
Mobile agents offer much

promise, but agent mobility and

Internet openness make

coordination more difficult.

Mobile Agent Reactive Spaces,

a Linda-like coordination

architecture with programming

features, can handle a

heterogeneous network while

still allowing simple and flexible

application design.

MARS:
A Programmable Coordination Architecture
for Mobile Agents

GIACOMO CABRI, LETIZIA LEONARDI, AND FRANCO ZAMBONELLI

University of Modena and Reggio Emilia

T raditional distributed applications are designed as sets of process-
es—mostly network-unaware—cooperating within assigned exe-
cution environments. Mobile agent technology, however, promotes

the design of applications made up of network-aware entities that can
change their execution environment by transferring themselves while exe-
cuting.1,2 Current interest in mobile agents stems from the advantages they
provide in Internet applications:

� bandwidth savings because they can move computation to the data,
� flexibility because they do not require the remote availability of spe-

cific code, and
� suitability and reliability for mobile computing because they do not

require continuous network connections.

Several systems and programming environments now support mobile-
agent-based distributed application development.2 For wide acceptance
and deployment, however, we need tools that can exploit mobility while
providing secure and efficient execution support, standardization, and
coordination models.1

Coordination between an agent and other agents and resources in the
execution environment is a fundamental activity in mobile agent applica-
tions. Coordination models have been extensively studied in the context of
traditional distributed systems;3,4 however, agent mobility and the open-
ness of the Internet introduce new problems related to naming and tracing
agents roaming in a heterogeneous environment.5

We believe that a Linda-like coordination model—relying on shared data
paces accessed in an associative way—is adaptable enough for a wide and het-
erogeneous network scenario and still allows simple application design. Fur-
ther, allowing interaction events to be programmed for specific agent or exe-
cution environment needs allows additional flexibility and security. The
Mobile Agent Reactive Spaces (MARS) coordination architecture, developed
at the University of Modena and Reggio Emilia, provides both features.

26 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

M
O

B
IL

E
A

G
EN

TS

M A R S

27IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

COORDINATION MODELS
Mobile agent coordination models fall into four
categories: client-server, meeting oriented, black-
board based, and Linda-like.

Client-Server Model
Most Java-agent systems—such as Aglets6 and D’A-
gents (formerly Agent-TCL)7—use a client-server
coordination model, specific message-passing APIs,
or both. By directly connecting the involved enti-
ties, this model entails both spatial coupling, where
agents have to explicitly name their communica-
tion partners, and temporal coupling, where agents
must synchronize their activities.4,5 This leads to
several drawbacks for mobile agent applications:

� To communicate, mobile agents must use
complex and highly informed tracing protocols.

� Repeated interactions between agents require
stable network connections.

� Mobile agent applications often dynamically
create new agents, which makes it difficult to
identify communication partners in a spatially
coupled model.

Thus, client-server coordination is best reserved
for sharing information in a local execution
environment.

Meeting-Oriented Model
The meeting-oriented coordination model, introduced
by Telescript8 and also implemented by the Ara sys-
tem,9 solves the spatial coupling problem by letting
agents interact at abstract meeting points without
explicitly naming involved partners. An agent can
open a meeting, which other agents can join, explic-
itly or implicitly, and communicate and synchronize
with each other. Meetings are usually locally con-
strained to avoid remote communication problems
such as unpredictable delay and unreliability.

The meeting-oriented model’s major drawback
is that it still requires a strict temporal coupling of
interacting agents, forcing them to be at the same
place at the same time. This either undermines the
autonomy and dynamics of agents, whose sched-
ule and position cannot be easily predicted, or if
those properties are preserved, increases the risk of
missing interactions.

Blackboard-Based Model
Some proposals—including the Ambit model for
mobile computations10 and the ffMAIN mobile
agent system11—use the blackboard-based coordi-

nation model, where interactions occur in shared
data spaces, or blackboards, local to each execution
environment. Blackboards serve as both common
repositories for messages and as sources for access-
ing locally published data and services.

Since agents communicate by leaving messages
on blackboards without knowing where receivers
are or when they’ll read the messages, blackboards
allow temporal uncoupling and thus suit mobile
computing. Blackboards also provide more securi-
ty than other models because execution environ-
ments can monitor all local blackboard interac-

tions. However, because agents must agree on a
common message identifier to communicate and
exchange data—for example, a file name in Ambit
or a URL in ffMAIN—interactions are not spa-
tially uncoupled.

Linda-like Model
Several recent proposals for interactive Internet
applications—including PageSpace12 and Java-
Spaces13—use a Linda-like coordination model,14

which extends the blackboard-based model by
introducing associative mechanisms into the shared
data space. Information is organized in tuples and
retrieved in an associative way through a pattern-
matching mechanism.

Therefore, in addition to having all the advan-
tages of blackboards, associative blackboards—tuple
spaces—also allow spatial uncoupling. Because
tuples are accessed by content rather than by iden-
tifier, agent coordination requires little mutual
knowledge, which suits mobile agent applications.
In fact, in the wide and dynamic environment of
the Internet, it is difficult or even impossible for
agents to acquire complete and up-to-date knowl-
edge of other agents or execution environments.

PROGRAMMABLE TUPLE
SPACES
Despite allowing spatial and temporal uncoupling,
the Linda-like coordination model lacks flexibility
and interaction control. In fact, both agent-to-

Coordination among agents and
resources is a fundamental activity

in mobile agent applications.

F E A T U R E

28 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

agent and agent-to-execution environment inter-
actions depend on the tuple spaces’ built-in data-
oriented pattern-matching mechanism, which may
not be suitable. It may be difficult, for example, to
realize and control complex interaction protocols
with just Linda-like pattern matching, and Linda’s
data-oriented interaction model does not provide
an easy way to access a site’s services.

Programmable tuple space models—where
tuple-space access events trigger certain computa-
tional activities—solve these problems.5,15 This
reactivity offers several advantages for mobile agent
applications:

� A site administrator can monitor access events
and implement specific security policies for the
execution environment.

� Tuples can be dynamically produced on demand,
enabling a simple data-oriented mechanism for
accessing a site’s services. For example, an agent’s
attempt to read a specific tuple can trigger the
execution of a local service that produces it.

� Application-specific coordination rules can be
imposed.

One drawback of programmable tuple spaces is that
irrational programming can distort application
interactions and cause users to lose control over
agent execution. Rather than altering application
semantics, however, site administrators are more
likely to be interested in exploiting the program-
mability of their tuple spaces to increase availabili-

ty of data and resources while better protecting
them. Also, if application-specific programming is
properly constrained to only affect the application
itself, agents from other applications will not expe-
rience unexpected tuple space behavior.

MARS COORDINATION
ARCHITECTURE
MARS implements a portable and programmable
Linda-like coordination architecture for Java-based
mobile agents. It does not implement a whole new
Java agent system, but instead complements exist-
ing agent systems. Because it is not bound to any
specific implementation, MARS can be associated
with different Java-based mobile agent systems with
only slight modification. The current implementa-
tion, available for downloading at http://sirio.
dsi.unimo.it/MOON, has already been tested with
Aglets, Java-to-go, and SOMA.

As shown in Figure 1, MARS consists of many
independent tuple spaces. Each tuple space is asso-
ciated with a node and is accessed by locally exe-
cuting agents. Integrating MARS with a mobile
agent system therefore requires only that the agent
server—which accepts and executes incoming
agents on a node (step A in Figure 1)—supply
agents with a reference to the local MARS tuple
space (step B). Agents on a node can then access the
local tuple space through a well-defined set of
Linda-like primitives (step C), and each MARS
tuple space can react to accesses with behaviors pro-
grammed in a metalevel tuple space (step D).

B

C C

D

B

Internet

Network node

Agent server

Reference
to the local
tuple space

A

Tuple space

Metalevel
tuple space Reaction

Figure 1. The MARS architecture. Agents arrive at the site (A) and are provided with a reference to the local MARS tuple
space (B). They access the tuple space (C), which can react with a programmed behavior (D).

M A R S

29IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

The MARS tuple space enables interagent com-
munication and allows agents to access primitive
data items and references to execution environment
resources. The local tuple space is the only node
resource that agents can directly access, reducing
the problem of dynamically binding local refer-
ences to mobile entities.1

MARS Interface
MARS complies with the JavaSpaces specification,

likely to be Java’s de facto tuple space interface. As
in JavaSpaces, MARS tuples are Java objects whose
instance variables represent tuple fields. Each tuple
field is a reference to an object that can also repre-
sent a primitive data type (wrapper objects in Java
terminology). Any tuple field can have either a
defined (actual) value or a null (formal) value.

Each MARS tuple space is realized as an instance
of the Space class, which implements the MARS
interface, an extension of the JavaSpace interface.

Other Programmable Coordination Architectures

Other agent-based Internet architectures besides Java-
Spaces exploit tuple spaces. PageSpace, an architecture
for interactive Web applications, uses Linda-like coordina-
tion.1 Both mobile and fixed agents can use its tuple spaces
to store and associatively retrieve object references. Also,
agents can create tuple spaces to interact privately without
affecting host execution environments.

To influence the coordination activities of application
agents, PageSpace is not reactive in itself but instead
defines special-purpose agents to access the space and
change its contents. However, these special-purpose agents
are very limited, both in monitoring interaction events and
in tuning their effects, compared with MARS.

The T Spaces project at IBM uses Linda-like interaction
spaces as general-purpose information repositories for net-
worked and mobile applications.2 Rather than defining agent-
oriented coordination media, the T Spaces architecture aims
to provide a powerful and standard interface for accessing
large amounts of information organized as a database.

Therefore, the designers of T Spaces integrated a special
programmability to add new behaviors to a tuple space. This
occurs through new admissible operations on a tuple space—
typically complex queries—rather than by programming the
effects on the basic Linda operations, as does MARS. In our
opinion, this makes T Spaces less usable in the open Internet
environment because it requires application agents to either
be aware of operations available in a given tuple space or
somehow dynamically acquire this knowledge.

What further distinguishes MARS from these two systems
is the way agents refer to tuple spaces. In MARS, agents hold
a single reference that is implicitly bound to the tuple space of
the local execution environment. But in PageSpace and T
Spaces (as well as JavaSpaces), agents can refer to multiple
tuple spaces, whether local or remote, using different tuple
space references, accessing them without regard to their loca-
tion. This can make managing applications more difficult,
since the agent code has to explicitly manage tuple space ref-
erences, and it can make agent execution less controllable

and less reliable, since interactions occur transparent to the
location of agents and tuple spaces.

The Tucson model deals with this problem by making
agents refer to tuple spaces through URLs, as an Internet ser-
vice, thus enforcing network awareness.3 With regard to the
tuple space model, Tucson resembles MARS in allowing full
programming of tuple spaces. However, Tucson defines pro-
grammable logic tuple spaces where both tuples and reac-
tions are expressed in terms of untyped first-order logic terms.
This characteristic complements MARS and makes Tucson
well suited for application development based on intelligent
information agents, which are in charge of accessing and
managing large and heterogeneous information sources.

The MOLE system defines a meeting-oriented coordina-
tion model rather than a tuple-based one.4 MOLE meetings
use shared, nonmobile objects that agents must access to
send or receive messages. Unlike Telescript and Ara meet-
ings, however, MOLE meetings enforce temporal uncou-
pling—by permitting asynchronous message notification to
agents—and can be programmed to integrate specific poli-
cies for managing the exchanged messages. These charac-
teristics provide an uncoupled and programmable coordi-
nation model, like MARS. However, MOLE enforces a
control-oriented coordination style, in contrast with the data-
oriented one of MARS, and requires the definition of meet-
ing points at the application level.

References
1. P. Ciancarini et al., “Coordinating Multi-Agents Applications on the

WWW: a Reference Architecture,” IEEE Trans. Software Eng., vol. 24,

no. 8, May 1998, pp. 362-375.

2. P. Wyckoff et al., “T Spaces,” IBM Systems J., vol. 37, no. 3, 1998, pp.

454-474.

3. A. Omicini and F. Zambonelli, “Coordination for Internet Application

Development,” J. Autonomous Agents and Multi-Agent Systems, vol. 2,

no. 3, Sept. 1999, pp. 251-269.

4. J. Baumann et al., “Mole—Concepts of a Mobile Agent System,” World

Wide Web J., vol. 1, no. 3, 1998, pp. 123-137.

F E A T U R E

30 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

To access the tuple space, the MARS interface pro-
vides the following operations:

� write, which puts a tuple, supplied as the first
parameter, in the space;

� read, which retrieves a matching tuple from the
space based on a template tuple;

� take, which works like read but extracts one
matching tuple from the space;

� readAll, which retrieves all matching tuples
from the space; and

� takeAll, which extracts all matching tuples from
the space.

Tuple operations include transaction and timeout
parameters. For example, the timeout parameter for
read, take, readAll, and takeAll specifies how long
operations wait for a matching tuple before return-
ing a null value. A lease parameter sets a written
tuple’s lifetime.

The MARS interface adds the readAll and takeAll
operations, which are not in the JavaSpaces inter-
face, to prevent agents from having to perform sev-
eral reads/takes to retrieve all needed information.
This also avoids the risk of reading a tuple more
than once, a well-known problem of tuple space
models resulting from nondeterminism in the selec-
tion of a tuple among multiple matching ones.

The template tuple used with the read, readAll,

take, and takeAll operations can have both defined
and null values. A tuple T matches a template tuple
U if the defined values of U are equal to the corre-
sponding ones in T following the object-oriented
JavaSpaces pattern-matching rule.

Reactive Model
Linda’s earliest definition provided a limited form
of reactivity, the eval operation.14 However, due to
both the unclear semantics of eval and the lack of
a suitable model for controlling tuple space com-
putations, most implementations (including Java-
Spaces) have omitted eval and other forms of reac-
tivity. MARS, while also discarding eval, defines a
flexible and controllable architecture for program-
ming reactions to agent accesses to tuple spaces.

MARS reactions are stateful objects with a spe-
cific method implementing the reaction itself.
Using metalevel 4-ples—tuples made up of four
fields—stored in a metalevel tuple space, reactions
match with specific access events according to three
components: tuple item (T), operation type (Op),
and agent identity (I). A metalevel 4-ple has the
form (Rct, T, Op, I), meaning that the reaction
method of the object Rct will be triggered when an
agent with identity I invokes the operation Op on
a tuple matching T. When administrators (using the
MARS graphical interface) or authorized agents
insert or extract metalevel tuples, reactions associ-
ated with access events at the base-level tuple space
are installed or uninstalled, respectively.

When a metalevel 4-ple has undefined values, it
associates the specified reaction with all access
events matching it. For example, the 4-ple (Reac-
tionObj, null, read, null) in the metalevel tuple space
associates the reaction of the ReactionObj instance
with all read invocations, whatever the tuple type,
content, or agent identity.

The metalevel tuple space follows associative
mechanisms similar to those of the base-level tuple
space. Any access to the base-level tuple space acti-
vates a metalevel pattern-matching mechanism,
which detects reactions to trigger—metalevel tuples
matching the access event—and executes them. For
example, as shown in Figure 2, when an agent with
identity I invokes a single-tuple input operation
Op—read or take—supplying a template tuple U,
the following occurs:

1.MARS issues the pattern-matching mechanism
of the base-level tuple space to identify a tuple T
that matches U.

2.MARS executes a readAll operation in the

Agent I

Op (U)
Base-level
tuple space

Metalevel
tuple space

Metalevel
pattern-matching on

(null, T, Op, I)

Matching tuple T
OR

Template U

Triggering
of reaction

Base-level
pattern-matching

on U

Execution of
reaction

Result tuple
to agent

Figure 2. MARS metalevel activities. When an agent performs an
access to the base-level tuple space, matching reactions are searched
for in the metalevel tuple space and, if found, are executed.

M A R S

31IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

metalevel tuple space by providing the 4-ple
(null, T, Op, I), where T is the tuple T if matched
in step 1 or the template U otherwise.

3. If MARS finds a matching 4-ple in the
metalevel tuple space, it triggers the
corresponding reaction. The reaction method
receives the tuple T and the Op and I values as
parameters and is expected to return a tuple.

4. If MARS does not find a matching metalevel 4-
ple, it lets the invoked operation Op proceed
according to normal semantics.

If several 4-ples satisfy step 2’s matching mech-
anism, MARS executes all corresponding reactions
in a pipeline—sequentially, one after another—in
the order of their installation. Since execution order
can affect the final result, MARS rules out nonde-
terminism for metalevel matches.

When an agent invokes a readAll or a takeAll in
the base-level tuple space, multiple matches can
occur during step 1 or during a reaction triggered
in step 3. If multiple matches occur in step 1,
MARS associates a pipeline of matching reactions
with each matching tuple. If no matches occur in
step 1, MARS activates a single reaction pipeline,
and as soon as a reaction in the pipeline produces
multiple tuples, MARS replicates the rest of the
pipeline for each result tuple. For a write operation,
MARS starts directly from step 2 and uses the tuple
T, the parameter of the write operation itself, in the
metalevel 4-ple (null, T, write, I).

Reactions can access the base-level tuple space
and perform any operation on it, although to avoid
endless recursion these operations do not them-
selves issue a reaction. Apart from the state in the
reaction object, the base-level tuple space, then, can
hold additional reaction state information. When
the reaction executes, its parameters are

� the results of the matching mechanism issued
by the associated operation, or by the template
that invoked the input operation;

� the operation type; and
� the invoking agent’s identity.

The reaction, on the basis of the actual tuple space
content and of the past access event, can then influ-
ence the effects of operations in an informed way,
for example returning to specific invoking agents
tuples different from those of the normal pattern-
matching mechanism.

These characteristics of the MARS reactive model
allow great flexibility. This contrasts with the Java-

Spaces notify mechanism, which simply signals exter-
nal objects about tuple insertions in a tuple space,
thus only monitoring write operations and not allow-
ing control of the effects of tuple space operations.

Security Model
MARS security protects tuple spaces and their con-
tents from unauthorized and malicious accesses.
MARS assumes that the underlying mobile agent
system identifies and authenticates agents. So,
when an agent obtains the reference to the local
MARS tuple space, MARS has already authenti-
cated it and perhaps mapped it to a specific role.

Using a few well-defined agent roles has several
advantages: First, it leads to a better uncoupling
between the agent system and MARS. Second,
roles can better handle the openness of mobile
agent systems, where large numbers of possibly
unknown identities will likely be encountered.
Both agent authentication and role mapping let
MARS simply control tuple space accesses by defin-
ing access control lists (ACLs) for tuple spaces and
tuples and by referring to authenticated identities
and roles.

MARS ACLs define who can do what on tuple
spaces and their enclosed tuples, at both the base
level and the metalevel. A tuple space system
administrator can decide whether a specific agent
or a specific role can perform a specific operation
on a given tuple. An administrator can define,
among others, three very general rolesreader,
writer, and manager:

� Reader agents can read public tuples from the
space but can neither insert nor extract tuples.

� Writer agents can both read and store tuples in
the space but cannot extract tuples stored by
agents with different identities.

� Manager agents, which are typically owned by
administrators, have full rights to the space.
They also have full access to the metalevel tuple
space, and thus can dynamically install and
uninstall reactions.

A tuple space administrator can define other roles
to give or deny access to specific operations on spe-
cific tuple classes and to allow agents to install and
uninstall reactions for a limited set of access events.
In particular, site administrators should define
proper role authorization policies to guarantee that
external agents—by installing or uninstalling appli-
cation-specific reactions—can influence only the
activities of the agents of the same application.

F E A T U R E

32 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

MARS IN MOBILE AGENT
APPLICATIONS
A good illustration of the MARS architecture’s
power is the searcher application, which sends
mobile agents to remote Internet sites to analyze
HTML pages and extract required information
without having to transfer the pages over the net-
work. For example, a searcher agent could go out
on the Web and return with the URLs of pages
containing a specific keyword.

To speed up the search, the application can cre-
ate a tree of concurrent searcher agents. When one
agent accessing an HTML page finds links to other
potentially interesting pages, it clones itself, and the
new agents follow the links, recursively continuing
the search. In this case, coordination between the
agent and the execution environment is needed to
make agents access and retrieve information on a
site, and coordination between agents is needed to
avoid accessing a page already reviewed by another
clone.

Coordination Between Agents and
the Execution Environment
With client-server or meeting-oriented coordination,
access to resources depends on the local server, but a
server may not always provide appropriate services.
For example, most Web servers do not provide site
indexes, so agents must navigate page by page. With
code mobility, agents can carry navigation code and
install it on the sites visited, but this introduces secu-
rity issues and requires exception handling. Also,
agents must become control oriented, explicitly
requesting services in order to obtain data and files.

But, with a blackboard or tuple space on sites,

agents can access HTML pages without special ser-
vices and in a more natural data-oriented style.
With MARS, tuples in the local execution envi-
ronment provide general file information—such as
pathname, extension, and modification time—and
contain a reference to a file object used to access file
contents. Agents looking for HTML pages can
obtain references to them by accessing the tuple
spaces.

Figure 3 shows a fragment of the Java code for
typical searcher agents. Agents invoke the readAll
operation in nonblocking mode by providing a
template FileEntry tuple in which only the Extension
field is defined with the html value. The operation
returns all matching tuples—those representing
HTML documents—in a vector. For each match-
ing tuple, the agent accesses the corresponding file
using the ActualFile field and searches for the key-
words of interest in its content. Finally, the agent
searches for remote links in the files and clones
itself to follow those links before going back home.

With MARS reactivity, however, the coordina-
tion between agents and the execution environment
shown in Figure 3 can be made more flexible and
secure without altering the agent code. For exam-
ple, suppose a Web site uses htm file extensions
instead of html. With reactivity, administrators
could give access to agents requesting the more
standard html extension without changing local file
names, without providing FileEntry tuples in both
html and htm forms, and without forcing agents to
explicitly deal with the heterogeneity. Administra-
tors simply need to install a reaction, such as the
one shown in Figure 4, that changes any request for
html tuples to one for htm tuples.

. . .
FileEntry FilePattern = new FileEntry(null, “html”, null, null); // creation of the template tuple

Vector HTMLFiles = LocalSpace.readAll(FilePattern, null, NO_WAIT);
// read all matching tuples and return a vector of tuples

if (HTMLFiles.isEmpty()) //no matching tuple is found
terminate(): //the agent has nothing to return to the user and can terminate

else
for (int I = 0; I < HTMLFile.size(); i++) //for each matching tuple
{ FileEntry Hfile = (FileEntry)HTMLFiles.elementAt(i); //Hfile: tuple representing the file

if(this.SearchKeyword(keyword, Hfile.ActualFile)) //search for the keyword in the file
{ FoundFiles.addElements(LocalHost, Hfile); //store the file in a private vector

//to be returned to the user and
this.SearchLink_and_Clone(Hfile.ActualFile); //search for remote links and

} //send clones to remote sites
}go_to(home); //return to the user site

. . .

Figure 3. Fragment of Java code for searcher agents.

M A R S

33IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

Coordination Between
Agents
To avoid duplicated work, we
need interagent coordination, but
client-server coordination results
in odd designs. Agents are
dynamically created and spatially
autonomous, so they are unaware
of other agents. The only way for
an agent to know whether others
have already visited a site would
be to invoke a specialized directo-
ry server, but this only compli-
cates application design and, by
requiring remote communication,
makes it less efficient and reliable.

Meeting-oriented coordination allows a more dis-
tributed solution, but this requires additional spe-
cial-purpose entities. When an agent explores a site,
it creates a meeting agent on the site to inform
incoming agents of its visit. Meeting agents open
meeting points as shared data spaces, so if the coor-
dination model itself is based on shared data
spaces—as are blackboards and tuple spaces—inter-
agent coordination does not require peculiar designs.

With MARS, any searcher agent arriving at a
site can check the local tuple space to see if anoth-
er agent of the same application left a marker tuple,
which has the form (my_application_id, “visited”). If
one exists, the arriving agent terminates; if not, the
agent does its work and leaves one marker tuple in
the tuple space.

Searcher agents must be assigned a writer role in
order to leave marker tuples, but this puts a site at
risk of being overwhelmed with tuples no one will
ever use or ever delete. MARS solves this problem
by allowing administrators to install a reaction that
specifies a site-specific allowed lifetime, disregard-
ing any lifetime specified in the lease parameter at
the application level.

A more sophisticated way to avoid duplicated
work than using marker tuples is to let agents install
application-specific reactions for access events per-
formed by other agents of the same application. For
example, agents could install a stateful reaction that
avoids retrieval of duplicate information but also
takes into account possible page updates. When an
agent accesses the tuple space to retrieve HTML page
references, the reaction could check for any match-
ing FileEntry tuple and also determine whether the
corresponding file has been modified since the last
visit. If it hasn’t been modified, the reaction simply
does not return the corresponding tuple to the agent.

PERFORMANCE EVALUATION
The power and flexibility of the MARS architecture
do not impose a high overhead on coordination
activities. We have measured access times for a
MARS tuple space, specifically evaluating overhead
introduced by MARS. Figure 5 (next page) shows
the time needed for an Aglets agent, running on a
Sun Ultra 10, to perform a read operation in the
local MARS tuple space and return a matching
tuple, for different cases:

� by completely deactivating the metalevel activ-
ities (read—passive tuple space), which happens
in any nonreactive tuple space implementation;

� by activating the metalevel activities, without
any reaction installed (read—0 reactions
issued—0 reactions installed); and

� by activating the metalevel activities, with dif-
ferent numbers of reactions installed, and by
making the read operation issue one null-body
reaction (read—1 reaction issued—1, 20, 50
reactions installed).

Because more information is handled in the pat-
tern-matching process, access times in all cases
increased logarithmically with the number of tuples
stored in the base-level tuple space (from 4 to 10
milliseconds in the tests performed).

Comparing access times with and without the
metalevel matching mechanism activated shows that
overhead introduced by MARS is very limited and
independent of the global number of base-level
tuples. When no reactions (metalevel tuples) have
been installed, metalevel tuple space activities intro-
duce overhead of about 10 percent, which grows
very slightly as the number of installed reactions
increases. For instance, in the unlikely case of 50

Class HTML2HTM implements Reactivity
{
public Entry[] reaction(Space s, Entry Fe. Operation Op, Identity Id)
// the parameters represent, in order:
// the reference to the local tuple space
// the reference to the matching tuple
// the operation type
// the identity (or the assigned role, if any) of the agent performing the operation

//no match already occurred if the site has only htm files
{(FileEntry)Fe.Extension = “htm”; //modifies the extension of the required files

return s.readAll(Fe, null, NO_WAIT);
}}

Figure 4. The HTML2HTM reaction class. This reaction changes any request for html
tuples to one for htm tuples.

F E A T U R E

34 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

installed reactions in the metalevel tuple space, where
a read triggers a null-body reaction, overhead is still
well below 30 percent. These results likely apply to
other tuple space implementations, such as Java-
Spaces, whenever they are extended with program-
mability.

The advantages of MARS-mediated interactions
over other possible interaction mechanisms are also
clear. For example, a null-body local remote
method invocation (RMI) takes, on the same node,
at least 18 ms, well over the average time for a
MARS read. For remote interactions (not plotted
in Figure 5), an RMI between a Sun Ultra 10 and a
SPARCstation 5 connected through a 10-Mbyte
Ethernet takes about 30 ms, which an Aglets mes-
saging system increases to 37 ms. When you con-
sider that the round-trip migration time for a 2.5-
Kbyte Aglets agent in the same architecture is about
250 ms, it becomes clear that when an agent needs
more than a dozen interactions with site resources,
it is cheaper to send the agent to the site and let it
interact locally through MARS.

CONCLUSION
Linda-like coordination models, enriched with
tuple-space programming capabilities, are ideal for
mobile agent applications, allowing simpler and

more flexible application design. MARS defines a
general and portable coordination architecture,
which facilitates the design and development of
Internet applications based on Java mobile agents.

We are now extending MARS for integration
with a proxy-based framework for computer-sup-
ported cooperative work, which will lead to an
open coordination environment for seamless inter-
action of agents and humans in the context of inter-
active Web applications.12

We are also trying to resolve some open prob-
lems associated with allowing foreign application
agents to program tuple spaces. While MARS can
now confine the effects of agent-installed reactions,
it cannot deal with spamming of endless and com-
putationally intensive reactions. We also need to
develop garbage collection mechanisms to remove
reactions that are no longer useful. These, howev-
er, are general problems of mobile agent technolo-
gy, not problems specific to MARS, and they can
be resolved by adding resource control mechanisms
to the Java Virtual Machine and by defining
resource accounting models for agents. �

ACKNOWLEDGMENTS
The authors thank the anonymous referees for their useful sug-

gestions. This work has been supported by the Italian Ministero

20

18

16

14

12

10

8

6

4

2

0

M
ill

is
ec

on
ds

Local RMI

Read—1 reaction issued—
50 reactions installed

Read—1 reaction issued—
10 reactions installed

Read—1 reaction issued—
1 reaction installed

Read—0 reactions issued—
0 reactions installed

Read—passive tuple space
(no metalevel activity)

5010 100 500

Total number of base-level tuples

Figure 5. Overhead introduced by reactions. The graph shows the cost in time of the reactions in several cases, also
compared with the nonreactive case.

M A R S

35IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

dell’Università e della Ricerca Scientifica

e Tecnologica (MURST) in the frame-

work of the MOSAICO Project, Design

Methodologies and Tools of High Per-

formance Systems for Distributed Appli-

cations.

REFERENCES
1. A. Fuggetta, G. Picco, and G. Vigna,

“Understanding Code Mobility,”

IEEE Trans. Software Eng., vol. 24,

no. 5, May 1998, pp. 352-361.

2. N.M. Karnik and A.R. Tripathi,

“Design Issues in Mobile-Agent Pro-

gramming Systems,” IEEE Concur-

rency, vol. 6, no. 3, July-Sept. 1998,

pp. 52-61.

3. R.M. Adler, “Distributed Coordina-

tion Models for Client-Server Com-

puting,” Computer, vol. 29, no. 4,

Apr. 1995, pp. 14-22.

4. D. Gelernter and N. Carriero, “Coordination Languages

and Their Significance,” Comm. ACM, vol. 35, no. 2, Feb.

1992, pp. 96-107.

5. G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile-Agent

Coordination Models for Internet Applications,” Comput-

er, vol. 33, no.2, Feb. 2000, pp. 82-89.

6. D.B. Lange and M. Oshima, Programming and Deploying

Java Mobile Agents with Aglets, Addison-Wesley, Reading,

Mass., 1998.

7. D. Kotz et al., “Agent TCL: Targeting the Needs of Mobile

Computers,” IEEE Internet Computing, vol. 1, no. 4, July-

Aug. 1997, pp. 58-67.

8. J. White, “Mobile Agents,” in Software Agents, J. Bradshaw,

ed., AAAI Press, Menlo Park, Calif., 1997, pp. 437-472.

9. H. Peine, “Ara—Agents for Remote Action,” in Mobile

Agents: Explanations and Examples, W.R. Cockayne and M.

Zyda, eds., Manning/Prentice Hall, Greenwich, Conn., 1997.

10. L. Cardelli and D. Gordon, “Mobile Ambients,” Founda-

tions of Software Science and Computational Structures, Lec-

ture Notes in Computer Science, no. 1378, Springer-Verlag,

Berlin, 1998, pp. 140-155.

11. P. Domel, A. Lingnau, and O. Drobnik, “Mobile Agent

Interaction in Heterogeneous Environments,” First Int’l

Workshop on Mobile Agents, Lecture Notes in Computer Sci-

ence, no. 1219, Springer-Verlag, Berlin, 1997, pp. 136-148.

12. P. Ciancarini et al., “Coordinating Multiagent Applications

on the WWW: A Reference Architecture,” IEEE Trans.

Software Eng., vol. 24, no. 8, May 1998, pp. 362-375.

13. E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles,

Patterns, and Practice, Addison-Wesley, Reading, Mass., 1999.

14. S. Ahuja, N. Carriero, and D. Gelernter, “Linda and

Friends,” Computer, vol. 19, no. 8, Aug. 1986, pp. 26-34.

15. A. Omicini and F. Zambonelli, “Coordination for Internet

Application Development,” J. Autonomous Agents and

Multi-Agent Systems, vol. 2, no. 3, Sept. 1999, pp. 251-269.

Giacomo Cabri is a PhD student in computer science at the

University of Modena and Reggio Emilia. His current

research interests include tools and environments for par-

allel and distributed programming and object-oriented pro-

gramming. He is a member of the Italian Association for

Object-Oriented Technologies (TABOO).

Letizia Leonardi is an associate professor in computer science

at the University of Modena and Reggio Emilia. She

received a PhD in computer science in 1988 from the Uni-

versity of Bologna. Her research interests include design

and implementation of parallel object environments on dis-

tributed, massively parallel, and heterogeneous architec-

tures. Leonardi is vice president of TABOO and a member

of AICA.

Franco Zambonelli is a research associate in computer science at

the University of Modena and Reggio Emilia. He received

a PhD in computer science in 1997 from the University of

Bologna. His current research interests include tools and

environments for parallel and distributed programming,

Internet computing, and coordination technologies. He is

a member of ACM, EuroMicro, IEEE, AICA, and

TABOO.

Readers can contact the authors at {giacomo.cabri, letizia.leonardi,

franco.zambonelli}@unimo.it.

You can find many of the mobile agent systems and coordination architectures mentioned
in this article at the URLs listed below. Several sites offer free downloads of the systems.

Ambit • http://www.luca.demon.co.uk/Ambit/Ambit.html
ARA • http://www.uni-kl.de/AG-Nehmer/
D’Agents • http://www.cs.dartmouth.edu/~agent/
General Magic • http://www.genmagic.com/
IBM Aglets • http://www.trl.ibm.co.jp/aglets/
Java2go • http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go/
JavaSpaces • http://chatsubo.javasoft.com/products/javaspaces/
MARS • http://sirio.dsi.unimo.it/MOON
MOLE • http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html
PageSpace • http://flp.cs.tu-berlin.de/pagespc/
SOMA • http://www-lia.deis.unibo.it/Software/MA/
T Spaces • http://www.almaden.ibm.com/TSpaces/
TuCSoN • http://www-lia.deis.unibo.it/Research/TuCSoN/

Mobile Agents and Coordination Resources

