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Abstract—SLO enforcement with the required strong SLO compliance and the desired low level of performance variability is
necessary to ensure QoS for user applications with precisely differentiated service levels. However, for the cloud consolidating a large
number of VMs rented by users, it is a great challenge to formulate an IO capacity allocation among consolidated VMs under the
user-customized QoS constraints of SLO compliance and performance fluctuation for consolidated VMs. To address this challenge, we
propose SASLO, an end-to-end VM-oriented control framework that supports users in customizing SLO targets and QoS constraints
for each VM. SASLO can dynamically coordinate the throughput target and IO size limit for each VM adapting to the status of SLO
enforcement so as to maximize the IO capacity allocation among consolidated VMs under QoS constraints. To accurately enforce
time-varying throughput target, SASLO establishes a proportional-integral IO controller for each individual VM to converge the actual
throughput to the target with an expected settling time. Our extensive evaluation driven by representative benchmarks demonstrates
that SASLO is able to formulate a satisfactory IO capacity allocation plan for consolidated VMs under the constraints of SLO
compliance and performance variability.

Index Terms—Quality of Services, Service-Oriented Enterprise Management, Solution-Level QoS Framework.
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1 INTRODUCTION

A Cloud system can be regarded as an Internet-scale and
service-based software system since the number of

VMs accommodated in the cloud can be scaled up and each
VM will be specified by one or more service level objects
(SLOs) according to the demands of users. However, it is
with regret that the existing cloud systems are not able to
provide the programmable interface supporting the storage
IO sharing among consolidated VMs under the constraints
of SLO compliance and performance fluctuation for each
VM. Thus, SLO enforcement may be compromised, which
in turn adversely affects user experiences.

For storage, the IO capacity allocation for consolidated
VMs can be expressed in terms of throughput allocation and
IO size limit for each VM, which are two key factors influ-
encing the SLO compliance and performance fluctuation.
The critical technique for optimizing the IO capacity allo-
cation is to dynamically coordinate throughput allocation
and IO size limit for each VM based on tracking the status
of SLO enforcement. This control is built on a very simple
assumption: we assume reducing IO throughput and IO
size alleviates the IO contention for the storage device. This
makes sense since the storage device load can be reduced
when the IO requests arrive at a slow speed with decreased
IO size that reduces request service time. Thus, performance
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variability can be alleviated and SLO compliance can be
more easily met by the storage device with lower load. This
scenario here involves a trade-off between the IO capacity
allocation and the QoS constraints in terms of required SLO
compliance and the desired level of performance variability.
We can optimize this trade-off so as to let users receive IO
capacity as high as possible under these QoS constraints.

However, to meet the QoS constraints, the storage IO
capacity allocation among consolidated VMs is commonly
unfixed since system throughput fluctuates [1]. The opti-
mization procedure of the IO capacity allocation plan can
be expressed as two time-varying series of throughput SLO
target and IO size limit for each individual VM. Thus,
there are two challenges we must face: 1) the dynamic
enforcement for time-varying throughput SLO needs a type
of SLO enforcement with the properties of stability and
accuracy (i.e., stable and accurate SLO enforcement). Stability
refers to the goals of the actual performance being able to
converge to a given value (i.e., steady-state value) with an
expected settling time while accuracy means that the steady-
state value is adequately close to the target specified in SLO.
If these properties can be satisfied in the SLO enforcement of
each individual VM, cloud system can accurately and stably
enforce multiple time-varying SLO series formulated by the
IO capacity allocation plan for consolidated VMs. 2) it is
difficult but necessary to bound the highly variable IO size
for each individual VM that can significantly impact SLO
enforcement.

For the first challenge, variable IO characteristics (i.e.,
request size, IO rate, etc.), the IO contention among VMs
and unstable IO capacity provided by the storage back-end
make it very difficult to support stable and accurate SLO
enforcement of VM throughput performance. Existing IO
control techniques adopted in the state of the arts [1–4]
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basically lack a valid mechanism to ensure the properties
of stability and accuracy under VM consolidation environ-
ment. In addition, it is nontrivial to discriminatively bound
IO size fluctuation for each individual VM.

To address the above challenges, we propose a frame-
work guaranteeing Stable and Accurate SLO enforcement,
SASLO, to establish a proportional-integral (PI) controller,
adopted from the control theory [5], to adjust the IO rate
limit adapting to the performance error in an end-to-end
VM-oriented fashion. PI control is a type of feedback con-
trol that combines the advantages of proportional control
and integral control to ensure a zero deviation with an
expectable convergence duration. SASLO can configure the
PI controller automatically for each individual VM to ensure
fast convergence for IO rate control. SASLO also constructs
an IO split controller for each VM, which can be triggered to
split a larger request into smaller ones by tracking the surge
of IO latency. In this way, the probable penalty incurred
by larger IO requests to SLO enforcement can be reduced.
Based on the VM-oriented end-to-end PI controller and IO
split controller, SASLO is able to automatically optimize
the throughput allocation and IO size limit, which are the
parameters configured for the PI controller and IO split
controller of each consolidated VM respectively, under the
constraints of SLO compliance and performance fluctuation.
Thus, a satisfactory trade-off between high utilization of
underlying storage devices and storage QoS can be made.
This is desirable by both cloud service providers and users.

In contrast to the prior works in the context of SLO
enforcement of VMs accessing shared storage resources, we
believe that SASLO is the first approach that is able to optimize
storage IO capacity allocation under the user-customized QoS
constraints in terms of required ranges of SLO compliance and
performance variability. We develop SASLO prototype in a
small-scale cloud consisting of a cloud-computing server
and a group of heterogeneous storage servers based on
a 16-disk RAID0 and a SSD respectively. Our prototype
evaluation shows that SASLO is able to make a satisfactory
IO capacity allocation plan for consolidated VMs under
user-customized QoS constraints.

The rest of the paper is organized as follows. Section 2
motivates the SASLO research and then review the related
works. The architecture and design of SASLO are described
in Section 3. Section 4 presents the implementation chal-
lenges. Detailed performance evaluation SASLO on a real
system is presented in Section 5. We conclude the paper in
Section 6.

2 RELATED WORK

This paper focuses on SLO-Based storage sharing for the
VM consolidation environment that is widely adopted in
enterprise data centers or the cloud.

Storage Virtualization for VMs: Techniques for device
emulation [6–8] can virtualize physical storage devices into
multiple virtual disks of which each is dedicated to a specific
VM. In addition, direct device access [9] can enable VM
to achieve near-native performance by reducing the virtu-
alization cost. MultiLanes [10] further improves the level
of IO isolation among co-scheduled VMs by reducing the
cost of contention on the data structure and locks in the

kernel. In contrast, SASLO establishes IO controllers for
each individual VM based on the device emulation of the
Xen hypervisor [7, 11]. Our work is designed to optimize
the IO capacity allocation for consolidated VMs under the
constraints of SLO compliance and performance fluctuation,
which is complementary and orthogonal to the previous
works of storage virtualization for VMs.

IO Rate Control: IO rate control is critical for storage
SLO enforcement. Façade [12], mClock [1] and SRP [2] use
time-stamp based IO control; Pisces [3] adopts deficient
round robin (DRR) [13] to perform IO scheduling; PARDA
[4] uses the start-time fair queuing (SFQ) scheduler [14] to
schedule VMs on the same host. SARC [15] is based on the
leaky bucket technique [16], but allows the dispatched IO
rate to be higher than SLO for high utilization.

Time-stamp based IO control refers to scheduling re-
quests in the order of their time stamps, which has been
adopted by many proposals [17–20]. mClock [1] condition-
ally alternates multiple time-stamp based IO controllers to
enforce max-min fair share among concurrently running
VMs. Leaky bucket [16] carries out IO throttling according
to the SLO requirement. These two types of IO control
algorithms are not able to eliminate the performance error
caused by the IO rate fluctuation. While DRR [13] can
reduce the performance deviation from the SLO target, it
does not guarantee performance convergence to the target.
In contrast, SASLO adopts proportional-integral (PI) control
[21] in its SLO enforcement engine (SEE) that is established
for each individual VM and carefully configures the PI con-
troller in an end-to-end fashion to achieve the convergence
and near-zero performance error in a feedback control loop.

SLO-Based Storage Sharing: The existing approaches
to SLO-Based storage sharing can be broadly divided into
three categories. The first is the class of approaches that
support proportional sharing, such as PARDA [4], Argon
[22], Aqua [23], Fahrrad [24] and SFQ(D) [14]. However,
proportional-sharing based solutions cannot provide per-
formance guarantees directly for a specific metric (e.g., the
throughput in IOPS and the bandwidth in MB/s). The sec-
ond is the class of algorithms supporting max-min fairness,
such as mClock [1], SRP [2] and Pisces [3]. The third is
the class of solutions that provide guarantees for latency-
sensitive applications, such as Façade [12] and Avatar [15],
which seek a trade-off between latency and throughput by
IO queue size adjustment. SRP [2], based on mClock [1], can
group related VMs into hierarchical pools and support IO
throughput allocation at both the VM level and VM group
level. Pisces [3] enables the sharing of key-value storage
with max-min fairness on a per-tenant basis. IOFlow [25]
supports high-level end-to-end policies at the VM or VM
group level.

However, all these approaches lack a valid mechanism
to guarantee the desired levels of SLO compliance and
performance fluctuation for SLO enforcement under the
consolidated VM environment. In contrast, SASLO is able
to optimize storage IO sharing among consolidated VMs
under the constraints of SLO compliance and performance
fluctuation, which can potentially provide a SLO enforce-
ment with strong compliance and stability.
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Fig. 1: The architecture of SASLO.

3 ARCHITECTURE AND DESIGN

SASLO is designed for the cloud consisting of cloud-
computing servers supported by storage servers. The
cloud-computing servers provide a shared utility-
computing infrastructure for tenants by encapsulating
the user applications into VMs. Storage servers each
involve one or more storage devices (e.g., disk array or
SSD). Each storage device can be partitioned into several
logical units (LUNs) of which each accommodates one
or more the virtual disks (i.e., large image files) that
are dedicated to VMs. Thus, all the VMs in the cloud-
computing servers can share the storage devices connected
over a storage area network (SAN). For brief, in this paper,
the VMs supported by the same storage server are called as
consolidated VMs.

SASLO views the underlying multi-layer IO stack (e.g.,
in network infrastructure and storage server) for a VM as
a black box. The SLO enforcement engine (SEE) of SASLO
implements VM-oriented feedback IO control adapting to
the actual measured storage performance impacted by both
network transfer and storage services. In so doing, SASLO
can associate multi-resource (i.e., storage IO capacity and
network bandwidth) with the real-time SLO enforcement
for consolidated VMs. To facilitate our presentation of the
design and architecture of SASLO, we first define and
quantify the terms stability and accuracy in the context of
SLO enforcement next.

3.1 Stability and Accuracy of SLO Enforcement

To quantify the accuracy of SLO enforcement, we firstly
define performance error (E) as:

E = 100 ∗ (Pactual − PSLO)/PSLO% (1)

where Pactual is the actual performance and PSLO refers
to the target specified in SLO. To support accurate SLO
enforcement, we define SLO compliance as the performance
error (E) falling in the allowable range of [−δ1%, δ2%]
and the probability of SLO compliance is called the SLO
compliance rate (SC rate), which can be expressed by the
following formula:

SC rate = Pr[−δ1% ≤ E ≤ δ2%] (2)

where the values of δ1 and δ2 determine the extent
of the allowable ranges for SLO compliance. Considering

the amount of IO capacity can fluctuate widely for storage
device (e.g., disk array) [1], we adopt the value of 10 for δ1
and δ2, which can be customized on demand.

In addition, we define performance fluctuation ratio (PF
ratio) as the ratio of the standard deviation of the actual
performance values measured during a period of time T to
the target value in SLO, defined as:

PF ratio = 100 ∗ SD(Pactual(k))

PSLO
% (3)

where Pactual(k) is the kth actual performance value
measured in the period of T , PSLO is the target value in
SLO. Obviously, the smaller the value of the performance
fluctuation ratio is, the less the performance fluctuation will
be. We use the PF ratio to quantify the stability of SLO
enforcement.

3.2 The Architecture of SASLO
As shown in Figure 1, SASLO consists of a communication
layer (COM), an SLO enforcement engine (SEE) and an au-
tomated optimization tool (AOT), where COM and SEE are
deployed on each cloud-computing server while AOT runs
on each storage server. COM adds a layer of abstraction
for the SLO enforcement protocol between the users and
the service provider on each hypervisor. This abstraction
simplifies the interface between the two in that each user
simply sets their required SLO for their VM group and COM
then places the SLO setting on the machines hosting the
VM group. In addition, COM is responsible for transmitting
the status of SLO enforcement in terms of SC rate and
PF ratio obtained from the VMs required by AOT. Based
on collecting the status of SLO enforcement from COM,
AOT optimizes the IO capacity allocation among the VMs
supported by the same storage server to guarantee that
the current SLO targets of these VMs be feasible according
to the required level of SLO compliance and performance
fluctuation. Optimized SLO targets will be fed back by
AOT to SEE that is in charge of SLO enforcement for each
VM. Specifically, SASLO will construct one or more SEE for
each individual VM to guarantee the convergence of SLO
enforcement and near-zero performance error as well as
bound the highly variable IO size for each VM.

SASLO provides a simple API for tenants to customize
their SLO targets in terms of the allowable ranges of
throughput and IO size limit as well as the QoS constraints
in terms of the acceptable ranges of SC rate and PF ratio
for each VM. As shown in Table 1, the first function is used
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Fig. 2: An illustration of the SLO enforcement engine (SEE) in SASLO.

to set the allowable range of throughput SLO target for the
VM tagged with d where the lower bound is the reservation
and the upper bound is the limit. The second function is
used to set the acceptable range of IO size limit for the VM
tagged with d. IO size limit is the upper bound of the IO size
exceeding which a request will be considered as oversize
and liable to block the execution of other requests and thus
be split into several smaller ones than the IO size limit.
The third and fourth functions are used to set the desired
range of SC rate and PF ratio for the VM tagged with d.
Status of SLO enforcement can be obtained by invoking the
fifth function listed in Table 1 that can transmit the newly
updated SC rate and PF ratio measured for the VM tagged
with d to the caller.

# API

1
set Throughput (VM id d, LB r, UB u)
set the lower and upper bounds of throughput at r and
u respectively for the VM identified by d

2
set IOsize (VM id d, LB r, UB u)
set the lower and upper bounds of IO size limit at r and
u respectively for the VM identified by d

3
set SC (VM id d, LB r, UB u)
set the lower and upper bounds of SC rate at r and u
respectively for the VM identified by d

4
set PF (VM id d, LB r, UB u)
set the lower and upper bounds of PF ratio at r and u
respectively for the VM identified by d

5
get Status (VM id d)
get the running status in terms of SC rate and PF ratio
for the VM identified by d

TABLE 1: SASLO’s API for users to customize SLO targets and QoS

constraints

As illustrated in Figure 1, a user denoted by User1
rents two VMs (denoted by VM1, VM2), where VM1 is
deployed on the host Cloud−computing server1 and VM2

is running on the host Cloud−computing serveri. The user
prescribes the SLO targets and QoS constraints for VM1

and VM2 by the API provided by SASLO. Specifically, the
lower and upper bound of throughput SLO for VM1 are
400 IOPS and 600 IOPS respectively while 600 IOPS and
800 IOPS are configured for VM2. The lower and upper
bound of IO size limit for VM1 are 12 KB and 32 KB

respectively while 16 KB and 44 KB are set for VM2. The
lower and upper bound of SC rate for VM1 are 80 % and
90 % respectively while 85 % and 90 % are set for VM2.
The lower and upper bound of PF ratio for VM1 are 10
% and 15 % respectively while 5 % and 10 % are set for
VM2. Once the user sets their required SLO targets and
QoS constraints, COM will place these settings on the ma-
chines hosting the VM group, including the corresponding
cloud-computing servers (e.g., Cloud− computing server1
and Cloud − computing serveri) and storage servers (e.g.,
Storage server1 and Storage server2). And AOT deployed
on these two storage servers will optimize the IO capacity
allocation among consolidated VMs including VM1 and
VM2 based on the SEE dedicated to each individual VM.

3.3 SLO Enforcement Engine
The SLO enforcement engine is in charge of SLO enforce-
ment by an end-to-end IO rate and IO split control mech-
anism for each VM. As shown in Figures 2, SEE establish-
es two resource controllers and two resource limiters for
each running VM. The two resource controllers include a
proportional-integral (PI) controller and an IO split con-
troller each of which drives the corresponding resource
limiter (i.e., IO rate limiter or IO size limiter).

3.3.1 Resource Limiter
The storage resource allocation of IO rate and request size
is facilitated by the corresponding resource limiters, i.e., IO
rate limiter and IO size limiter.

SASLO adopts the strategy of the time-stamp assignment
proposed in mClock [1], but only uses one time-stamp for
each request. The time-stamp T q

i assigned to a request q
from VMi, the larger of the sum of the previous time-stamp
T q
i −1 and 1/ ˆRatei and the arrival time, can be expressed as:

T q
i = max(T q−1

i + 1/ ˆRatei, Arrival time) (4)

The IO rate limiter for VMi controls the interval between
two consecutively scheduled requests by adjusting ˆRatei,
where ˆRatei is the target value of IO throughput. A higher
value of ˆRatei means that VMi will have a higher IO
throughput. Ideally, by keeping the arrival IO rate higher
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than or equal to ˆRatei and adequate capacity allocated for
VMi, VMi achieves the IO throughput of ˆRatei.

The IO size limiter enforces the upper bound on the IO
size seen by the device through setting request-merge limit,
which is the upper bound on the IO size after requests are
merged. If the sum of IO sizes of two merge-able requests is
larger than the request-merge limit, the request merge will
not be performed.

3.3.2 PI Control Model
We use proportional-integral (PI) control, adopted from the
control theory [21], to make the actual IO throughput con-
verge to the target specified in the SLO. PI control depends
on a feedback control that needs to know the impact of the
system input on the system output. As shown in Figure 2,
the system output ri(k) is the function of the system input
ui(k), i.e., ri(k) = f(ui(k)), and the arrival IO rate of VMi

is limited by ri(k). We adopt the autoregressive moving-
average (ARMA) model [21] to capture the effect of the
system input ui(k) on the system output ri(k), that is :

ri(k + 1) = ak
i × ri(k) + bki × ui(k) (5)

in which aki and bki are parameters of the ARMA model
[21] and ri(k) and ui(k) are the IO rate limit of VMi at
the kth interval and the variation in ri(k) respectively. The
values of the parameters aki and bki can be dynamically
determined by the least-squares algorithm [21]. Ideally, the
actual throughput at the kth interval Thi(k) is equal to ri(k)
and Thi(k+1) can be increased by the value of ui(k). Thus,
aki and bki can be set at 1. In practice, the IO interference
among co-scheduled VMs can make the actual throughput
of a VM deviate from the control target set by the ARMA
model, especially when the IO throughput target of the VM
is infeasible under the available storage capacity provided
by the storage utility.

The IO rate controller adopts PI control to dynamically
coordinate the system input ui(k) so that the actual IO
throughput can converge to the desired value in SLO. This
is essential to guarantee the accuracy of SLO enforcement.
As shown in Figure 2, the system input ui(k) consists of a
proportional term uP

i (k) and a integral term uI
i (k) that are

derived from the error ei(k) between the actual throughput
Thi(k) and the SLO target ThSLO

i . uP
i (k), u

I
i (k) and ui(k)

can be expressed as [21]:

uP
i (k) = CP × ei(k) (6)

uI
i (k) = uI

i (k − 1) + CI × ei(k) (7)

ui(k) = uP
i (k) + uI

i (k) (8)

To conveniently analyze the PI controller, we describe
the system in the frequency domain (i.e., z-domain). As
shown in Figure 2, we assume that Ui(z) and Ri(z) are the z-
domain representations [21] of ui(k) and ri(k) respectively.
As the time domain representations, ui(k0) and ri(k0) are
the values of ui(k) and ri(k) at time k = k0, which are the
coefficients of the z term z−k0 in Ui(z) and Ri(z) respec-
tively. In this way, ui(k) and ri(k) can be encoded as the co-
efficients of the z terms in Ui(z) and Ri(z). To further study
the PI controller in the control theory, we need to derive

its transfer function that is defined as Gi(z) = Ri(z)/Ui(z).
Based on the formula 5, Gi(z) can be derived as follows:

Gi(z) =
bki

z − ak
i

(9)

Assuming si(k) as the desired throughput in the SLO at
the kth interval and Si(z) as the z-domain representation
of si(k), the closed loop transfer function can be defined as
Fi(z) = Ri(z)/Si(z), that is:

Fi(z) =
[(CP + CI)× z − CP ]×Gi(z)

(z − 1) + [(CP + CI)× z − CP ]×Gi(z)
(10)

Further, assuming that the system input si(k) is a step
change, the steady-state error 1 Ess can be expressed as:

Ess = lim
k→∞

(si(k)− ri(k)) (11)

where the steady-state value of ri(k) is the system out-
put when the time is infinite. Based on Formula 10 and the
final value theorem of Z-transforms [21], we have:

Ess = lim
z→1

(z − 1)(Si(z)−Ri(z))

= lim
z→1

(z − 1)2 × (z − ak)× Si(z)

z2 + [(CP + CI)× bki − (1 + ak
i )]× z + ak

i − CP × bki
(12)

According to Formula 12, PI control can have a zero
steady-state error if the closed-loop system is stable.

Stability Consideration: The stability of a feed-back
controller has a significant impact on the systems ability to
converge to the target over time. According to the stability
theorem of the control theory [21], the closed-loop system
represented by Fi(z) is stable if and only if the poles of
Fi(z) are inside the unit circle, which indicates the stability
boundary in the complex coordinate plane. More specifical-
ly, for the PI controller of SASLO, the poles of Fi(z) are the
roots of the denominator of Fi(z) that can be obtained by
solving the following equation:

z2 + [(CP + CI)× bki − (1 + ak
i )]× z + ak

i − CP × bki = 0
(13)

Where CP and CI are determined according to the
demands for settling time and maximum overshoot 2.

Settling Time: Settling time is the time it takes for the
feedback control to reach the steady-state value for the
purpose of convergence to the target. Shortening the settling
time makes the controller more responsive.

In the PI controller of SASLO, we define the settling time
as St and the maximum overshoot as Mo. To obtain the
poles, we can change Formula 13 to (z− p1)× (z− p2) = 0.
If p1 is a dominant pole 3 and expressed as a complex with
the magnitude r and the angle θ, Mo is given as rΠ/|θ|

[21]. In addition, to describe the settling time St, we first
define a criterion of c% for convergence, which means that
the feedback control reaches its steady-state value if the
variation of the actual IO throughput lies within the c%

1. Steady-state error refers to the difference between the steady-state
value and the SLO target.

2. Maximum overshoot refers to the largest error between the actual
performance and the steady-state value.

3. Dominant pole is the pole with the largest magnitude and deter-
mines the transient response of the feedback control.
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(e.g., 2%) of the difference between the SLO target and the
throughput obtained when the SLO is set. The settling time
can thus be expressed as log(c/100)/ log r [21]. In this way,
we can obtain the values of r and θ by setting the desired
Mo (e.g., 10% of the throughput target) and St (e.g., 5 time
epoches). And then, we have the value of p1. Further, CP

and CI can be resolved based on Formula 13 only if |z| < 1
is true.

3.3.3 IO Split Control
The IO split controller is responsible for reducing the neg-
ative impact of large requests on the accuracy and stability
of the SLO enforcement. The reduction in IO size by the
IO split controller can decrease the number of bytes read
or written for the same number of requests. As shown in
Figure 2, the requests issued by VMi smaller than the IO
size limit SiSLO

i will not be split. Moreover, the IO split
controller only performs the necessary IO split by tracking
the change in IO latency measured over the last two consec-
utive intervals. If the increase in IO latency surpasses a prior
determined allowable range, implying that requests may be
severely queued or even blocked, then the IO size limiter
will be triggered.

3.4 Automated Optimization Tool
The core idea of AOT is to recommend the appropriate
values of SLO targets (i.e., ThSLO

i and SiSLO
i ) for the

consolidated VMs (i.e., VMi, 1 ≤ i ≤ N ) as the inputs to
the SEE dedicated to each individual VM according to its
user-customized QoS constraints.

For the parameter ThSLO
i , we use the algorithm of

throughput SLO coordination to seek appropriate values for
all the consolidated VMs supported by the same storage
server. As lineated in Algorithm 1, the inputs to the algo-
rithm consist of the current throughput SLO targets (i.e.,
ThSLO

i , 1 ≤ i ≤ N ), SC rates and PF ratios derived for
all the concurrent VMs over last fixed-length interval TR

(i.e., Ci and Fi, 1 ≤ i ≤ N ) and the acceptable ranges
of throughput SLO, SC rate and PF ratio specified in the
SLO targets and QoS constraints for each VM. Throughput
SLO coordination will try to improve the value ThSLO

i , of
course within the acceptable range of throughput SLO, on
the premise that the SC rate of each consolidated VM (i.e.,
Ci, 1 ≤ i ≤ N ) is larger than the upper bound of the
acceptable range of SC rate (i.e., C ′′

i ) and simultaneously
the PF ratios of each consolidated VM (i.e., Fi, 1 ≤ i ≤ N )
is smaller than the lower bound of the acceptable range of
PF ratio (i.e., F ′

i )). However, if the minimum requirements
for SC rate or PF ratio of one or more VM cannot be met
(i.e., there are one or more consolidated VMs each of which
obtains an actual SC rate smaller than the lower bound of
the acceptable SC rate range or an actual PF ratio larger
than the upper bound of the PF ratio range), the throughput
SLO targets of consolidated VMs will be reduced as long as
each newly reduced throughput SLO target is larger than
or equal to the lower bound of the throughput SLO range.
The decrement or increment of ThSLO

i at a time is ∆R

that is set at 10% the range size of throughput SLO (i.e.,
(Th′′

i −Th′
i) ∗ 10%) as default in the following experiments.

The algorithm of IO size limit coordination, as lineated in
Algorithm 2, is used to make a better trade-off between IO

Algorithm1: Throughput SLO Coordination (30 seconds level)

Require: The SC rate (Ci) and PF rate (Fi) obtained for VMi and the IO size 

limit (Sii

SLO ) set for VMi; The acceptable SC rate range [Ci
’, Ci

’’] and PF rate 

range [Fi
’, Fi

’’] and the range of IO size limit [Sii
’, Sii

’’] customized for VMi.
 

 

1.   /*Initialization*/ 

2.   for i in [1, N] do 

3.      Sii

SLO
 = Sii

’ 

4.   /*Main loop continues only if at least one VM running*/ 

5.   while N > 0 do 

6.       /*The constraints for decreasing Sii

SLO */ 

7.       if ∃i, Ci < Ci
’ or Fi > Fi

’’ and ∃i, Sii

SLO
 ≥ Sii

’
 + ∆S  then 

8.          for i in [1, N] do 

9.              if Sii

SLO
 ≥ Sii

’
 + ∆S  then 

10.                /*Reducing the cost incurred by larger request size*/ 

11.                Sii

SLO
 = Sii

SLO
−  ∆S   

12.      /*The constraints for increasing Sii

SLO  */ 

13.      if ∀i, Ci > Ci
’’ and Fi < Fi

’ and ∃i, Sii

SLO
 ≤ Sii

’’
− ∆S  then 

14.         for i in [1, N] do 

15.             if Sii

SLO
 ≤ Sii

’’
− ∆S  then 

16.                /*Increasing Sii

SLO
 for a larger request size */ 

17.                Sii

SLO
 = Sii

SLO
+  ∆S   

18.      /* Warning triggered by the current status of SLO enforcement */ 

19.      if ∃i, Ci < Ci
’ or Fi > Fi

’’ and ∀i, Sii

SLO
 < Sii

’
 + ∆S  then 

20.         Warning with unexpected Ci or Fi 

Algorithm2: IO Size Limit Coordination (5 minutes level)

Require: The SC rate (Ci) and PF rate (Fi) obtained for VMi and the IO 

throughput SLO (Thi
SLO) for VMi; the acceptable SC rate range [Ci

’, Ci
’’], PF 

rate range [Fi
’, Fi

’’] and throughput SLO range [Thi
’, Thi

’’] customized for VMi.
 

 

1.   /*Initialization*/ 

2.   for i in [1, N] do 

3.      Thi
SLO

 = Thi
’ 

4.   /*Main loop continues only if at least one VM running*/ 

5.   while N > 0 do 

6.       /*The constraints for decreasing Thi
SLO */ 

7.       if ∃i, Ci < Ci
’ or Fi > Fi

’’ and ∃i, Thi
SLO

 ≥ Thi
’ + ∆R  then 

8.          for i in [1, N] do 

9.              if Thi
SLO

 ≥ Thi
’ + ∆R  then 

10.                Thi
SLO = Thi

SLO – ∆R   

11.      /*The constraints for increasing Thi
SLO */ 

12.      if ∀i, Ci > Ci
’’ and Fi < Fi

’ and ∃i, Thi
SLO

 ≤ Thi
’’
− ∆R  then 

13.         for i in [1, N] do 

14.             if Thi
SLO

 ≤ Thi
’’ − ∆R  then 

15.                Thi
SLO

 = Thi
SLO + ∆R   

16.      /*Warning triggered by the current status of SLO enforcement*/ 

17.      if ∃i, Ci < Ci
’ or Fi > Fi

’’ and ∀i, Thi
SLO

 < Thi
’ + ∆R  then 

18.         Warning with unexpected Ci or Fi 

size and the corresponding cost on the accuracy and stability
of SLO enforcement. Similar to the logic of throughput SLO
coordination, if the actual SC rate of each consolidated VM
(i.e., Ci, 1 ≤ i ≤ N ) is larger than the upper bound of the
corresponding SC rate range (i.e., C ′′

i ) and simultaneously
the actual PF ratio of each consolidated VM (i.e., Fi, 1 ≤ i ≤
N ) is smaller than the lower bound of the corresponding PF
ratio (i.e., F ′

i )), the IO size limit (SiSLO
i ) will be increased at

∆R (i.e., a memory page size, the default setting in Linux OS
is 4KB) as long as the newly increased SiSLO

i is smaller than
or equal to the upper bound of the acceptable range of IO
size limit. SiSLO

i can be decreased at ∆R if the minimum
requirements for SC rate or PF ratio of one or more VMs
cannot be met. It is noted that the IO size limit coordination
carries out a main loop every TS set at 5 minutes while
the throughput SLO coordination runs every TR set at 30
seconds. Thus, there is adequate time left for the throughput
SLO coordination to seek appropriate throughput targets for
consolidated VMs under the present settings of IO size limit
that has been chosen by the IO size limit coordination.
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Optimized SLO targets including throughput SLO tar-
gets and IO size limits of consolidated VMs will replace the
original settings configured for the corresponding cloud-
computing servers by the network communication be-
tween AOT and COM. And SEE running on these cloud-
computing servers will enforce these newly updated SLO
targets. If throughput SLO targets and IO size limits for all
the consolidated VMs cannot be reduced (otherwise the IO
capacity will be lower than user demands) and there are
still one or more VMs whose QoS constraints cannot be
met, it indicates that the SLO targets and QoS constraints for
consolidated VMs cannot be simultaneously met under the
given storage resources. In this case, VM storage migration
[26] may be triggered to reduce the load of underlying
storage devices.

4 IMPLEMENTATION CHALLENGES

To better understand the design and implementation of the
SASLO framework, in this section we will explain the end-
to-end VM-oriented control mechanism in SASLO based on
the para-virtualized Linux established by Xen [11]. To sup-
port the cloud system equipped with heterogeneous storage
devices, SASLO does not make any assumption about the
special support of the underlying storage subsystem. A
virtual disk is actually a black box from the viewpoint
of SASLO’s SLO enforcement engine (SEE) and individual
VMs, resulting from resource management. Thus, SASLO
is actually insensitive to the internal organization in the
underlying storage subsystem, and thus compatible with
different kinds of storage devices including SSD or the disk
array organized as RAID-0, RAID-5 or RAID-6, etc.

4.1 End-to-end VM-oriented Control

The split driver model [7] , adopted by the current version
of Xen [11], is designed to provide IO access for VMs by
performing real IO operations on behalf of the guest OS.
Specifically, an IO request issued by a VM is first sent to the
frontend driver (i.e., blkfront) and simultaneously an event
is sent by blkfront to notify the backend driver (i.e., blkback)
for the corresponding virtual disk of the VM to redirect the
request to the block layer. Then, the request is handled by
the hypervisor IO scheduler where the SLO enforcement
engine (SEE) is integrated. In SEE’s viewpoint, requests
issued by VMs are sent by the processes of blkback of which
each has a process name containing the serial number for
a specific VM assigned by the hypervisor. Once a blkback
process of a VM is forked and forwards IO requests to the
hypervisor IO scheduler, the SEE will recognize the newly
active VM and establish a resource controller and a resource
limiters dedicated to the VM. If the blkback processes for a
VM terminate, the controller and limiter of the VM will be
reclaimed. Thus, SASLO can establish an end-to-end VM-
oriented control for each VM.

The SLO enforcement engine is able to handle requests
from a VM with the controller and resource limiter dedi-
cated to that VM. If the VM is migrated to another host, its
SEE on the source host will be revoked and another SEE will
be allocated to the VM on the destination host. Thus, if the
cloud scheduler detects the malfunction of a host and makes
all the VMs consolidated on the host migrate to another

host, SASLO can work well when facing VM dynamic
deployment. In addition, operations such as snapshot and
recovery on VMs executed by hypervisor cannot interfere
with the feedback control loops of these VMs created by
their SEEs in SASLO. This is because the inputs to each SEE
dedicated to a specific VM are the pre-specified SLOs for
and the IO statistics obtained from the VM and the outputs
are the upper bound of throughput and IO size limit for the
VM, resulting in a VM-oriented end-to-end control mode.
Thus, the control of each SEE is not only isolated from
the control loops created by SEEs for other consolidated
VMs but also not affected by IO operations incurred by
hypervisor. Furthermore, because of the VM-oriented end-
to-end control mode under the SASLO design, the SASLO
model accuracy is not sensitive at all to any increase in
the number consolidated VMs, as long as the IO capacity
is adequate.

IO rate limiter

IO queue

IO dispatching

Request merge

Virtual disk

VM arrival IO requests

IO size limiter

PI controller

IO split controller

SLO enforcement engine

Functional blocks of

hypervisor IO scheduler

IO
lat
en
cy

Performance
error

1 or 0

IO rate setting

Fig. 3: Workflow of the SLO enforcement engine.

4.2 SLO Enforcement Engine

With the end-to-end VM-oriented control architecture, the
SLO enforcement engine is able to handle the requests from
a VM with the controllers and resource limiters dedicated to
that VM. As shown in Figure 3, the IO size limiter carries out
IO split by controlling the functional block of request merge
in the hypervisor IO scheduler. Specifically, the IO size lim-
iter adjusts the limit on the number of physical segments per
request for the IO queue that is represented as the variable
max phys segments of the structure request queue in the
Linux kernel. When the total size of two mergeable request-
s exceeds the value of max phys segments, the request
merge will not be performed. In this way, an originally large
merged request is split into two smaller requests. The IO
split controller can trigger the IO size limiter with a ”1”
signal while disable it with a ”0” signal. To seek a better
trade-off between the IO size and the corresponding cost of
SLO enforcement, the IO split controller tracks the average
IO latency obtained over the last two consecutive epoches,
latency(k − 1) and latency(k), for a VM (20 ms for each
epoch). If the increase in the IO latency, expressed as the pro-
portion of (latency(k)− latency(k−1))/latency(k−1) (i.e.,
latinc(k)), goes outside the allowable range (e.g., < 30%),
the IO size limiter will be enabled. In this case, the value of
max phys segments at the k+ 1th epoch (i.e., mm(k+ 1))
will be set at (mm(k))/(1+α(k)), where α(k) is the ratio of
the SLO target to the actual IO throughput at the kth epoch,
only if the value of mm(k + 1) is larger than or equal to the
lower bound of the user-customized range of IO size limit.
Once the value of latinc(k) falls within the allowable range



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2584057, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 9, SEPTEMBER 2016 8

Storage subsystem Type Network Configurations
Disk array RAID0 on a SAN 10 Gbps A 16-disk (7200RPM, 250GB) RAID 0 disk group

SSD Direct-attached storage — Fusion-io ioScale 2, 825GB Multi Level Cell (MLC) Solid State Drive

TABLE 2: The configurations of storage subsystems for the experiments conducted in the SASLO evaluation.

and the value of the integral term uI
i (k) is zero, mm(k + 1)

will be rolled back to the value of mm(k− 1) for a larger IO
size. The IO rate limiter carries out IO throttling according
to the IO rate setting determined by the PI controller.

5 PERFORMANCE EVALUATION

In this section, we present the results of a detailed evaluation
of SASLO in a real cloud-computing server established by
Xen 4.2 [11]. The cloud-computing server is supported by
two storage servers each of which is equipped with different
types of storage subsystems respectively, including a large-
scale disk array over a SAN and a direst-attached SSD. This
system enables us to verify the robustness and effectiveness
of SASLO in the type of heterogeneous storage that is widely
adopted in the enterprise data centers and clouds. The
cloud-computing and two storage servers comprises three
PowerLeader PR2760T servers of which each has 2 Intel
Xeon E5620 quad-core processors, 12GB of RAM, and is
equipped with a 10Gbps NIC (Intel 82598EB). The virtual
disk attached to each VM for the SASLO evaluation has
80GB capacity, which is hosted on a LUN provided by the
storage subsystems listed in Table 2. The cache mechanisms
of the file system and the Xen hypervisor are enabled in the
following experiments for evaluating SASLO in a typical
cache configuration.

Objectives and reference systems of the evaluation:
To comprehensively evaluate SASLO, we must assess the
robustness and effectiveness of its key functional compo-
nent, i.e., AOT (Automated Optimization Tool) and SEE
(SLO Enforcement Engine). First, to evaluate the optimiza-
tion mechanism of AOT (i.e., optimizing throughput SLO
target and IO size limit for consolidated VMs under user-
customized QoS), it is important to examine the impact of
throughput SLO target and IO size limit at various levels on
SLO compliance, performance fluctuation and performance
error. Second, we compare SC (SLO Compliance) rate, PF
(Performance Fluctuation) ratio and performance error (Sec-
tion 3.1) of SLO enforcement under the SEE adopting PI con-
troller (denoted by SEE) against those under the reference
algorithms adopted by the existing state-of-the-art schemes.
Time-stamp based IO control, referred to as RClock, is chosen
as a reference system because of its ability to guarantee the
IO throughput according the SLO target, RClock is adopted
in the state of the arts including mClock[1] and SRP [2].
DRR [13], adopted by Pisces [3], is the second reference
system in this evaluation. Leaky bucket [16], as an important
technique of IO throttling, is also chosen as a reference
system (denoted by LB). Integral control [21] can guarantee
zero steady-state error, adopted by Triage [27], we use it
as another reference system (denoted by Integral). Finally
and importantly, based on the stable and accurate SLO
enforcement supported by SEE, our evaluation will focus
on verifying how well and effectively a trade-off between
SLO targets and QoS constraints can be made. Since we can
modulate the throughput SLO target and IO size limit of an
individual VM within the user-customized range, the QoS

metrics in the following experiments refer to the averages
among the measurements of SC rate and PF ratio obtained
according to different SLO targets.

Workloads: We adopt Filebench [28] in each VM to
generate macro-benchmarks. Filebench is used to mimic the
workloads of a web server, a file server and a mail server by
generating the IO stream with different IO characteristics
controlled by pre-specified parameters (i.e., the number of
files to be used, the number of concurrently running threads
issuing IO requests, average file size and IO size). The
parameters of each workload are listed in Table 3 and the
detailed description of these workloads is as follows:

Web server emulates a web service by synchronizing 100
threads to issue concurrent IOs with an average IO size of
512KB, accessing 50000 files with an average file size of
16KB. The file operations of the web server workload are
basically reads, consisting of IO sequences such as open,
read and close. The operations of writing log files of the
web server are emulated by executing an append operation
after an open operation.

File server emulates an NFS file service by synchronizing
50 threads to issue concurrent IOs with an average IO size
of 1MB, accessing 50000 files with an average file size of
128KB. The file operations of the file server workload consist
of read, write, create, delete, append and attribute on files.

Mail server emulates an email service by synchronizing
16 threads to issue concurrent IOs with an average IO size of
16KB, accessing 50000 files with an average file size of 16KB.
The file operations of the mail server workload consist of IO
sequences, e.g., open, read and close, or open, append and
close, or delete operation.

Services Files Threads File size IO size
Mail Server 50000 16 16KB 16KB
Web Server 50000 100 16KB 512KB
File Server 50000 50 128KB 1MB

TABLE 3: Parameters for Filebench workloads

5.1 The effect of SLO targets on SLO enforcement
In this subsection, we examine the impact of SLO targets
(i.e., throughput SLO target and IO size limit) at various
levels on SLO compliance, performance fluctuation and the
absolute value of performance error (denoted by AVPE)
under different storage subsystems including the disk array
and SSD as listed in Table 2. We run three VMs, VM1, VM2

and VM3, deployed with web server, file server and mail
server simulated by Filebench [28] respectively. These VMs
concurrently access the storage subsystem.

Specifically, we let the throughput targets specified in
SLOs for the three VMs increase linearly every 10-minute.
Thus, we can observe the effect of different levels of the
throughput target on SLO enforcement under SASLO. If the
SLO target surpasses the average throughput obtained in
the original Xen hypervisor (denoted by without SASLO),
we consider the SLO infeasible. As shown in Figure 4, the
actual throughput averaged over 10-minute intervals of the
three VMs can approach their SLO targets with near-zero
absolute values of performance error (< 0.4%) until the
SLO targets of one or more VMs become infeasible for both
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Fig. 5: The SC rate, PF ratio and actual IO size obtained by SASLO as a function of the IO size limit ranging from 4KB to unlimited with SSD
and disk array respectively as the underlying storage subsystem.

the SSD and the disk array systems. In addition, the figure
shows that the SC rate decreases and the PF ratio increases
as the SLO target throughput increases. Second, we set the
SLO targets of the three VMs at 400 IOPS, 600 IOPS and
800 IOPS respectively under the disk array system and set
the SLO targets of the three VMs at 600 IOPS, 800 IOPS and
1000 IOPS respectively under the SSD system. As shown in
Figure 5, the IO size limit for IO split ranges from 4KB to
unlimited for each VM. And we show average values over a
20-minute period. Generally speaking, a smaller value of IO
size limit is beneficial for guaranteeing a higher level of SLO
compliance and a lower level performance fluctuation since
a larger request is more likely to block the execution of other
requests and thus induce more intensive IO interference.
However, the value of performance error is maintained
below 0.2% for all the values of IO size limit.

5.2 SLO Enforcement Engine

In this subsection, we provide a detailed evaluation of the
SEE of SASLO under different storage subsystems including
the disk array and SSD as listed in Table 2. Since the PI
controller is the most important functional module that is
responsible for fast converging the actual throughput to the

dynamic throughput SLOs determined by AOT, we start
by verifying the stability, accuracy and convergence of SLO
enforcement dominated by PI controller. And then, we will
assess the impact of VM scalability on the SASLO model
accuracy. Finally, we will verify the contribution of stable
and accurate throughput SLO enforcement provided by the
SEE of SASLO to latency SLO enforcement.

5.2.1 The Stability, Accuracy and Convergence of Through-
put SLO Enforcement
We run three VMs, VM1, VM2 and VM3, deployed
with web server, file server and mail server simulated by
Filebench [28] respectively. These VMs concurrently access
the storage subsystem.

The accuracy and stability in SLO enforcement: First,
we compare the SEE of SASLO under PI controller with
reference systems in SC rate, PF ratio and performance error
obtained from statistics over a 15-minute period. We set the
SLO targets of the three VMs at 400 IOPS, 600 IOPS and
800 IOPS respectively under the disk array system and set
the SLO targets of the three VMs at 600 IOPS, 800 IOPS and
1000 IOPS respectively under the SSD system. As shown
in Figure 6, SEE performs better than all other approaches
under both the disk array and SSD systems. Specifically,
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Fig. 6: Comparisons among SLO enforcement engine (SEE) and existing mainstream works in SC rate , PF ratio and performance error
obtained over 15 minutes under disk array and SSD respectively.
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Fig. 7: SC rate, PF ratio and AVPE, obtained over 15 minutes, as a function of the number of consolidated VMs (1 through 15).

RClock and LB can’t guarantee an adequately small absolute
value of performance error. DRR is able to keep a smaller
absolute value of performance error than 3%, however,
resulting in a lower SC rate and higher PF ratio than SEE. In
contrast, SEE and Integral are all able to maintain an almost
zero performance error. However, Integral can produce a
higher level of PF ratio than SEE. It is largely because that
integral control can slow system response substantially in
the cases of sudden changes in SLO target or disturbance
inputs [21].

The settling time in convergence: We let the throughput
targets for the three VMs increase linearly, starting from 100
IOPS, 200 IOPS and 150 IOPS respectively, by the increments
of 50 IOPS, 100 IOPS and 75 IOPS for these VMs respectively
every 3 seconds until the SLO targets of the three VMs
reach 500 IOPS, 1000 IOPS and 750 IOPS respectively. We
then continuously repeat the process over a 30-minute time
period. We measure the settling time as the time period
between the epoch of updating SLOs and the epoch of the
first SLO compliance after last SLO update. We configure
5 time epochs in settling time for the PI control model of
each VM. For the disk array system, the average numbers
of the epochs required in convergence for the three VMs
are 4.46, 3.83 and 4.45 respectively while 3.99, 3.53 and 3.67
are observed for the SSD system. The average length of an
epoch for the three VMs is 30.70 ms, 29.02 ms and 31.42 ms
under the disk array while 29.31 ms, 27.68 ms and 28.09 ms
are obtained for the SSD. The surge of IO latency may delay
the feedback control loop (run every 25 ms in the current
design) especially when the storage device is overloaded.

5.2.2 The impact of VM scalability
In this section, we verify the impact of VM scalability
(i.e., increasing the number of consolidated VMs) on the

SASLO model accuracy, represented by two critical control
parameters of the SLO compliance rate (SC rate) and the
absolute value of performance error (AVPE). To this end, we
conduct an experiment to measure the values of SC rate,
AVPE and PF ratio for each VM playing the real production
trace of WebSearch [29] as the number of consolidated VMs,
supported by a storage server with an SSD, increases from
1 to 15. For the purpose of stressing IO contention, each
VM plays the WebSearch trace as fast as possible and has
the same throughput SLO of 1500 IOPS. This allows us to
assess the impact of VM scalability on the SASLO model
accuracy under severe IO contention. As shown in Figure
7, we mark the minimum, average and maximum values of
SC rate, PF ratio and AVPE among all the consolidated VMs.
It is observed from Figure 7 that the average values of SC
rate fluctuate within a small range from 92.1% to 98.3% even
when the number of consolidated VMs increases from 1 to
15. And the values of SC rate obtained for consolidated VMs
in all the cases surpass 90%. Moreover, the average values
of AVPE fluctuate within a very narrow range from 0.034%
to 0.044% and the maximum AVPE falls below 0.087% when
the number of consolidated VMs increases from 1 to 15. In
addition, the average utilization of the storage device (i.e.,
the SSD) increases from 16.5% to 51.4% when the number of
consolidated VMs increases from 1 to 15 and the maximum
utilization of storage device ranges from 84.1% to 92.9%.
These observations indicate that the SASLO model accuracy
is rather insensitive to the VM scalability as long as the IO
capacity is adequate (i.e., the maximum utilization < 100%).
Additionally, as shown in Figure 7, the maximum PF is
smaller than 15% in all the cases and the VM scalability can-
not significantly increase PF ratio. As a result, SASLO can
also guarantee a low level of throughput fluctuation even
when the number of consolidated VMs increases greatly.
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Fig. 8: Comparisons in the average throughput, the PF ratio of
throughput and the SC rate and PF ratio of average latency per second

obtained over 2 hours with 3 consolidated VMs deployed with the
web server, file server and mail server respectively.

5.2.3 Throughput SLO & Latency SLO Enforcements
It is necessary to verify the effectiveness of the VM-oriented
end-to-end proportional-integral IO control executed by SEE
for the stability and accuracy of throughput SLO enforce-
ment on the storage SLO guarantee in another important
performance metric (e.g., IO latency). According to Little’s
law [30], the association among outstanding IOs, through-
put and average latency can be expressed by:

Latency = Outstanding IOs/Throughput (14)

Thus, stable and accurate throughput performance the-
oretically contributes to the stability and accuracy of laten-
cy SLO enforcement only if outstanding IOs can be well
controlled. This is because unpredictable throughput fluc-
tuation may intensify latency undulation based on Little’s
law, very likely resulting in latency SLO violation. The
technique of latency SLO enforcement by outstanding IO
controlling has been thoroughly studied by previous studies
(e.g., Façade [12]). Hence, we adopt the Façade algorithm
to guarantee the latency SLO for each individual VM by
coordinating its IO queue length adapting to the deviation
between the actually measured latency and the latency SLO.

We evaluate our approach based on the IO latency
control executed by the Façade algorithm [12] (denoted
by SEE) against the state of the art (i.e., SARC AVATAR
[15]) on guaranteeing multi-metric storage SLOs (i.e., the
throughput and latency SLOs for each workload), which
does not focus on the stability and accuracy of throughput.

In more details, we run three VMs, VM1, VM2 and
VM3, deployed with web server, file server and mail server
simulated by Filebench [28] respectively, concurrently ac-
cessing the disk array as listed in Table 2 under the control of
SARC AVATAR [15] and SEE respectively. The throughput
SLOs of the three VMs are 400 IOPS, 500 IOPS and 600 IOPS
respectively and the latency SLOs of the three VMs are 20
ms, 30 ms and 20ms respectively. Thus, we can verify SEE’s
robustness and effectiveness in stable and accurate through-
put SLO enforcement as well as alleviating the impact of
throughput fluctuation on latency SLO enforcement.

As shown in Figure 8, the SC rate of average latency per
second of the three VMs obtained during 2 hours under the
control of SEE are 99.92%, 99.42% and 99.83%, which are
higher than those obtained under SARC AVATAR [15], i.e.,
96.42%, 96.75% and 93.58%. Moreover, as shown in Figure 8,
the PF ratio values of average latency per second of the three
VMs obtained during 2 hours under SASLO are also far low-
er than those obtained under SARC AVATAR. This means
that SEE contributes significantly to improving the stability

and accuracy of latency SLO enforcement. In addition, the
actual throughput of the web server and the mail server
under SARC AVATAR is smaller than the corresponding
throughput SLOs. In contrast, SEE can accurately enforce
throughput for each consolidated VM with negligible devi-
ation (i.e., 400.16 IOPS, 500.02 IOPS and 600.25 IOPS for the
three VMs). As a result, we believe that the SEE of SASLO
can effectively limit the variability latency as well as support
stable and accurate throughput SLO enforcement under the
VM consolidation environment.

5.3 IO Capacity Optimization Under QoS Constraints
In this section, we will evaluate the robustness and effec-
tiveness of SASLO in optimizing the IO capacity allocation
decided by throughput SLO target and IO size limit under
the user-customized QoS constraints in terms of SLO com-
pliance and performance variability, which are measured by
SC rate and PF ratio respectively.

Based on stable and accurate SLO enforcement support-
ed by SEE, the AOT of SASLO can dynamically coordinate
throughput SLO target and IO size limit for consolidated
VMs according to the variation of SLO compliance and
performance variability. Consequently, SASLO can achieve a
satisfactory trade-off between high-capacity allocation (i.e.,
high throughput and large IO size) and user-customized
QoS for consolidated VMs. To verify this ability of SASLO,
we let three consolidated VMs (denoted by VM1, VM2 and
VM3) accessing the storage subsystems including the disk
array and the SSD respectively. The three VMs are config-
ured with the two configurations (denoted as configuration
1 and configuration 2) each of which consists of the user-
customized ranges of throughput SLO, IO size limit, SC rate
and PF ratio for each VM as listed in Table 4 and Table
5. Configuration 1 adopts a higher level of QoS constraints
than configuration 2. According to the logic of throughput
SLO coordination and IO size limit coordination, the consol-
idated VMs under configuration 2 should gain a higher IO
capacity than that gained under configuration 1 for given
storage resources.

VM Throughput SLO IO size limit SC rate PF ratio
VM1 [400 IOPS, 600 IOPS] [12KB, 32KB] [80%, 90%] [8%, 15%]
VM2 [600 IOPS, 800 IOPS] [12KB, 44KB] [85%, 90%] [5%, 10%]
VM3 [800 IOPS, 1000 IOPS] [12KB, 24KB] [80%, 90%] [5%, 10%]

TABLE 4: User-customized SLO targets and QoS constraints in the
configuration 1.

VM Throughput SLO IO size limit SC rate PF ratio
VM1 [400 IOPS, 800 IOPS] [12KB, 32KB] [70%, 80%] [15%, 20%]
VM2 [600 IOPS, 1200 IOPS] [12KB, 44KB] [75%, 80%] [10%, 15%]
VM3 [800 IOPS, 1600 IOPS] [12KB, 24KB] [70%, 80%] [10%, 15%]

TABLE 5: User-customized SLO targets and QoS constraints in the
configuration 2.

As shown in Figure 9 and Figure 10, the actual through-
put of the three consolidated VMs can be kept between
the user-customized range under both configuration 1 and
configuration 2. It is noted that SASLO can dynamically
coordinate the throughput SLOs for all the consolidated
VMs according to the variation of SC rate and PF ratio.
Specifically, as shown in Figure 9, during the period from the
time of 10∗30 seconds to the time of 15∗30 seconds, we can
observe that the values of throughput SLO for all the three
VMs are raised continuously by SASLO since the value of
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SC rate for each consolidated VM obtained during the time
period is beyond the upper bound of the user-customized
range and the value of PF ratio for each VM during the time
period is below the lower bound of the user-customized
range. At the time of 90 ∗ 30 seconds, the throughput SLOs
for all the consolidated VMs can be observed decreasing in
Figure 9 since the PF ratio for the VM1 obtained during the
90th 30-second interval is 16.8% which surpasses the upper
bound of 15%. In this case, the IO capacity allocated to a
VM can be influenced by another consolidated VM violating
its requirements on SC rate or PF ratio. We can make a
more reasonable combination of VMs consolidated on the
same storage server in order to ensure a high utilization
of the underlying storage devices as well as meet the user-
customized QoS constraints. This is beyond the scope of our
research and left for our future work.

Second, we reconfigure the configuration 2 for the three
consolidated VMs accessing the disk array by relaxing the
range of throughput SLO and degrading the requirements
on SC rate and PF ratio. As shown in Figure 9 and Figure
10, the SC rate and PF ratio fluctuate more intensively
under configuration 2 than those obtained under the con-
figuration 1. Specifically, the variation ranges of SC rate
for the three consolidated VMs under the configuration 1
are [56.7%, 100%], [60%, 100%] and [60%, 100%] respec-
tively while [56.5%, 100%], [53.3%, 100%] and [50%, 100%]
are obtained under the configuration 2. Moreover, the
variation ranges of PF ratio for the three VMs are
changed from [0.2%, 17.1%], [0.2%, 15.4%] and [0.4%, 16%]
to [0.3%, 25.6%], [0.8%, 21.3%] and [1.1%, 21.5%]. As a re-
sult, as listed in Table 6, the SC rates of VM1, VM2 and VM3

obtained over the whole process of the experiment under
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Storage VM
Configuration 1 Configuration 2

Throughput (IOPS) IO size (KB) SC rate (%) PF ratio (%) Throughput (IOPS) IO size (KB) SC rate (%) PF ratio (%)

Disk array
VM1 488.35 14.33 86.08 6.64 502.10 16.49 81.68 9.48
VM2 687.23 16.81 89.47 5.40 753.00 21.15 83.07 8.50
VM3 886.78 11.98 89.27 5.64 1003.23 13.31 79.44 10.02

SSD
VM1 733.28 13.72 88.64 8.49 876.56 16.80 79.45 14.16
VM2 932.82 16.55 94.14 3.99 1168.56 21.63 90.89 4.58
VM3 1133.08 11.84 96.00 2.82 1461.31 13.45 89.64 4.97

TABLE 6: The actual throughput and IO size averaged over a time period of 2 hours and the SC rate and PF ratio obtained over the time
period under the configuration 1 and configuration 2 respectively.
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Fig. 11: The values of IO size limit configured by IO size limit coordination algorithm and the actual IO size.

the disk array (i.e., 2 hours) is 86.08%, 89.47% and 89.27%
for the configuration 1 while 81.68%, 83.07% and 79.44%
are obtained under the configuration 2. In addition, the PF
ratios of the three VMs can be observed increasing from the
values of 6.64%, 5.4% and 5.64% under the configuration 1
to the values of 9.48%, 8.50% and 10.02% obtained under
the configuration 2. However, the actual throughput and
IO size of consolidated VMs under the configuration 2
are larger than those obtained under the configuration 1.
Specifically, the percentage increases of throughput for the
three VMs are 2.82%, 9.57% and 13.13% respectively while
the growth rates of IO size for these VMs are 15.07%, 25.82%
and 11.1% respectively. The analogous phenomenon is also
observed for the three consolidated VMs accessing the SSD.
Thus, in spite of the lower level of QoS constraints under
the configuration 2 than those under the configuration 1,
higher IO capacity allocation can be gained instead under
the configuration 2. More importantly, as listed in Table
6, the QoS constraints in terms of SC rates and PF ratios
for consolidated VMs are met for both configure 1 and
configure 2 under SASLO. This implies that SASLO is able to
optimize IO capacity allocation for consolidated VMs under
the user-customized QoS constraints.

In addition, it is observed in Figure 9 and Figure 10
that the SEE of SASLO can perfectly enforce throughput
SLO configured by AOT since the PI controller dedicated
to each individual VM can gain almost zero performance
error under VM consolidation environment. In addition, as
shown in Figure 11, the trend of actual IO size variation
can also be controlled well under the setting of IO size limit
coordinated by the IO size limit coordination algorithm.

6 CONCLUSION

In this paper, we focus on the issue of optimizing IO capaci-
ty allocation among consolidated VMs under the constraints
of SLO compliance and performance variability. This is a
great challenge since the IO capacity allocation among con-
solidated VMs must adapt to highly variable IO character-
istics, IO interference among VMs and unstable IO capacity

of storage devices. To address this challenge, we propose
an end-to-end VM-oriented control framework that is able
to dynamically coordinate IO capacity allocation according
to the actual levels of SLO compliance and performance
fluctuation so as to enhance storage utility utilization under
the user-customized QoS constraints. The procedure of IO
capacity allocation coordination can run as a throughput
SLO series and an IO size limit series for each individual
VM based on the stable, accurate and fast convergent SLO
enforcement that is executed by VM-oriented PI controller
and IO split controller. Our comprehensive prototype evalu-
ation of SASLO, under different types of storage subsystems
including disk array and SSD, demonstrates that SASLO can
make a satisfactory trade-off between high IO capacity allo-
cation and user-customized constraints of SLO compliance
and performance variability.
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