level, or parallel degree m is determined by both the workload
size and the resource availability at individual executors.

Fig. 10: Fixed-size dimension

The scale-out-induced workload is also responsible for the
degradation of the speedups from the ideal Gustafson-like It
to at best IIt for large N

m and IIIt for smaller N
m . All four

cases share similar scaling properties.
Second, for the fixed-size workload dimension, as depicted

in Fig. 10, as the problem size N becomes large, the speedups
for all four cases peak and then fall as n increases, agreeing
with the scaling behavior of IVs, the pathological one. This
is in stark contrast with that predicted by Amdahl’s law, or
IIIs. This is due to the strong scale-out induced overhead,
as discussed above. Again, all four cases share similar scaling
behaviors.

In summary, the above case studies clearly demonstrate that
IPSO can serve as a diagnostic tool for the scaling analysis
of data-intensive applications. Specifically, the following di-
agnostic procedure is recommended:

1) Determine the use case scenario, i.e., the fixed-time or
fixed-size workload;

2) For given workload type, measure the speedup as the
scale-out degree increases;

3) Plot the speedup data points versus scale-out degree,
maybe together with a matched curve from nonlinear
regression as a guide;

4) Compare the trending of the measured speedup with
either Fig. 2 or Fig. 3, depending on the workload type
to identify closely matched scaling types;

5) If the matched scaling type is It (Is), IIt (IIs), or IVt
(IVs), the root causes of the scaling behaviors are readily
identified and understood based on the analysis in Section
IV. If, however, the matched type is IIIt (IIIs), go to
the next step to further identify which sub-type, IIIt,1
(IIIs,1) or IIIt,2 (IIIs,2) it belongs to;

6) Carry out a detailed analysis and measurement of the
scaling parameters, δ and γ, to pin down the exact sub-
type it belongs to, which however, may need to be done
case by case.

Finally, the source code and executables for all the case
studies are publicly available at our code repository [22].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new scaling model for
scale-out, data-intensive applications, called In-Proportion and
Scale-Out-induced scaling model (IPSO). IPSO sets itself apart
from the existing scaling models in two important aspects.
First, it takes the scaling of the serial portion of a workload
into account, referred to as in-proportion scaling. Second, it
accounts for the possible overheads induced by the scale-out,
resulting in what we call scale-out-induced scaling. Both in-
proportion and scale-out-induced scalings were observed in
scale-out applications, but had not been formally defined until
this work. MapReduce-and-Spark-based application case stud-
ies demonstrate that IPSO can serve as a powerful diagnostic
tool for the scaling analysis of data-intensive applications.

As our future work, we plan to develop measurement-based
resource provisioning algorithms for data-intensive workloads
based on the prediction ideas behind IPSO. The key is to find
a solution as to how to quickly estimate the two scaling pa-
rameters, δ and γ. The research in this direction is underway.
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