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Abstract— This paper considers the optimization-based
traffic allocation problem among multiple end points in con-
nectionless networks. The network utility function is modeled
as a non-concave function, since it is the best description
of the quality of service perceived by users with inelastic
applications, such as video and audio streaming. However, the
resulting non-convex optimization problem, is challenging and
requires new analysis and solution techniques. To overcome
these challenges, we first propose a hierarchy of problems
whose optimal value converges to the optimal value of the
non-convex optimization problem as the number of moments
tends to infinity. From this hierarchy of problems, we obtain
a convex relaxation of the original non-convex optimization
problem by considering truncated moment sequences. For
solving the convex relaxation, we propose a fully distributed
iterative algorithm, which enables each node to adjust its
date allocation/ rate adaption among any given set of next
hops solely based on information from the neighboring nodes.
Moreover, the proposed traffic allocation algorithm converges
to the optimal value of the convex relaxation at a O(1/K) rate,
where K is the iteration counter, with a bounded optimality.
At the end of this paper, we perform numerical simulations
to demonstrate the soundness of the developed algorithm.

I. Introduction
Applications and services supported by modern com-

munication networks have diverse requirements, e.g.,
high throughput and low latency. Traffic engineering
(TE) has long been used to optimize the utilization of
the limited network resources so that such requirements
are fulfilled. This entails developing data rate allocation
algorithms and congestion control protocols capable of
maximizing a given network utility subject to network
resource constraints [1]. Many problems of recent interest
arising in diverse fields can be cast as an optimization
problem, and network utility maximization (NUM) is no
different.

In large-scale networks, the size of the optimization
problems rapidly increases as the number of nodes and
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links increase. This stimulates the necessity of developing
decentralized control algorithms capable of decomposing
the high-dimensional problem into separate moderate-
size subproblems that can be solved independently and
locally at various network nodes. The main idea behind
such decentralized control algorithms is to distribute the
computations required for the solution of the optimiza-
tion problem among various nodes [2]-[4]. This approach
exploits local information available at each node. Nev-
ertheless, information exchange among different nodes
is inevitable since distinct data flows share the same
network resources. Therefore, distributed optimization
approaches not only aim at decomposing the problem,
but also minimizing the communication overhead.

In the benchmark work by Kelly et. al. [1], the opti-
mization of the utility of a large-scale broadband network
with limited bandwidth resources is considered. The
authors propose two classes of rate control algorithms
by casting the NUM problem in both primal and dual
forms. In [2], a family of decentralized sending rate
control laws are proposed to steer the traffic allocation
to an optimal operating point while avoiding congestion.
A non-linear control theoretic approach is employed in
[3] to derive adaptation laws that enable each node
to independently distribute its traffic optimally among
any given set of next hops. More recently, reference [4]
considers the NUM, derives its dual problem, and uses
a distributed gradient-based approach for its solution. A
similar approach appears in [5]. In spite of the existence
of a relatively dense literature on NUM, most available
results consider only the optimization of concave utility
functions. However, it has been shown that the reward
experienced by the users of real-time applications, such
as video and audio streaming, cannot be accurately mod-
eled using concave functions. Reference [6] shows that the
video quality perceived by users on a mobile device is a
non-decreasing and step-like function with respect to the
data rate, because users have almost similar quality of
experience on 3 Mbps and 1 Mbps [6]. This observation
motivates considering the optimization of non-concave
network utility functions, which constitutes a main focus
of this paper.

Non-concave NUM is a non-convex optimization prob-
lem; hence, it is difficult to solve. Nevertheless, there
exist some attempts in the literature for deriving algo-
rithms that provide near-optimal solutions. Reference
[7] develops a centralized algorithm that solves the
NUM problem with polynomial utilities. Reference [8]
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determines the conditions under which the standard
distributed dual-based algorithm can still converge to
the global optimal solution with non-concave utilities.

This paper develops a distributed iterative algorithm
for the optimization of a generalized class of non-concave
network utility functions that capture a wide variety
of real-world applications. In particular, we focus on
connectionless networks, where each node is required
to distribute its traffic among a set of next hops so
that the network utility is maximized. We handle the
challenge posed by the non-convexity of the optimization
problem by developing a sequence of convex relaxations
whose solution converges to that of the original problem.
We use results on polynomial optimization and moment
sequences to derive the convex relaxations [9], [10]. Fur-
thermore, we propose an iterative primal-dual algorithm
[11] that enables each node to distribute its traffic among
the set of next hops. We emphasize on the distributed
nature of the algorithm, where each node uses its local
information and need not communicate with other nodes
except its direct neighbors.

II. Notation

Throughout this paper, the traffic flows are assumed
to be described by a fluid flow model, and the only
resource constraint taken into account is link bandwidth.
In the remainder of this paper, call and flow will be used
interchangeably.

Let N denote the set of nodes in the network, and
L ⊂N ×N denote the set of links connecting particular
pairs of nodes. We assume that each link l ∈L has a
finite capacity cl > 0. Moreover, let S , {s1,s2, . . . ,sn}
and D , {d1,d2, . . . ,dn} denote respectively the set of
source nodes and the set of destination nodes contained
in N such that S ∩D = /0. The intended destination
for each source node si is di for i ∈ I , {1, . . . ,n}, i.e.,
without loss of generality, we assume that there is a one-
to-one correspondence between S and D , and I denotes
the set of different flow (call) types in the network.
Given source node s ∈ S , let Ls denote the set of
links connected to it. Let the sending data rate through
link l ∈Ls be xout

s,l , and all such sending data rates be
xout

s , [xout
s,l ]l∈Ls . We define the aggregate sending data

rate of s ∈ S be denoted by rs , ∑l∈Ls xout
s,l . Also, let

B , N \ (S ∪D) = {b1,b2, . . . ,bm} denote the set of
forwarding nodes contained in N . Given b∈B, let Ib be
the set of flows visiting node b, and Lb ⊆L denote the
set of links connected to it. Suppose L out

b,i ⊆Lb denote
the set of outgoing links from b associated with calls
(flows) of type i∈Ib. Similarly, let L in

b,i ⊂Lb denote the
set of incoming links to b associated with calls (flows) of
type i ∈ Ib. Furthermore, given b ∈B, for each i ∈ Ib
and l ∈L out

b,i , let xout
i,b,l denote the data rate of call type

i ∈Ib, associated with si and di, forwarded from node b
through link l ∈L out

b,i . The above notation is exemplified
in Fig. 1 for the case of allocating flows associated with
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Fig. 1. Notation example.

TABLE I
LIST OF NOTATION

Notation Desciption
N The set of nodes in the network.
S The set of source nodes.
B The set of forwarding nodes.

el(b) The node connected to node b through link l.
Ls (Lb) The set of links connected to node s (node b).

L out
b,i (L in

b,i ) The set of outgoing (incoming) links from (at) node b
for flows of type i ∈I .

I The set of different flow types.
Ib The set of flows visiting node b.

I out
b,l (I in

b,l ) The set of flows forwarded from (to) node b through link l.
rs The aggregate data rate of source node s.

xout
s,l The sending data rate of source node s ∈I through link l.

xout
s The vector consisting of xout

s,l for each link l ∈Ls.
xout

i,b,l The data rate of flows belonging to source node si
forwarded from node b through link l.

xout
b,l The vector consisting of xout

i,b,l for each type of flow i ∈I out
b,l .

two source nodes, s1 and s2, and two destination nodes,
d1 and d2.

Given b∈B and l ∈Lb, let I in
b,l ⊂I be the set of call

types forwarded to node b through link l, and I out
b,l ⊆Ib

be the set of call types forwarded from node b through
link l. Moreover, given node b ∈ B and link l ∈ Lb,
let el(b) denote the adjacent node to b through link l.
We summarize all the notation for the communication
network in Table I for the convenience of the reader.

Now, given node b ∈B, let the vector containing all
flow rates departing from node b through link l ∈Lb be
denoted by xout

b,l , [xout
i,b,l ]i∈I out

b,l
∈R

|I out
b,l |

+ , where |.| denotes
the cardinality of a set.

Given node b ∈B and l ∈Lb, let 1b,l ∈ R1×|I out
b,l | be

the row vector with all elements equal to 1. In a similar
way, let δb,l ∈R1×|I in

b,l | be the row vector with all elements
equal to 1 if link l is bidirectional, and 0 otherwise.

Also, let ∥.∥ denote the Euclidean norm. Given a
convex set A , let IA (.) denote the indicator function of
A , i.e., IA (ω) = 0 for ω ∈A and equal to +∞ otherwise,
and let PA (ω) , argmin{∥υ −ω∥ : υ ∈ A } denote the
projection onto A . Given a closed convex set A , we
define the distance function as dA (ω) , ∥PA (ω)−ω∥.
Also, In is the n×n identity matrix.
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III. Problem formulation

Consider a communication network consisting of a set
of source nodes S . Each source node s ∈S has a local
utility function Us(rs) : R+→ R+ of its sending data rate
rs. For a fixed order ℓ > 0, the utility function is defined
as a general non-concave polynomial-like function in the
form

Us(rs),
ℓ

∑
j=0

ps, j(rs)
j/ℓ. (1)

This particular form of objective functions is so flexible
that it can be used to approximate a wide variety of
functions arising in practical applications such as step
functions for the video streaming case [5].

The objective of this paper is to design a data rate
allocation algorithm for the communication network such
that the utilization of resources is maximized, while
satisfying the network resource constraints. The network
resource constraints considered in this paper include
link capacity constraints, Minimum Rate Guaranteed
and Upper Bounded Rate Service (MRGUBRS) require-
ments, and flow conservation constraints through nodes.

More precisely, for any link l ∈ L , the aggregated
flows going through this link should not exceed the link
capacity. For example, in Fig. 1, the bidirectional link
l3 is shared by flows belonging to two source nodes.
The data rates xout

1,b2,l3
and xout

2,b3,l3
going through this link

should satisfy that

xout
1,b2,l3 + xout

2,b3,l3 ≤ cl3 . (2)

For the unidirectional link l2, node b2 forwards data rate
xout

2,b2,l2
through this link. Then, xout

2,b2,l2
is upper bounded

by cl2 .
Given flows belonging to source node s ∈S and link

l ∈Ls, the corresponding data rate xout
s,l is determined

at source node s and multiple paths are available for
transporting these flows. More precisely, each node on
these paths divide incoming traffic into available links by
striving to conserve the flows belonging to each source
node (i.e., aims at no losses) and to avoid link congestion.
In Fig. 1, node b3 tries to satisfy

xout
1,b2,l3 = xout

1,b3,l4 + xout
1,b3,l7 . (3)

Finally, flows belonging to each source node s ∈S is
assumed to be of the MRGUBS category, i.e., for some
0 < ξs < ζs and s ∈S ,

ξs ≤ rs ≤ ζs. (4)

Now, considering the above constrains and assump-
tions, we can formulate the problem of optimal traffic
allocation as follows:

maximize ∑
s∈S

Us(rs), (5)

subject to the network capacity constraints 1

∑
i∈I out

b,l

xout
i,b,l + ∑

i∈I in
b,l

xout
i,el(b),l

≤ cl , l ∈Lb, b ∈B,

the flow conservation constraints at each node

∑
l∈L in

b,i

xout
i,el(b),l

− ∑
l̃∈L out

b,i

xout
i,b,l̃ = 0, i ∈Ib, b ∈B,

the non-negativity of forwarded data rates constraints

xout
i,b,l ≥ 0, i ∈Ib,l , l ∈Lb, b ∈B,

and the MRGUBS requirements

(xout
s , rs) ∈Xs, s ∈S ,

where the set Xs is defined as

Xs ,
{
(xout

s , rs)∈R|Ls|
+ ×R+ : ξs≤ rs≤ ζs, rs = ∑

l∈Ls

xout
s,l

}
.

Most literature in the context of NUM considers
maximizing concave diminishing functions. However,
modern communication networks are dominated by var-
ious inelastic applications, such as internet video and
audio streaming. Users’ satisfaction for these applications
cannot be modeled with concave functions. It is better
to be described as non-concave functions. For instance,
the utility for voice applications is a sigmoidal function
[7]. Thus, we consider users’ perceived qualification of
Cost of Service (CoS) and model the utility function
as a general class of non-concave polynomial functions.
Moreover, the challenges of attempting to solve the
resulting traffic allocation problem (5) are two-fold.
First, the optimization problem obviously constitutes a
non-convex problem since its objective function is non-
concave. Second, global information on fast timescale
events, as required in the above formulation, is not gen-
erally available. The latter fact stimulates the necessity
of developing a distributed algorithm that converges to
the optimal data rate allocation of the non-convex NUM
problem.

IV. Main results

In this section, we present our approach used to
overcome the challenges associated with optimal traffic
allocation. In particular, we first present a convex re-
laxation to the non-convex NUM problem (5). Then we
propose a distributed primal-dual algorithm (DPDA) for
solving the convex relaxation problem, and discuss the
suboptimality and feasibility of DPDA iterate sequence
with respect to the relaxed problem in the end.

1Note that the formulation in this paper allows for the existence
of bidirectional links.
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A. NUM convex relaxation
The following proposition provides a convex relaxation

to the non-convex NUM problem (5).
Proposition 1: The solution of the following optimiza-

tion problem converges to the solution of the non-
convex NUM problem (5) with non-concave user utility
functions of the form (1) as the positive parameter
α → ∞. Moreover, problem (6) is convex if α ≤ ℓ.

maximize
x ∑

s∈S
pT

s ms

subject to ms,0 = 1, s ∈S ,

M(0,α,ms)≽ 0, s ∈S ,

βsM(0,α−2,ms)−M(2,α,ms)≽ 0,

ms, j ≤ (rs)
j/ℓ, j ∈ {1, . . . ,α}, s ∈S ,

xout
s,l ≤ cl , l ∈Ls, s ∈S ,

1b,lxout
b,l +δb,lxout

el(b),l
≤ cl , l ∈Lb, b ∈B,

Bx = 0,

(xout
s , rs) ∈Xs, s ∈S ,

xout
b,l ≽ 0, l ∈Lb, b ∈B.

(6)
The objective function is a linear function of variables
ms = [ms, j] j∈{0,...,α} with parameters ps = [ps, j] j∈{0,...,α}.
The decision variable x of problem (6) is a vector
consisting of the data rate xout

s,l , rs and ms for each
s ∈ S , and the sending data rate xout

b,l , b ∈ B for
each l ∈ L . More precisely, the dimension of vector x
is ∑s∈S (|Ls|+α + 2) +∑b∈B ∑i∈Ib

|L out
b,i |. In the con-

straints, B ∈ R(∑b∈B |Ib|)×
(

∑s∈S (|Ls|+α+2)+∑b∈B ∑i∈Ib
|L out

b,i |
)

denotes the edge-node-like incidence matrix, i.e., the
entry B(s,b,l),ω , corresponding to flow-node-link triplet
(s,b, l) ∈S ×B×L and ω ∈ x, equal to 1 if the data
rate ω of flows belonging to source node s is forwarded
from node b through link l, −1 if the the data rate ω is
received at node b, and 0 otherwise. βs is a known upper
bound on the aggregate data rate of source s ∈S , and
the moment matrices M ∈ Rh+1×Rh+1 are of the form

M(k,k+2h,ms) =


ms,k ms,k+1 ... ms,k+h

ms,k+1
... ... ms,k+h+1

... ... ... ...
ms,k+h ... ... ms,k+2h

 . (7)

Proof: The proof is shown in [16].
Hereafter, we use α = ℓ. It is worth mentioning that

the result of Proposition 1 holds for the even order ℓ.
Nonetheless, similar results can be derived for the odd ℓ,
which is omitted for brevity. The proposed problem (6)
constitutes a convex optimization problem, because it
maximizes the sum of linear functions subject to convex
constraints. Therefore, it can be easily solved if global
information is available. However, the objective of this
paper is to solve this problem in a distributed fashion
that leverages per hop information available at each
node.

Before moving on, we introduce some notation that
renders the formulation of (6) conveniently compact. For
every s ∈S , let the set As be defined as

As = {(xout
s ,ms,rs) ∈ R|Ls|

+ ×Rℓ+1×R+ : ms,0 = 1,
M(0, ℓ,ms)≽ 0, βsM(0, ℓ−2,ms)−M(2, ℓ,ms)≽ 0,

xout
s,l ≤ cl , l ∈Ls,ms, j ≤ (rs)

j/ℓ, j ∈ {1, . . . , ℓ}, (xout
s , rs) ∈Xs}.

(8)

B. Algorithm DPDA
A primal-dual method is proposed by Chambolle and

Pock in [14] for solving convex-concave saddle point
problems. It can be adapted to solve the multi-agent
consensus optimization problem as discussed in [11]. We
will use the distributed primal-dual algorithm in [11] to
solve our traffic allocation problem (6). We present the
resulting iterative algorithm, i.e., DPDA, of which iterate
sequence converges to the solution of (6). The details of
developing DPDA can be found in [16].

Algorithm 1: DPDA
γ, [κb,l ]l∈Lb,b∈B, [τs]s∈S , [τi,b,l ]i∈I out

b,l ,l∈Lb,b∈B, [λ 0
b,l ]l∈Lb,b∈B,

xout,0
s = [xout,0

s,l ]l∈Ls , [r
0
s ]s∈S ,m0

s ,

xout,0
b,l = [xout,0

i,b,l ]i∈I out
b,l ,l∈Lb,b∈B

1 Initialization z0
s,l ← xout,0

s,l , ∀l ∈Ls, s ∈S ,
z0

i,b,l ← xout,0
i,b,l , ∀i ∈I out

b,l , l ∈Lb, b ∈B

2 for k ≥ 0 do
3 Each source node s ∈S updates its desired rate

by solving a convex semidefinite program.
(xout,k+1

s , mk+1
s , rk+1

s )← PAs

(
[xout,k

s,l − γτs(zk
s,l−

∑
l̃∈Lel (s)

zk
i,el(s),l̃

)]l∈Ls , mk
s + τsps, rk

s

)
4 Each forwarding node b ∈B updates its desired

sending data rate.
xout,k+1

i,b,l ← PR+

(
xout,k

i,b,l − τi,b,l(λ k
b,l + γ(zk

i,b,l +

uk
i,b,l−uk

i,el(b),l
)

)
,∀i ∈I out

b,l , l ∈Lb, b ∈B,

where uk
i,b,l = ∑

l̃∈L out
b,i

zk
i,b,l̃
− ∑

l̄∈L in
b,i

zk
i,el̄(b),l̄

and

uk
i,el(b),l

= ∑
l̂∈L out

el (b),i

zk
i,el(b),l̂

− ∑
l̆∈L in

el (b),i

zk
i,el̆(el(b)),l̆

5 Each link l ∈L updates its link price.

λ k+1
b,l ← PR+

(
λ k

b,l +κb,l(1b,l(2xout,k+1
b,l −xout,k

b,l )

+δb,l(2xout,k+1
el(b),l

−xout,k
el(b),l

)− cl)

)
,∀b ∈B

6 The following local variables are communicated
among neighboring nodes.
zk+1

s,l ← zk
s,l− xout,k

s,l +2xout,k+1
s,l ,∀l ∈Ls, s ∈S

zk+1
i,b,l ← zk

i,b,l− xout,k
i,b,l +2xout,k+1

i,b,l ,∀i ∈I out
b,l , l ∈

Lb, b ∈B
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The suboptimality and feasibility of the DPDA iterate
sequence can be bounded as in the following theorem.

Theorem 1: Given the communication network and
the convex optimization problem (6). Let ds > 0, s ∈
S and di,b,l > 0, i ∈ I out

b,l , l ∈ Lb, b ∈ B be given
(sufficiently large) constants. Recall that the decision
variable x of problem (6) is a vector consisting of the
data rate xout

s,l , rs and ms for each s∈S , and the sending
data rate xout

b,l , b ∈B for each l ∈L . Also recall that
vector variables λ ,θ are the dual variables associated
with the capacity constraints and the flow conservation
constraints at nodes, respectively. Let (x⋆,λ ⋆,θ ⋆) be
an arbitrary saddle-point for the Lagrange function
of problem (6), and {xk}k≥0 be the iterate sequence
generated using Algorithm DPDA, initialized from an
arbitrary x0 and [λ 0

b,l ]l∈Lb,b∈B = 0. Let the primal-dual
step sizes [τs]s∈S , [τi,b,l ]i∈I out

b,l ,l∈Lb,b∈B and γ be positive
constants satisfying the following inequalities

1
τs
− γ(4+ds)≥ 0, (9)

for all s ∈S , and
1

κb, l

(
1

τi,b,l
− γ(4+di,b,l)

)
≥ ml +1, (10)

for all i ∈ I out
b,l , l ∈ Lb,b ∈ N , where ml is the total

number of sources using link l to transport flows. Denote
the average of sending data rates by x̄K , 1

K

K
∑

k=1
xk,

where K ≥ 1. Then, {x̄K} converges to the maximum
of the utility function of the problem (6) subject to the
resource allocation constraints. In particular, the average
of the iterative sequence asymptotically converges to the
feasible solution, i.e.,

∥θ ⋆∥∥Bx̄K∥+ ∑
b∈B

∑
l∈Lb

∥λ ⋆
b,l∥h(x̄out

b,l , x̄out
el(b),l

)≤ Θ1

K
,∀K ≥ 1.

(11)
It also asymptotically maximizes the utility function of
the problem (6), i.e.,

| ∑
s∈S

pT
s (m̄s−m⋆

s )| ≤
Θ1

K
,∀K ≥ 1, (12)

where h(x̄out
b,l , x̄out

el(b),l
) denotes the distance

function dR−(1b,l x̄out
b,l + δb,l x̄out

el(b),l
− cl), and Θ1 ,

2
γ ∥θ

⋆∥2 − γ
2∥Bx̄0∥2 + ∑b∈B ∑l∈Lb

(∑i∈I out
b,l

1
2τi,b,l

(xout,⋆
i,b,l −

xout,0
i,b,l )2+ 1

2κb,l
(λ ⋆

b,l)
2)+∑s∈S

1
2τs

(∥m⋆
s −m0

s∥2+(r⋆s −r0
s )

2+

∑l∈Ls(x
out,⋆
s,l − xout,0

s,l )2).
Proof: The proof is presented in [16].

Remark 1: Algorithm DPDA is a fully distributed
traffic allocation algorithm. Firstly, the step-size pa-
rameters are decided without requiring any global in-
formation, which follows from (9) and (10). Secondly,
in steps 3 and 4, it enables all nodes to update their
sending data rates in parallel. Each node solely uses
immediate information from its neighboring nodes to

perform all computations. Thirdly, in step 5, the link
price λ k+1

b,l , l ∈Lb, b ∈B can be updated at both end
points that this link connects, which just uses their local
information. Finally, the variables zk+1

s,l , l ∈ Ls, s ∈ S

and zk+1
i,b,l , i ∈ Ib,l , l ∈ Lb, b ∈ B are local variables

respectively introduced for each source node and each
forwarding node.

Remark 2: It follows from inequalities (11) and (12)
that DPDA converges at the rate of O(1/K), where K is
the number of iterations.

Remark 3: If the problem (6) has a unique solution,
then the sequence of sample averages converges to that
solution.

V. Simulation results
In this section, we present some simulation results

which exemplify the behavior of the proposed algorithm,
i.e., Algorithm DPDA. The simulations show that the
final data rate allocation results in a value of the utility
function barely distinguishable from the optimal one.

We consider the network model shown in Fig. 2, where
we also show all the links’ bandwidths, and source-
destination pairs. The network model allows for multiple
paths available for flows belonging to each source node.
We consider a total of 8 different combinations of
source/destination nodes. Moreover, we list the pre-
scribed next hops for all forwarding nodes bi, i = 1, . . . ,8,
in Table II. For example, the upper left cell means that
node b1 forwards the data of source s1 to nodes b2 and
b7.

The objective throughout the simulation is to max-
imize the sum utility of source nodes, where source
si, i = 1, . . . ,8, has the utility function given by

Usi(rsi) =1.763(rsi)
1/6−20.718(rsi)

2/6 +88.568(rsi)
3/6

−169.102(rsi)
4/6 +145.167(rsi)

5/6−44.677(rsi)
6/6.

Usi(rsi) is a step-like non-concave polynomial-like func-
tion. We consider to optimize a step-like non-concave
function, because it is more likely to describe the video
quality perceived by a user in a video streaming appli-
cation [5]. Moreover, we obtain the resource constraints
information from Fig. 2 and Table. II, and impose the
lower and upper bounds on the aggregate data rate of
each user as ξsi = 0 and ζsi = 10, i = 1, . . . ,8, respectively.

Given the network topology shown in Fig. 2, we choose
the step-size parameters to satisfy the convergence con-
dition set forth by Theorem 2. All step-size parameters
are chosen locally using local information. Fig. 3 shows
the performance of Algorithm DPDA for these step-
size parameters. It can be seen that the utility function
converges to the optimal one, which is obtained by using
Genetic Algorithm while assuming the availability of
global information. Although all the computations of
DPDA are performed locally at each node, it attains
almost the same network utility obtained by a centralized
optimization algorithm. This implies that the iterate
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Fig. 2. Topology of the communication network.

TABLE II
ROUTING DECISIONS BY SOURCE NODES OF FLOWS

b1 b2 b3 b4 b5 b6 b7 b8
s1 b2,b7 b7,b8 b4 d1 – – b8 b3,b4

s2 b2,b7 b7,b8 – – d2 – b5 b5,b7

s3 b2,b7 b7,b8 b4 d3 – – b8 b3,b4

s4 b2,b7 b7,b8 – – d4 – b5 b5,b7

s5 b7 b1,b7,b8 b4,b8 b8 b7 d5 b6 b5,b7

s6 b7 b1,b7,b8 b4,b8 b8 b7 d6 b6 b5,b7

s7 b2,b7 d7 – – – – b2,b8 b2

s8 b2,b7 b7,b8 b4 d8 – – b8 b3,b4

sequence of Algorithm DPDA can indeed converge to
the optimal traffic allocation.

Fig. 4 shows the representative data rate trajectories
for MRGUBS flows belonging to source nodes s3 and s4.
Both data rate sequences are generated by DPDA. It can
be seen from Fig. 4 that the MRGUBS requirements are
satisfied.

VI. Conclusions and directions for future research

In this paper, we proposed a distributed traffic alloca-
tion algorithm, i.e., DPDA, to allow distributed optimal
traffic engineering in a connectionless autonomous net-
work. DPDA is distributed and converges at a O(1/K)
rate, where K is the number of iterations. Moreover,
numerical simulation results showed that the behavior
of DPDA mimics the optimal traffic distribution.

The results presented in this paper are just the first
step towards the implementation of an optimal fast
distributed algorithm for traffic engineering. There are
many issues that need further consideration. In particu-
lar, efforts should be put on testing the implementation
in large-scale network settings.
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