
 1

Domain Name System with Security Extensions

Charishma G Shivaratri
Computer Science and Engineering

University of Texas at Arlington
charishma_gs@hotmail.com

Abstract

Names are needed to abstract away details of location, authorization and human
readability. In the vast world like the Internet, it becomes important to have naming
systems to help the user select or extract the information he requires, in a form that is
human readable. Many naming services are implemented, Domain Name System (DNS)
being one of them. DNS was invented to provide a scalable naming system for the
Internet and it provides a good mapping between human understandable mnemonics and
machine-readable IP addresses (Internet Protocol addresses). DNS was developed early
in the history of the Internet when the risk environment was more benign, thus is
vulnerable to attacks. This paper describes DNS and measures taken to improve its
performance. New security enhancements are implemented to counter the threats and to
protect data authenticity and integrity.

Keywords
Domain Name System (DNS), Spoofing, Cache-poisoning, digital signatures, Authentication,
Encryption.

1. Introduction15

 Naming is one of the most important and most frequently overlooked areas of computer
science. A name is a symbolic representation of an object or an action. A name only has meaning
within a particular naming context. A name space is the set of all possible potential names in a
particular context. The naming domain is the set of all possible things that can be named in a
particular context. A binding is a mapping from a particular name to a particular object. Within a
context a name has at most one binding. Resolution, or name lookup, turns a name into the thing
it represents. An attributive name is a name whose resolution returns the object in question, or
provides a name for the object in a different context. If this new name can then be used to access
the object the new name is an address. Conventionally, a name has tended to mean a logical way
of referring to an object in some abstract name space, while the term address has been used for
something that specifies the physical location. A name server is used to convert names into
addresses.
 With the advent of Internet and with wide-area distributed systems, it becomes important to
have a naming system, which must be standard, structured and scalable. The system should also
contain information in human readable form that allows users to navigate through the vast library
along with addressing formats to the name server to know where to start searching. Domain
Name System is one such Naming Service. It is tree structured name space database, whose

 2

principle task is to provide a mapping between the human readable mnemonics to numerical
machine-readable IP addresses. DNS was introduced when threat factors to the Internet
environment was not well introduced. It has therefore become important to address all
vulnerabilities of DNS and make it foolproof and secure against the attacks and failures.
 This paper is organized as follows: Section 2 introduces the Domain Name System. Section 3
lists out the vulnerabilities of this system while the following section addresses issues, which will
make the system better adaptable to external attacks. Finally Section 4 puts everything together
and provides the conclusive remarks with the future work.

2. Overview of Domain Name System12

 DNS is a hierarchical, distributed database that provides mappings between human-readable
domain names to machine-readable IP addresses [4] DNS forms an entity of WWW architecture
that also includes the client using a browser and the server [13]

 Resolve

 Address

Fig 1. Entities of WWW Architecture

DNS has a tree structure with distribution of information location and administrative control. The
database is spread over many name servers each handling a portion of the space tree. DNS
resolvers query these servers for IP address corresponding to a host name. Each sub-tree in the
DNS tree is a domain and each node of the tree has a label. DNS addresses can be relative or
fully qualified. A fully qualified domain name of each node is formed from the labels and each
ancestor all the way to the root. It is unique for each node. A relative address can be converted by
appending the local domain information. For example, cse.uta.edu has a structure depicted in Fig
2.

 Root

Top Level

Fig 2. DNS Domains

DNS

Client Server

.

.com .edu

uta.edu

cse.uta.edu

 3

The final most significant labels fall into three categories:
• arpa: Special facility used for reserve translation i.e going from IP address to fully qualified

domain address.

• three letter codes: To identify the organization hosting the computer.

com- commercial
edu- educational
gov- government
int- international orgs
mil- military
net- network related
org- misc organizations

• two letter codes: To indicate the country of origin.

 Each domain is administered by some organization that is responsible for the correctness of
data entering the name space. Organizations can delegate control of sub domains to any other
organizations. A name space is divided into series of zones, which are that part of the domain that
has not been delegated. These are based on syntactic separators (periods) in domain names. Each
zone has two or more authoritative name servers (AS) that are responsible for keeping the
information of the zone up-to-date. One of these is the primary name server, which has the master
file, and when new hosts are added to the zone, this server must make the edited file public to
other servers in the zone. The secondary servers periodically fetch the contents to keep
themselves updated. DNS information is stored in each name server as a set of Resource
Records (RR) that form the body of the reply to DNS query. Each record specifies type (A-
address, HINFO- host configuration etc.), class, and value as attributes. Two RRs are assigned
specific functions: Start of Authority (SOA) and Name Server (NS) that are used to indicate the
delegation of a part of a domain of a name server. SOA contains the minimum expiration time for
any records within the zone. The NS records define the AS for the domain.

Bits 0-15 Bits 16-31
Domain Name
type class
Time to live
Resource Data length Resource Data

Resource data

Fig 3 Resource Record Format

The domain name is the query name from the query. The type is the query type. The class is 1
for the Internet domain. The time to live is the time for which the information can be cached by
the client, typically two days, expressed in seconds. The resource data length specifies the
number of bytes of resource data.

 4

2.1 DNS Message Format

 DNS message has a header and the following: question, answer, authority and
additional. RR is the unit of information. The common RRs are:
• ‘A’ record, which contains a 32-bit IP address.
• CNAME, which maps an alias to a canonical domain name.
• HINFO, which contains host configuration information.
• MNS, which contains the host name which is an authoritative server (AS) for that

domain.
• MX, which contains host name acting as a mail exchange.
• PTR, which contains domain name corresponding to the IP address.
• SOA, which contains domain information.

Question section carries:
QNAME- target domain name
QTYPE- query type
QCLASS- query class
Answer section carried RRs that answer the query.
Authority section carries RRs that describe the authoritative servers.
Additional section carries other RRs.

Bits 0-15 Bits 16-31
Identification flags
number of questions number of answer RRs
number of authority RRs number of additional RRs
questions
answers (RRs)
authority (RRs)
additional information

Fig 4 Format of DNS query and response

The 16 flag bits give more information about the query:
QR – Query (0) and Response (1)
Opcode – 4 bits
 0 – Standard query
 1 – Inverse Query
 2 - Server status request
AA– Indicates that the server is authoritative for the domain in question (1)
RD – recursive mode denied (0)
RA- server handles queries recursively (1)
Rcode- 4 bits that indicate the status:
 0 – No error

 5

 1 – Malformed query
 2 – Server failed
 3 – Name does not exist
 4 – Query type not supported
 5 – Server refused to answer

2.2 DNS Functioning

 The process of retrieving data from DNS is called name resolution. The resolver queries the
local NS. The resolution can be iterative or recursive. In the iterative mode, the NS, which
receives a query, upon not knowing how to resolve it, will forward it to other servers that are
likely to know the answer. These servers will be initialized with some authoritative servers from
the root zone. For example, when a root server receives an iterative query for domain name
cse.uta.edu, it refers the querier/resolver to edu servers and finally the authoritative servers of
cse.uta.edu are located and IP address calculated. In recursive mode, server finds out answer to
query by contacting other servers itself and eventually returns the answer. To improve the speed
and reduce the computation cost, each server maintains a cache to store previous results and a
time to live tag will refresh the cache on a timely basis. As described above there is distribution
of authority that makes the DNS scalable, robust and distributed.

3. Vulnerabilities2

One of the main goals of the design of DNS is to have distributed administration. This
distribution is achieved by delegation of authority. By this we meet the goal of design, but at the
same time make the system vulnerable to spoofing. There is no protection of authenticity or
integrity of responses that are received from different servers. An external attacker could modify
a response or provide false information thus manipulating the data. And since the authority is
distributed, it becomes difficult to know whether to trust the responses received. This problem
can be described as a failure to authenticate DNS responses. Apart from this, cache poisoning
becomes another important problem that will make the system vulnerable to attacks.
 In cache poisoning, the attacker can trick the name server say S1 to query another server S2.
The attacker can have S2 send fake RRs or it can masquerade as S2 and send DNS response to
S1. A name server caches the results of a previous query, and this if used by S1 will result in S1
using data contaminated by the attacker. There exists a message authentication system in DNS,
but it is very weak: Every query is attached with an id that is matched with a corresponding id
from the client. If the attacker predicts this id, it can send a forged response to S1 or disable
communication between S1 and S2 by sending a denial message to collapse S2 [2].

The following sections explain some of the security extensions that are being applied to the DNS
system. This section addresses the main problems of the system:
• Protection of name servers by defining a formal specification and a security goal and

implementing a DNS wrapper
• Data authentication using digital signatures.
• Cache poisoning using DNS proxy.

3.1 DNS Wrapper2

 Attacks on DNS will result in denial of service and entity authentication to fail. Therefore it
becomes important to introduce security goals and formally characterize clients and name servers

 6

in the DNS system. To enforce the security goal a DNS Wrapper is specified, which examines
the incoming and outgoing DNS messages of a name server to detect messages that may cause
violations of the goal. It works with the authoritative name servers to detect these messages and
also drops the messages that are identified as threats.

3.1.1 DNS Prototype and Formal Specification

 A security wrapper is a piece of software that encapsulates a component such as a name server
to improve its security. Consider a wrapper w that checks DNS response packets going to a name
server and ensure that it is authentic and agreeable to the authoritative servers. If this is not the
case, then w locates and authoritative server and queries that server for authoritative answer. To
locate the server for a zone z, w starts with server s, which is known to be an authoritative server
for an ancestor zone, and queries as for authoritative servers of the child zone that may be z itself.
The search is performed by traversal of the domain tree, zone by zone. Wrapper w has two main
parts: query part and response part, which process both the queries generated by a name server
and the responses destined to it. Only those acceptable by the wrapper are forwarded for further
processing to the server. When the server needs to send a query, the wrapper generates a random
query id and replaces the server’s id with the random one. A mapping table is defined to map the
two identification numbers.

3.1.2 Performance of DNS Wrapper

 Several experiments are conducted to determine the response time, computational overhead etc
of DNS wrapper. A prototype of DNS wrapper was implemented on BIND name server. The
procedural steps involved in the experiment to check the response time are:

• Start a wrapped name server.
• Run nslookup (Appendix) to query this name server for resolving a specific number of DNS

queries sequentially.
• Record the total CPU time used.
• Terminate the wrapped name server.
• Repeat the above procedure using an unmodified name server instead of a wrapped name

server.
The mean response time for the wrapped name server was calculated to be 0.12 seconds per query
and 0.08 for each unmodified query. The average CPU times used by wrapped and unmodified
servers are 7% and 8% of the total response times. Thus the overhead of a wrapper was
determined to be largely due to the waiting times for the response messages in the message
diagnosis process.

Another experiment was conducted to detect the rate of malicious attacks of a wrapped name
server (false negative rate). The procedure involved is:

• Start a malicious name server for a new sub domain. When queried, it will return incorrect

resource records or queries with wrong ids.
• Start a wrapped name server.
• Run nslookup to query this name server for resolving a specific number of DNS queries

sequentially.
• Terminate the wrapped name server.

 7

• Terminate the malicious name server.
• Repeat the above procedure using an unmodified name server instead of a wrapped name

server.
This experiment showed that a wrapped name server detected all the attacks and prevented any
poisoning of DNS system. But the unmodified server allowed planting of incorrect data into the
cache of target server, forwarded all incorrect records to the client thus allowing manipulation of
data.

3.2 DNS Security Extensions (DNSSEC)5

 Data Authentication is another very important issues that requires careful attention in order to
ensure accuracy and integrity of data in the DNS system. The reader should note here that,
confidentiality is not an issue as the information stored in the DNS database is public. If and
when communication requirements call for private channels, the IP security system is (IPSEC) is
selected, which can be interfaced with DNS. This issue is not addressed in the paper. Interested
reader can refer to [9]. In this paper, DNS security extension (DNSSEC) mainly by using
cryptology is explained. A new variant of the existing scheme of public key cryptology is
introduced. This is based on symmetric cryptology techniques. This scheme achieves mutual
authentication, a service that had not been implemented in any previous schemes.

3.2.1 Overview

 DNSSEC uses digital signature schemes based on public-key cryptography, to achieve data
authenticity and integrity. Each node in the DNS tree is associated with some public key. Each
message from the DNS servers is signed under the corresponding private key. These keys are
used to generate certificates or signatures that preserve the identity information of each top-level
domain to the corresponding public key. Each parent signs the public keys of all its child nodes.
To introduce this scheme into the system, new RRs are defined. KEY RR [1] is used to associate
a public key to a domain name. There exists two typed of signatures for DNS messages:
transaction signatures (TSIGs) and public key signatures (SIG (0)). TSIG is used between local
servers, to secure updates or zone transfers between master and slave servers. Whereas SIG(0) is
used mainly in small-scale authentication of requests. There exist a more robust and secure
alternative, in which digital signatures sign each RRs. That is each RR is covered with a public-
key signature, which is stored in a special RR called the SIG RR [7]. SIG RRs are computed for
each RR set in a zone and this value is added to each RR set in answers to DNS queries. This is a
method by which the resolver verifies the authenticity of the server. Another signed RR called the
NXT RR (next) [7] is added, which indicates the next domain name. If the resolver queries for a
name or data that currently does not exist in a zone, a NXT RR is returned with the corresponding
SIG.

3.2.2 Symmetric Key Technique (SK-SNNSEC)

 This novel concept of DNS symmetric certificates, uses the symmetric cryptographic
techniques, and binds the owner’s identity to a secret key. This achieves an efficient chain of trust
for a DNS root to the authoritative server. In the domain tree, each node shares a master key with
its parent. The root in addition to having its own master key also has a pair of public and secret
keys. The master key of the root node is used to initiate the chain of trust to various authoritative
servers. The protocol works as described below:

 8

Suppose a local name server LS queries the root server for an IP address. The root is not
authoritative for this query and thus will forward the reslover LS to its child server. The root
server generates a secret key Ka, which is encrypted and sent to the LS along with a symmetric
certificate. LS and the corresponding server will share this Ka. LS queries the server by sending
the request again along with the certificate. The server will extract Ka form this and encrypts a
new key Kb. To communicate this key to the next level, the server uses another certificate and
inserts this key within it. This key will now be shared between the child server and LS. If the IP
address is obtained then it is sent to LS symmetrically signed with Kb. Symmetric certificates can
be cached and used by LS for similar future requests.
 In this method the master keys are used to create the certificate, which allow safe transfer of
keys between levels. For this scheme to be initiated apart from the roots master key, it is required
for the resolver to have an authentic copy of the roots public key. When the resolver contacts the
root for the first time, it sends a DNS_RootCert_Req request encrypted with this public key. The
resolver also includes within this, two secret keys K1 and K2 and a header (identity, lifetime of
encryption, random number, and timestamp). The root server will create a certificate for itself,
which will be signed by K1 and K2 and then sent to the resolver. This establishes an
authenticated channel between the querier and the root server. Public-key cryptology is used only
the first time the resolver communicates with the root server. After this, the communication will
be secure with symmetric-key protocols.
 Note that this system considers only iterative queries. The reslover may send a recursive query
to the server, which then is forced to interact with other name servers in order to find answers.
But due to the large overhead associated with it, many root and top-level servers are configured
not to accept recursive queries. Another issue to be noted is that a queried name server may return
several authoritative servers for the zone. Resolvers therefore use a roundtrip time (RTT) as a
parameter to choose among the different servers. RTT measures the time necessary for a name
server to respond to queries, and outputs the closest server to the reslover. Since the names
servers for a zone store same secret keys, it is required to generate just once certificate for the
server, that being the closest.

3.2.3 Performance

 Symmetric-key techniques can be compared to the existing public-key scheme to show that it
has a better performance:

• SK_DNSSEC uses very short certificates. With the same amount of cache it is possible to
store more data which: manages the memory efficiently and also reduces the delay
performance and also the number of messages in the network. The zone data file thus
becomes more manageable and smaller.

• SK-DNSSEC does not allow reuse of certificates. This provides better protection against
replay attacks.

• This scheme adopts a concept of mutual authentication that is when a DNS server
receives a request it determines whether the request is from an authorized server. Mutual
authentication is necessary to prevent IP spoofing attacks. Some servers maintain an
access control list which enumerates the IP addresses of the resolvers that are allowed to
query that server.

• SK_DNSSEC provides confidentiality when required in order to manage a large private
domain spaces, by including the DNS_Req and DNS_Ans directly into the symmetric
encryption.

• SK_DNSSEC employs very small signatures and only one signature is needed to be sent
for each query. A secret key is approximately 128 bitts long. Since DNS runs over UDP

 9

with datagram size of 512 bytes, we can easily conclude that both the signatures for
answers and referrals will fit into the datagram.

• This scheme provided very strong security protection and overall data integrity. Mutual
authentication is supported at low costs.

• This approach is scalable. the DNS tree structure proves an important feature in this
aspect in that, each level in the tree maintain relevant information which is exchanged or
shared with lower levels. Initially only the root public key is stored and successively it
will be the root certificate. The servers need to store any information about the resolvers
since the parents pass on this information. In case of a loss, information can be retrieved
from DNS server upstream in the network.

3.3 DNS Proxy6

 To counter cache-poisoning problem that has been explained earlier, many schemes have been
proposed. A credibility level scheme in which resource records from a more credible source takes
precedence over those from a less credible one, was implemented. A more efficient design is one
that introduces a concept of DNS proxy. In this design, a domain name space is portioned into
regions called realms, which is served by a set of servers. Depending on the query of a DNS
request, the proxy forwards the query to the responsible servers. By this way, certain records that
do not refer to the realm to which the query name belongs, and those that satisfy a set of filtering
rules are removed, thus protecting the query.

4 Merits and Shortcomings of the Domain Name System design

 As discussed thus far in this paper, it has become clear that DNS, though a convenient system
for the users of the Internet, may not be the most efficient and secure systems. Nevertheless, DNS
has some merits that have made it clearly the most popular and most widely used naming
systems. This section puts it all together, explains the current technologies and compares features
of DNS with other systems.
 Considering the amount of naming data and the scale of networks involved, DNS Internet
implementation achieves relatively short average response time for lookups. The objects named
are primarily computers, mail hosts and domains. The algorithms for portioning, replicating and
caching naming data are used to achieve better response time. Since computer-IP address
mappings and mail hosts identification change relatively infrequently, caching and replication
prove lesser overheads in terms of updating data. Another issue to be mentioned is that, apart
from computers DNS also names one other service: name service. DNS assumes that there exists
only one name service per domain; therefore the user does not need to explicitly mention the
service. Electronic mail services automatically select this service by using the appropriate type of
query when contacting DNS servers. This facility is extensible to other services that have only
one implementation per domain, but is not applicable to services such as file services that have
multiple instances in a domain.
 Also, DNS allows naming to be inconsistent, that is a client may receive stale data, but this will
be of no consequence till the client actually uses this stale data. The DNS does not address this
issue on how to detect staleness of addresses need to be detected. Another aspect of inconsistency
that is bound to occur in DNS is because it has a restrictive, centralized model for entering names
into a naming database be adding them to a local file. System administrators at different locations
will manipulate data, which may not be updated at all locations leading to inconsistency.
 In summary, DNS stores a limited variety of naming data, but this is sufficient for common
applications such as e-mail. It can be argued that DNS database represents the lowest common

 10

denominator of what would be considered useful by the many user communities on the Internet.
But what still remains a challenge is to make DNS rigid with respect to changes in the structure of
the name space; make the DNS secure against all threats and attacks, solve the inconsistency
issues that exist in DNS.

4.1 Other improvements to DNS

 Security extensions and enhancements to the DNS gives a view of just one of the many
dimensions of the DNS improvement requirement. Other improvements can also be introduced to
the existing system to improve it further.
• Replication Architecture for the DNS: This design takes advantage of the recent advances in

disk storage and multicast distribution technology. Each geographically distributed server
contains a complete and an up-to-date copy of the entire DNS database. These servers are
called the replicated servers. To keep the records up-to-date, new resource records are
distributed over satellite channels or terrestrial multicast. The design allows Web sites to
dynamically wander and replicate themselves without having to change their URLs. The
overall improvement is markedly visible in Web surfing time since the DNS lookup is
significantly reduced [14].

• DNS dynamic updates: This interesting new feature of state-of-art authorization can be
combined with existing schemes to create a more flexible and scalable authentication
approach [4]. This scheme can be used to update DNS records of hosts with dynamic IP
addresses. Especially mobile hosts that roam from one network segment to another would
benefit from keeping the same domain name even if their IP addresses change as they move.
This feature would include updating certificates stored in DNS. This can be done by adding
new certificates or by updating the existing ones. In the second case, the life times of the
certificates need to be reduced to reduce the risk related to revocation. This approach is also
considered a replacement to the traditional manual update of zone files. With dynamic update
the changes can be done at a remote site and the client performs sanity checks on the data.

4.2 BIND System

 The Berkeley Internet Domain System (BIND) is an implementation of the DNS running on
BSD UNIX. Client programs link in library software as resolver. DNS named server computers
run the named daemon. BIND allows for three categories of name server: primary, secondary,
and cache-only. The named server implements just one of these types according to contents of the
file. The cache-only server reads in from the configuration file sufficient names and addresses of
authoritative servers to resolve any name. There after they only store this data. This type of server
reduces network traffic and speeds up response time.

5 Conclusions

 This paper addresses the importance of naming in the computer science world and focuses on
the Domain Name System and its Security aspects. In a distributed environment such as the
Internet, naming is the only way to identify objects, or to specify a particular action to be
performed. DNS is one naming system that is adopted for the Internet. It is a distributed database
with a hierarchical tree structure. It is globally available that is any machine that connects to the
Internet can access the DNS. Its hierarchical structure makes it scalable. DNS builds a sort of a
logical structure for names that are globally unique. These are some of the plus points of this
system. Other issues to be dealt with are: mapping between different levels, updating values at

 11

different servers, improving performance delays and most importantly security and
authentication.
 The hierarchical structure and the global standards used by the Domain Name System ensure
efficient mapping between the parent and the child nodes in he tree. Caching is the most optimal
strategy used to improve the delay performance. This paper pays attention to the last category of
problems: Security and Authentication. Since the DNS was invented when the threat attacks to
the Internet were not well understood, the system now is vulnerable to different kinds of attacks.
Spoofing, cache poisoning, data manipulation are some of the issues addressed in this paper.
 A formal approach is introduced to prevent spoofing: DNS Wrapper. This piece of software acts
as a checkpoint for all the queries and responses that traverse in the system. It has functionality to
do a validation check on the resolvers which send the query and also verifies the authority of a
name server. Cache poisoning is attacked by DNS proxies. Data integrity and authentication is the
most important issue. It is believed that authorization problems subsume authentication issues. In
the case of DNS, which has a natural authorization structure (hierarchical structure),
authentication schemes like cryptography can be used. A new scheme Symmetric Key technique
(SK- DNSSEC) is described, which has better performance that the existing public-key schemes.
The performance of both DNS wrapper and the SK-DNSSEC security extensions are mentioned.

 Finally, Domain Name Service is a scalable name service provided for the Internet. It co-exists
with other services like the Global Name Service (GNS) and X.500, which have different features
than its own. As the future work it is necessary to extend the security issues of DNS to a further
extent and make it robust. The above-mentioned schemes will have to collaborate to achieve
more efficient performance improvement. Also authorization of dynamic updates and verifying
access rights, say for mobile environments, needs to be researched upon. The d

References

[1] Sandra Murphy, Olafur Gudmundsson. “Retrofitting Security into Internet Infrastructure
Protocols”.

[2] Steven Cheung, Karl N. Levitt. “A Formal Specification Based Approach for Protecting the
Domain Name System”.

[3] Steven M. Bellovin. “Using the Domain Name System for System Break-ins”. In Proceedings
of the 5th USENIX UNIX Security Symposium.

[4] Pasi Eronen, Jonna Sars. “Applying Decentralized Trust Management to DNS Dynamic
Updates”.

[5] Giuseppe Ateniese, Stefan Mangard. “A New Approach to DNS Security (DNSSEC)”.

[6] B. Cheswick, and S. Bellovin. “A DNS filter and switch for packet filtering
Gateways”. Proceedings of the 6th UNIX Security Symposium. 1996, pp. 15-19.

[7] D. Eastlake, and C. Kaufman. “ Domain Name System Security Extensions”. RFC 2065.

[8] http://www.stopspam.org/usenet/mmf/man/nslookup.html

 12

[9] Niels Furguson, and Bruce Schneier. “A Cryptographic evaluation of IP sec”. Counterpane
Internet Security, Inc.

[10] Hugo Krawczyk. “ The order of encryption and authentication for protecting
communications”.

[11] James M. Galvin. “ Public Key Distribution with Secure DNS”. In 6th USENIX UNIX
Security Symposium. 1996.

[12] http://www.scit.wlv.ac.uk/~jphb/commos/dns.html

[13] Roberto Baldoni, Simona Bonamoneta, Carlo Marchetti. “Implementing Highly-Available
WWW Servers based on Passive Object Replication”.

[14] Jussi Kangasharju, Keith W. Ross. “A Replicated Architecture for the Domain Name
System”.

[15] http://www.internic.net

[16] Donald E. Eastlake. “ Storing certificates in Domain Name Service”. RFC 2538, IETF, 1999.

Appendix

 Nslookup is a UNIX shell command, which is a program to query Internet domain name
servers. Nslookup has two modes:

• Interactive
• Non-interactive

 Interactive mode allows the user to query name servers for information about various hosts and
domains or to print a list of hosts in a domain. Non-interactive mode is used to print just the
name and requested information for a host or domain. Iterative mode is used when no arguments
is provided. In that case a default name server will be used. Another case in which this mode
operates is when the first argument is a hyphen (-) and the second name is the host name.
 Non-Interactive mode is used when the name or the IP address of a host to be queried is given
as the first argument. The second argument is the host name or the address of a name server.

