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Abstract – This document describes the functionality, the hardware and software components of 
the NRL-66 ADC board that was developed during the author’s summer research stay at the 
NRL Computational Multiphysics Laboratory, lead by Dr. John Michopoulos. 

1. Introduction 
The NRL-66 ADC (short: ADC66) board has been developed to enable wireless reading of 

the six Wheatstone-bridge load cells of the NRL-66 machinery. However, it was built for a 
specific purpose, one of the design goals was to keep it generic and expandable, so it can be used 
for obtaining digital reading from other sources or even to provide output to digitally driven 
actuators. In general, all active components (and the bridge) are driven by 3.3VDC obtained 
either from the USB interface (USB option) or from an external power adapter or battery 
(wireless option). 

1.1. ADC66 Architecture 
The general architecture of the ADC66 board is depicted in Figure 1, and consists of: 

• A digital interface to the host machine, that is jumper selectable between an 802.15.4 
compliant wireless-to-serial module (XBee) and a USB to serial module. The former 
option requires a wireless transceiver to be plugged into the host computer which is a 
secondary transceiver board that has been designed and built (TB66). The TB66 is 
also used when performing the initial programming of the XBee modules. 

• A “master” microcontroller (short: 1611) is realized by TI’s MSP430F1611 [10] 
running on an 8MHz crystal clock, interfacing serially (UART) to the digital interface 
module and providing an I2C interface to all the slave microcontrollers (see below). 
Port-1 of the 1611 is used to address the slaves individually through a (or several) 
demultiplexer (e.g., 74HC4514). This is needed to enable all the slaves to be 
programmed by the same code (and sending broadcast messages to them with their 
respective ports enabled to communicate their address to them). The 1611 has also 
eight LED-s (Port-2) attached for status displaying purposes. 

• Slave microcontrollers (short: 2013) are used to obtain analog data in a digital form 
and do basic filtering on such data. 
Currently, the slaves are six MSP430F2013 [11] 16-bit sigma delta ADC 
microcontrollers with I2C support (but could be any I2C compliant microcontrollers). 
Each slave has an associated RJ45 connector that connects to one of the Wheatstone 
bridged load cells through a simple RC low-pass filter. The slaves have a single, 
shared JTAG connector for programming and need “jumper-magic” to be 
programmed. 
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Figure 1.  Overview of ADC66 Architecture 

1.2. Choice of Microcontrollers 
The choice of the master and slave microcontrollers was made based on conversations with 

Dr. John Hermanson. The main reason for selecting the 1611 was the available Flash and RAM 
as well as the need for two USART interfaces. The reason behind selecting the 2013 as the slave 
was due to it 16-bit sigma-delta differential analog to digital input, its I2C capability and its form 
factor and price. The 2013 is essentially used as a programmable 16-bit ADC.  

The FT232R IC from FTDI has been selected as the serial to USB converter for its wide 
driver support, price and performance. The XBee module has been selected for its versatility and 
price/performance. 

2. Host – ADC66 Interface 
The Host to ADC66 interface shows up as a serial port on the host regardless of the 

connection (wireless or the USB) option used; both of the connection options use the same serial 
to USB converter chip from FTDI. The drivers are readily available both on Widows and 
late-version Linux machines but if needed can be downloaded from [3].  The settings of the 
serial (COM) port are: 57.6kbaud, no software or hardware flow control, 8 bits, no start bit and 1 
stop bit (8-N-1). 

A “general” (7,4) Hamming code is used for communication between the host and the 1611. 
The (7,4) code encodes 4 bits into 7 bits and enables the correction of one. To transfer bytes, 
they need to be cut into lower 4-bits and higher 4-bits parts, each encoded with the (7,4) code. 
The “lower-4bits encoded into 7-bits” is transferred before the “higher 4-bits encoded into 7-
bits”. Since on the serial bus an 8 bit transmission is used and code words are only seven bits, we 
can create special code word sequences where the left-most bit is set one thus being able to use 
easy in-band signaling for frame-starts and -ends. Table 1 shows all code words and special 
sequences used. Appendix 1 has C code snippets implementing the (7,4) encoding, and error-
correcting decoding. As an example, if we want to transmit a character “C” ASCII Hex: 0x43, 
we would need to transmit the following two codes: 0x1C 0x25   (corresponding to 3 {lower 4-
bits} and 4 {upper 4-bits}). 

Each frame transmitted between host and the ADC66 starts with the code word for 
START_FRAME and ends with the code word for END_FRAME. Frames from the Host to the 



ADC66 are called commands while frames traveling in the other direction are called responses. 
The very first byte assembled from the two code words following a START_FRAME describes 
the type of the command (command char) or response (response char).  

Table 1. (7,4) codes and other code words used. 
Data (7,4) code dec (7,4) code hex Data (7,4) code dec (7,4) code hex 

0 0 0x00 9 73 0x49 

1 15 0x0F 10 85 0x55 

2 19 0x13 11 90 0x5A 

3 28 0x1C 12 99 0x63 

4 37 0x25 13 108 0x6C 

5 42 0x2A 14 112 0x70 

6 54 0x36 15 127 0x7F 

7 57 0x39 START_FRAME 129 0x81 

8 70 0x46 END_FRAME 241 0xF1 

 

Whenever the 1611 is reset, a short comment-type message is relayed to the host reporting its 
existence. During the compilation of the 1611 code a verbose mode can be turned on (by 
uncommenting the #define VERBOSE_MODE compiler directive in global.h and then remaking 
the code by make clean; make). If the 1611 works in a verbose mode, then most of the 
commands send to it will also result in human readable comment-type responses. For example a 
“Hello” command will respond with a “HELLO” comment in addition to a general response 
message. 

The first command to the ADC66 should be a set-up command. Until such a command is 
received and the slaves are set up many of the other commands will fail. 

2.1. Host Commands 
Each command issued by the host will generate a two byte response, where the first byte is 

whether or not the command succeeded and the second byte corresponds to the command.  
Command types are summarized in Table 2 (number of parameters are without escape characters 
and command/report character). 

2.2. ADC66 Responses 
Response types are summarized and described in Table 3.  

2.3. Examples 
Example one: checking whether ADC66 is alive 

command issued:  H   (0x48) 
transmitted frame:  0x81  0x46  0x25  0xF1 
successful response:  OH  (0x4F  0x48) 
corresponding response frame: 0x81  0x7F  0x25  0x46  0x25  0xF1 

 

Example two: setting up 1 slave 

command issued: S_  (0x53 0x01) 



transmitted frame:  0x81  0x1C  0x2A 0x0F 0x00  0xF1 
successful response:  OS  (0x4F  0x53) 
corresponding response frame: 0x81  0x7F  0x25  0x1C  0x2A  0xF1 

 
Example three: requesting reading from salve #5 

command issued: A_  (0x41 0x05) 
transmitted frame:  0x81  0x0F  0x25 0x2A 0x00  0xF1 
successful response:  V_ _ _ _ _  (0x56  0x1F 0x05 0x32 0x8C B3) 
corresponding response frame: 0x81  0x36 0x2A 0x7F 0x0F 0x2A 0x00 0x13 0x1C 

0x63 0x46 0x1c 0x5A  0xF1 
response’s meaning:  reading sequence number: 31. ADC buffer of slave 5 is 35,890 

which was assembled from 179 readings  
 

Table 2. Command types. 
cmd. char # params Description 

‘H’ 0 Hello; request an “alive” response. 

‘S’ 1 Set-up; parameter is the number(!) of slaves to set up. This will force 
the 1611 to set-up the slaves, i.e., let the slaves know their address. It 
will generate “parameter” number of responses and comments.  

‘A’ 1 Get reading; request the ADC buffer value of the slave pointed by 
the parameter (IDs start from 0) 

‘P’ 2 Periodic; requests the 1611 to poll the (first parameter) slave 
periodically for conversion results and relay those results to the host. 
The second parameter is the period in 50ms increments. This is the 
default behavior. 

‘R’ 2 Set Rate; will force the (first parameter) slave to set its running 
average learning rate to {(second parameter)/255}. The default value 
is 13, i.e., new samples have a weight of  0.05098. 

‘T’ 0 Trigger; will ask the 1611 to generate a port-1 interrupt at the slaves, 
forcing them to reset their running average buffers. 

‘N’ 2 Number of Conversions; will request the (first parameter) slave to 
restrict the number of samples averaged to the second parameter. It 
only is enforced if the mode of operation is “single”. Default value is 
one. 

‘1’ 1 Single Mode; forces the (first parameter) slave into single mode, i.e., 
after taking a “parameter” amount of samples the respective 2013 
turn off its ADC. 

‘9’ 1 Continuous Mode: forces the (first parameter) slave into continuous 
mode, i.e., the running average is continuously updated. This is the 
default mode. 

‘0’ 1 Soft Reset: resets the number of samples (thus the ADC buffer) of 
the slave pointed to by the first parameter. This may be used as an 
asynchronous trigger. 

 



Table 3.  Response types. 
resp. char # bytes Description 

‘C’ many Comment; the rest of the frame contains ASCII characters with 
“human understandable” information.  

‘V’ 5 Values; the first byte returned is a sequence number running from 0 
to 127. The second byte is the ID of the slave. The third and fourth 
bytes are the lower and upper byte part of the 16-bit ADC buffer 
respectively. The fifth byte is the number of samples used in 
averaging the ADC buffer. 

If periodic reporting is enabled these messages can be generated 
asynchronously (i.e., without a preceding command). 

‘E’ 1 Error; when receiving a command, and encountering an error in the 
command (e.g., wrong command length, decoding error), this 
message will be relayed with the original command char following 
‘E’. 

If there was a general error (e.g., not even the command character 
was understood), then a character ‘G’ (for general) is sent back. 

‘O’ 1 OK; behaves similarly to the Error response except it signals an 
acknowledgment to a correctly received command. The exception is 
the “Get Reading” command for which there is no OK response. 

 

3. Master – Slave Internal Interfaces 
There are three interfaces between the 1611 master and the 2013 slaves: 

1. The data interface between the 1611 and the 2013-s is an I2C [6] physical interface for 
which the 1611 has native register support and the 2013 can be programmed to 
support.  

2. The trigger interface is a single common port (P3.0 on the 1611 and P1.4 on the 
2013-s) that the 1611 can use to force conversion at the slaves. This means that if P3.0 
is raised an interrupt will be generated in all slaves, forcing them to reset their buffers 
and restart their ADC-s. 

3. The address interface is Port-1 of the 1611 demultiplexed to individual 2013-s on their 
P1.2 input. P1.7 of the 1611 is used to disable the demultiplexing, thus a total of 126 
slaves are possible (address 0 is the broadcast address, and 127 is the master). This 
feature enables that all 2013-s be programmed with the same code; the 1611 will send 
a broadcast I2C message to a port-1 addressed slave to set its I2C address. For example 
if Port-1 of 2013 outputs 0x03 it means that slave #4 (as salves are numbered from 
zero but their addresses start from 1) is going to receive an I2C broadcast 
communication telling it that it indeed is slave #4. To disable demultiplexing the 1611 
should keep the MSB of Port-1 high.  



3.1. I2C Communication 
Due to the lack of memory in the 2013 there is no error detection or correction on the I2C bus. 

However, the clock generation and the acknowledgment bits are somewhat countering the need 
for such error detection/correction scheme. 

The I2C standard divides modules on the bus by their function into four categories: master 
transmitter (clock is generated, slave is addressed, slave is written, acks are received), master 
receive (clock is generated, slave is addressed, slave is read, acks are transmitted), slave receiver 
(clock is received, address is received, data is received, acks are sent), and slave transmitter 
(clock is received, address is received, data is transmitted, acks are received). Every eight bits of 
data must be followed by an acknowledgment bit (pulling SDA low) from the receiver. The first 
bit of the communication describes whether the master is in receive or transmit mode while the 
remaining seven bits designate the address of the slave addressed.  

In the ADC66, the only I2C master on the bus is the 1611, i.e., none of the 2013-s can 
generate the clock or initiate data transfer. The 1611 can work both as an I2C master transmitter 
in which case it will send commands to a 2013 slave or as an I2C master receiver. Regular 
commands transmitted from the 1611 when it is in a master transmitter state are summarized in 
Table 4. When the 1611 is in a master receiver state, it implicitly requests the addressed slave to 
report its ADC buffer and buffer size. The report size (when the 1611 is in a master receiver 
mode) is always three bytes long. The first byte is the low-byte of the ADC buffer, the second 
byte is the high-byte while the third byte corresponds to the buffer size. 

When the 1611 is in a master transmitter state and sends a broadcast message, it will always 
enable one of the slaves’ P1.2 ports by its own corresponding Port-1. In this case the payload is 
always one byte long and carries the future I2C address of the P1.2 enabled slave. One 
technicality to remark here upon is that slave numbers are internally increased by one, i.e., 
slave#0 will have address: 1, slave#1 will have address: 2, etc.  

4. Hardware 
This section outlines the hardware design, and hardware features of both the ADC66 board 

and the TB66 transceiver module. 

4.1. ADC66 Hardware 
The main architecture of the ADC66 was given in Figure 1. In this section we provide pictures 

of the real hardware, describe jumper settings, and programming procedures of both the 1611 
and the 2013-s. A schematic for the hardware can be found in Appendix 2 (made partially with 
Kicad), while Appendix 3 shows locations of various components on the board. Figure 2 depicts 
the ADC66 board for our “aesthetic pleasure”. Figure 3 shows the ADC66 board with various 
jumpers, connectors, and LEDs identified (with reference to the schematics). 

4.1.1. DC 
The DC power jack is used to supply the ADC66 with power if not operating from power 

drawn from the USB connector. The DC plug can take voltages from 5VDC to 8VDC with the 
positive terminal located in the middle of the jack.  

4.1.2. USB 
The USB connector is a mini USB 2.0 socket. It can be used to talk to the ADC66 (if 

respective jumpers are set) and/or to provide power to the ADC66. 

 



Table 4.  I2C commands. 
cmd. char #params Description 

0x01 1 Set Conversion; the parameter is the number of conversions to use in 
the running average ADC buffer if operating in a “single” mode. 

0x02 1 Set Rate; the parameter is a function of the learning rate of the running 
average buffer: {parameter}/255 

0x04 0 Set Continuous; set the slave to continuous operation mode. 

0x08 0 Set Single; set the slave to single operation mode. 

0x10 0 Reset; reset the slaves ADC buffer and counter. 

 

 
Figure 2. ADC66 Board (unedited). 

4.1.3. JPP 
The JPP jumper selects the power source for the ADC66. If it is jumpered on “1-2” (as shown 

in the figure), the DC power jack is selected as the power source. If it is jumpered “1-3”, then the 
USB interface provides the power. A word of caution: the current drawn from the USB 
connector can be in the order of 0.5A. Even if the ADC66 is set-up to use USB based 
communication. the JPP may be plugged to “1-2” powering the ADC66 from the DC plug.  



4.1.4. JPR and JPTT 
JPR and JPT determine the method of communication with the host; they should always be set 

together. If set to “1-2” (as shown in the figure) wireless communication (the XBee module) is 
selected. If they are set to “1-3” the USB communication method is selected. 

4.1.5. RXLED and TXLED 
If USB communication is enabled, the RXLED and TXLED will flash whenever data is 

received or transmitted on the USB interface. 
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Figure 3.  Jumpers, connectors, and LEDs on ADC66. 

4.1.6. QL1-QL8 
These are general purpose LEDs driven from Port-2 of the 1611. They can signal the status of 

the system or help with debugging. Currently QL1 is set to flash periodically, indicating that the 
module is operational. 

4.1.7. RJ0-RJ5 
RJ0 to RJ5 are RJ45 receptacles to connect to the measured Wheatstone bridges. The pin-out 

is shown in the schematics in Appendix 2. Each RJ45 connector has two LEDs built into its case, 
driven by the corresponding 2013-s (port-2). The yellow LED (Y-LED) is flashing very quickly 
(seems to be on) when the corresponding 2013’s ADC is operational. The green LED will flash 
slowly (about once in a second) if the 2013 is powered and will flash more rapidly (about twice a 
second) if the corresponding 2013 has received its address. 



4.1.8. SWM1 and JPMRS 
The SWM1 switch and the JPMRS jumper are used to reset the 1611. The jumper can be used 

to keep the 1611 switched off (in a reset state), a requirement when programming the slaves. 

4.1.9. SWS1 
SWS1 may be used to reset all 2013s, as their respective reset pins are connected together. 

4.1.10. EXP CNN 
The expansion connector can be used to connect daughter boards to the ADC66 motherboard. 

Such a daughterboard is detailed in Appendix 5. The pin-out of the expansion connector is given 
in Table 5. 

Table 5 Expansion connector pin-out. 
Pin Function Pin Function Pin Function Pin Function 
1 SBUS-6 2 TEST [11] 3 SBUS-7 4 SCL/P1.6 [8] 
5 SBUS-8 6 SCLK/P1.5 [7] 7 SBUS-9 8 SMCLK/P1.4 [6] 
9 SBUS-10 10 SDA/P1.7 [9] 11 SBUS-11 12 RESET [10] 
13 SBUS-12 14 P1-BUS P1.0 15 SBUS-13 16 P1-BUS P1.1 
17 SBUS-14 18 P1-BUS P1.2 19 SBUS-15 20 P1-BUS P1.3 
21 N/C 22 P1-BUS P1.4 23 N/C 24 P1-BUS P1.5 
25 N/C 26 P1-BUS P1.6 27 N/C 28 P1-BUS P1.7 
29 GND 30 +3.3V 31 GND 32 +3.3V 

 

4.1.11. Programming the 1611 Master 
The code for the 1611 has been written to be compiled with mspgcc [7]. We have used an 

OLIMEX made USB JTAG programmer [8] (with an OLIMEX made MSP430F161 breakout 
board [9]). The general 14pin JTAG programming connector is JPMT. The JPMIN and 
JPMOUT jumpers are mutual, only one and exactly one of them needs to be jumpered during 
programming. If JPMOUT is used, then power to the ADC66 has to be supplied through either 
the USB or the DC jack (see their discussion above). If JPMIN is used then all(!) external power 
needs to be disconnected and it is recommended that all RJ connectors are disconnected as well 
(so they do not draw power from the programming unit). After programming, it is recommended 
to apply a reset. We have mostly used the JPMOUT option. 

4.1.12. Programming the 2013 Slaves 
Programming the slaves is a little more involved as they are connected together and share a 

JTAG connector, yet only one unit a time can be programmed. As the 2013-s have their pins 
multiplexed (i.e., among other with functions of the I2C) the 1611 has to be held in reset state 
during programming (e.g., by placing a jumper on JPMRS or holding SWM1 down).  

The JTAG connector of the 2013-s is JPST, with JPSIN and JPSOUT as the power selectors 
for programming (see description of JPMIN and JPMOUT in the previous section). It is 
recommended that the JPMIN option is used with all(!) other connectors (including RJ45 
connectors) to the ADC66 disconnected. We have used a TI MSP430-FET430UIF debugger 
programmer [13] with the IAR Kickstart [12] suite to program the 2013-s (as neither gcc nor the 
OLIMEX programmer do fully support the MSP430F2013).  

Figure 3 shows the jumper settings of JPSCL and JPTST when the board is not being 
programmed, i.e., all jumpers on JPSCL need to be on ( “1-2”, “3-4”, “5-6”, “7-8”, “ 9-10”, 



“11-12”) and no jumper on JPTST need to be placed. This is needed to connect all 2013 I2C SCL 
pins together that need to be separated for programming. 

To program a slave some of its pins need to be connected to JPST (e.g., TEST) while some 
pins of other slaves need to be disconnected (i.e., P1.6 I2C SCL). After the JTAG connector has 
been placed on the JPST and the 1611 has been disabled, we need to select the slave to be 
programmed. This is accomplished by jumpering JPSCL and JPTST appropriately. To program 
slaves exactly one jumper can be on JPSCL and exactly one jumper can be on JPTST at 
corresponding positions, e.g., “1-2” on both of them correspond to slave number zero (closest to 
the 1611), “3-4” on both of them correspond to slave number one, “5-6” on both of them 
correspond to slave number two, “7-8” on both of them correspond to slave number three, “9-10” 
on both of them correspond to slave number four, “11-12” on both of them correspond to slave 
number five. Figure 4 shows jumper setting for programming slave number one (note the jumper 
on JPMRS as well). 

A word of advice: in order to be able to program the 2013 slaves this way, one has to make 
sure that none of them use their JTAG related pins (P1.4, P1.5, P1.6, P1.7) as outputs. A new 
2013 may need to be programmed separately (out of the ADC66) first if it had a non-compliant 
code on it before. 

 
Figure 4. Programming slave number one. 

4.1.13. XBee Transceiver Module 
A new XBee module needs to be programmed before placing it into the ADC66. This 

programming can be done using the TB66 board with the instructions provided in Section 4.2.1.  

4.1.14. Power Requirements 
All components of the circuitry have been chosen to operate at 3.3VDC. Although the TI 

microcontrollers are low-power devices they function in a power-hungry mode (constantly 
converting analog signals). In addition, the power supply has to deal with the requirements of the 
XBee module (~50mA), the excitation of the bridges (~10mA / each), and driving LEDs 
(~10mA/each). To enable a power supply as low as 4.5V, a low dropout voltage (LDO) regulator 



needs to be chosen. Unfortunately, as a rule of thumb, the more current a regulator can 
withstand, the higher its dropout voltage. Currently, the regulator employed 
(AME8815AEGT330Z) [1] can supply as much as 1.5A with a dropout voltage of around 0.6V, 
thus an operation from 4V may be possible. The regulator is protected by a schottky-diode to 
ensure that its input never goes way below its output (e.g., due to transients when unplugging 
power). The input and output of the regulator are buffered by elcaps (electrolytic capacitors) as 
well as ceramic capacitors (due to the elcaps’ high frequency behavior). 

4.1.15. Bridge Excitement 
Currently the ADC66 uses the same 3.3V power to excite the Wheatstone-bridges on its RJ45 

outputs as it is using for all other circuitry. As load cells have a typical 3mV/V resolution at 
maximum physical load (i.e., if fully loaded they will output about 9.9mV at 3.3V excitation), 
the precision of their output greatly depends on the stability of the excitation. It is recommended 
that they have their own rail of power (even if it is from the same regulator – as in the schematic) 
with high-quality capacitive buffering. 

To make readings more precise, a higher excitation voltage may be chosen. The rule of thumb 
is to have the average excitation (between positive and negative excitation) around 1.65V 
{(V-+V+)/2=1.65}. Thus, at a 20V excitation (where the max output on the bridge may be as high 
as 60mV) the excitation potentials need to be: V-=-8.35V and V+=11.65V. High-current, variable 
charge pump DC-DC converters such as the MAX629 [4] may be used in such applications. 

4.1.16. Analog Filtering 
The 2013-s provide a differential input for their AD conversion. In order to filter out 

unwanted components of the Wheatstone-bridge signal, and to limit the signal’s bandwidth, a 
low pass filter is required. Currently the ADC has a simple one-stage R-C low-pass filter with a 
-3dB cutoff at around 1.5kHz (RSF=10kΩ CSF=100nF) on all Wheatstone inputs. It may help 
the precision if CSF-s were replaced by 1μF or higher. 

It is recommended that filtering components be small SMDs, and that wires from RJ45 inputs 
to the ADC inputs of the 2013-s are either protected by ground wires and planes around them, by 
shielded cables, or by twisted pairs (currently). 

4.1.17. Expanding the System 
The ADC66 has been designed to be expandable by more slaves. The expansion connector 

should have all necessary signals for and expansion. Additional boards may be attached; 
currently the USA demultiplexer has 10 more available ports (see SBUS-OUT), but more 
demultiplexers may be added; the number of slaves can be as much as 126.  Details on such a 
daughterboard can be found in Appendix 5. 

If attaching more 2013 slaves, they will need to be connected the same way as existing ones 
are, i.e., their pins: 1,6,7,9,10,14 connected to the corresponding pins of the other slaves, and 
their pins 11 and 8 connected appropriately to a (new) block of JPTST-s and JPSCL-s. 

If actuators need to be driven by digital signals, a slave microcontroller needs to be chosen so 
as to have two serial ports (e.g., the MSP430F1611) one to be a slave on the I2C bus and another 
to talk to the actuators. 



4.1.18. Some Hardware Design Issues 
The prototype board has been assembled using breakout boards, legged and SMD passive 

components, and PDIP ICs (if available). Wire-wrap wires were soldered and used as rails 
between components.  

The I2C bus operates at around 50kHz. We have found that glitches on the bus (due to 
hardware problems with the microcontrollers) are less likely if the I2C clock is asymmetric 
biased significantly toward a high-state. 

The 1611 is recommended to have an external crystal for more reliable UART 
communication. Currently an 8MHz crystal is used (and the firmware is written accordingly) that 
requires 18pF of load capacitance. Since the 1611 requires loads on both XIN and XOUT pins 
and these capacitors are viewed as series-connected from the viewpoint of the crystal, (and there 
is a ~3pF nominal capacitance of the pins themselves), 33pF loads are used on both pins. As the 
breakout board did not allow for a reliable operation of a watch crystal on XT1, this functionality 
has been removed (the board’s primary purpose is not to have very-low power consumption 
anyway).  We recommend the reader to follow up on TI released errata-s to see the many bugs 
and workarounds with these microcontrollers.  The 1611 has many unused ports, free cycles, and 
enough memory to support its own AD conversions. 

The 2013s are operating from internal DCO clocks that have a relatively large (but for our 
application insignificant) deviation among components. They are set to run at around 20MHz to 
avoid timing and glitch problems on their I2C ports. It is speculated that by running them all from 
an external 20MHz clock source, their ADC performance would go up, however such design 
would have to deal with the EMF of that clock source as well as would have to miss out on one 
of the LEDs for display (unless 2-wire Spy-by-wire would be used for programming instead of 
the 4-wire JTAG). At this clock with the current oversampling settings and clock dividers, the 
2013s can do about 600 conversions a second. 

4.2. TB66 Transceiver Board Hardware 
The transceiver board (TB66) needs to be connected by USB to the host if the ADC66 is 

operating in a wireless mode. The TB66 uses the same USB to serial converter as the ADC66 
uses so no additional drivers need to be installed; in fact the host computer will not notice a 
difference in communication. The TB66 is depicted in Figure 5 and its schematic can be found in 
Appendix 4.  

The TB66 is a very simple board containing three major parts: the USB to serial converter to 
talk to the radio (XBee) module, the XBee module, and a power regulator for the XBee board to 
be supplied from the USB (as the 3.3Vout option of the USB to serial converter cannot supply 
enough current for the XBee to operate). The TB66 may also be used for initial programming of 
XBee modules from a host and thus should have appropriate (2mm spacing) sockets so XBee 
modules can be replaced. There is a reset button to reset the XBee module if needed. 

 
Figure 5. The TBA66 board. 



4.2.1. XBee Transceiver Module 
The XBee transceiver module is manufactured by MaxStream Wireless [5]. It provides a 

programmable, off-the-shelf serial to 2.4GHz wireless (802.15.4 compliant) interface. When the 
module is shipped it is configured to default factory settings which need to be changed for it to 
operate in the TB66 and ADC66. Detailed instructions to the XBee module can be found in [5]. 

The default settings of the XBee module are to operate at 9.6kbaud with 8-N-1. If a new XBee 
module needs to be programmed, it should be placed into the TB66 board, and then the TB66 
needs to be connected to a host. A Hyperterminal application (on Windows or similar application 
on Linux) can be used to program the XBee module, by opening the appropriate “COM” port 
(the one that is recognized as a USB to serial port by the operating system) with the above  serial 
communication settings.  

To enter XBee’s programming mode, three “+” characters have to be sent to it (e.g., by 
pressing “+” three times after each other quickly (make sure all other surrounding XBee modules 
are turned off). The XBee module will respond with an “OK” message signaling that it has 
indeed entered programming mode. Next, the following commands have to be entered relatively 
quickly so the module does not time out: 
 ATCH0C <CR> (setting the wireless channel of operation) 
 ATPL4  <CR> (set power level to maximum – 0dBm) 
 ATSM0  <CR> (turn off sleep mode) 
 ATRO50 <CR> (set inter-char timing – to avoid retransmission problems) 
 ATBD6  <CR>    (set baud rate to 57.6k) 

After the last command, the Hyperterminal will loose connection to the module. It will need to 
be reestablished by restarting Hyperterminal and setting the baud rate to 57.6kbauds. After 
setting up a connection to the module again we need to enter the program mode again (three “+”-
s) and then enter the following commands: 
 ATWR   <CR> (write configuration to flash memory) 
 ATCN   <CR> (exit command mode) 

4.2.2. Power  
A low drop-out voltage (LDO) regulator needs to be used to power the XBee module (3.3V) 

from the USB (5V) that can supply at least 50mA continuously. In our design we are using a 
FAN2504S33X [2] SMD regulator. It is not recommended to use the USB to serial module’s 
3.3V supply feature to power the XBee module. 

5. Firmware 
The firmware for both the 1611 and the 2013-s can be downloaded from [16]. The mspgcc [7] 

compiler suite and gnu make utilities have been used to develop the code for the 1611, while 
IAR Kickstart from TI [12] has been used to develop code for the 2013 (due to lack of proper 
support from mspgcc). There are slight differences between these compilers and how they handle 
direct memory writes, interrupt functions and interrupt handlers. The 2013 code contains macros 
to enable its compilation with the mspgcc compiler; however such attempt will run out of 
memory. As the free version of the Kickstart compiler has a memory limit, the 1611 code has 
been developed with mspgcc. For microcontroller programming instructions see Sections 4.1.11 
and 4.1.12. 



5.1. The 1611 Firmware 
The 1611 firmware is spread over 15 files (1 Makefile, 7 header files, and 7 code files). The 

code can be compiled by issuing a “make” command. A “make clean” command will remove 
most things unnecessary from the build directory and should be used whenever modifying a 
header file, before issuing “make”. If using the OLIMEX USB programmer (and assuming that 
the programmer files [8] are in the search path), a “make download” command will program the 
1611 device.  There has been a considerable effort to make the code readable and commented. 

5.1.1. The “global” files  
The global files contain all global variables (and their definitions in the header file), useful 

macros, and global setting macros for the firmware. It also includes general code, such as a pause 
routine and functions to decode the (7,4) Hamming code. global.h has a VERBOSE_RESPONSE 
macro that can be uncommented to relay human readable responses with each communication 
(currently uncommented). 

5.1.2. The “init” files 
The init files contain all peripheral initialization code for the 1611. These include: disabling 

the low-power detection watchdog; setting up the clock to use the crystal;  initializing the 
software clock with Timer-A (crystal clock divided by 8) mainly used for giving a 50ms heart 
rate; setting up USART0 as an I2C master, and USART1 as a UART communication peripheral 
at 57.6kbaud, 8-N-1. 

1611 ports are also set up here. Port-1 is used to address slaves (thus they are all general 
digital outputs). Port-2 is all general digital outputs to drive LEDs. Port-3 has the P3.0 trigger for 
the slaves as well as the USART0 and USART1 peripherals. Port-4 connects to the XBee module 
for possible control (unused). Ports 5 and 6 are unused. 

5.1.3.  The “main” files 
The main files contain the main execution loop of the firmware. Execution will only exit this 

thread of execution when interrupts are being handled. Interrupts interact very heavily (in a 
quasi-parallel) manner with the main loop by sharing information over global variables. The 
main loop essentially waits for two interrupt handlers to notify it (through global indicator 
variables) that “something new has happened”. These two main parts are: 

• the handling of the heart-rate, i.e., about every 50ms the main loop (forced by a Timer-
A interrupt interaction) is going to enter an execution thread where output LEDs are 
flashed (if enabled). In addition, if there is a periodic slave request, data is polled from 
the appropriate slave through I2C (synchronous) and is relayed to the host over the 
UART (asynchronous). 

• if a new character has been received over the UART from the host (as indicated by a 
global variable set by incoming serial interrupts), an execution thread is entered that 
tries to parse the incoming serial buffer for a command (a set of characters between 
START_FRAME and END_FRAME). If such a command is found then the command 
is decoded, the command byte is extracted, the number of parameters is checked, a 
response is relayed back to the host, and a corresponding code is executed. 

5.1.4. The “interrupts” files 
The interrupts files contain all interrupt handlers, i.e., handlers that are automatically invoked: 

when a character is received from UART; when the transmission of a character over USART has 



been finished; if an event has occurred over the I2C bus; if Timer-A has reached a count up 
corresponding to fifty milliseconds (50,000 divided clock hits); or when Timer-A overflows. 
More about the behavior of these peripherals is in their respective files. 

5.1.5. The “serialin” files 
The serialin files contain code that is invoked by a UART character reception interrupt. The 

serialin code manages a circular buffer (with a head and a tail pointer), in which data is placed. It 
is the main loop’s responsibility to make sure that this buffer is periodically read so as to not 
cause an overflow. The serialin files contain functions for handling the incoming serial buffer for 
the main loop to read, peek into, or delete entries. The circular behavior is hidden from all other 
functions (it is somewhat like a C++ object). 

5.1.6. The “serialout” files 
The serialout files contain code that manages the output buffer for the UART communication 

with the host. Just like serialin, serialout is using a circular buffer in which other code can insert 
characters without knowing about its circular structure. serialout is also in charge of encoding all 
communications with the (7,4) Huffman code, and has capabilities to easily insert “OK” and 
“Error” messages in the buffer. UART serial transmission is asynchronous (non-blocking), i.e., 
threads that are writing to the buffer do not have to (and cannot) wait for the data to be 
transmitted. The interrupt handler responsible for UART transmissions will interact with the 
transmission buffer (mutuality is, and has to be managed) and if the buffer is not empty, then 
transmit the next character. 

5.1.7. The “i2c” files 
The I2C files together with the appropriate interrupt handler are responsible for managing the 

master-receiver and master-transmitter operation of the 1611. The I2C transmitting and receiving 
functions are synchronous (blocking), i.e., when calling them the execution has to wait until 
bytes are sent or received.  To transmit or receive any information (before calling the write or 
read functions), global variables have to be set, filling out the number of bytes to be 
transmitted/received and the buffer to be transmitted. The write and read functions will block 
until the state automaton implemented in the I2C interrupt handlers will release a global variable 
signaling either an error condition or a success. 

5.2. 2013 Firmware 
The 2013 firmware is relatively simple and is contained in a single file. Currently the code is 

exhausting all available memory in the 2013. The code is extensively commented. 

5.2.1. The main function 
First the watchdog (low power reset) is disabled and then the temperature coefficient of the 

SDA16 is fixed (see device errata [14]. The DCO clock is set up to operate at its highest 
frequency – around 20MHz, and to source the master clock MCL and SMCL. Timer A is set up 
to count up with SMCL to 0xFFFF and generate an interrupt when overflowing; this is used to 
enable LED flashing. 

Port-1 is set up to output VREF on P1.3 (as recommended by TI) while raising edge trigger 
interrupt is enabled for P1.4. Port-2 is used to drive LEDs (as it is not used for driving and 
reading an external crystal/clock). 

The USI (programmable serial interface) is set up for I2C support in slave mode. Next, the 
SDA16 is set up to continuously sample on A0 (P1.0 and P1.1) using a built-in 1.2V reference, a 



gain of 32 and oversampling 1024 times (see SDA16 documentation for details [15]). Finally, 
interrupts are enabled. 

In the main loop, first the green LED flashing is taken care of. Depending on whether the 
slave address has been set, the countdown variable i will be set, and when zero, the green LED’s 
status will be changed (XOR-d). Then we make sure that the ADC is running if we are operating 
in a continuous mode or if the number of samples requested is less than the number collected. 
Finally, we deal with any new SDA16 obtained result, by adding it to our running average ADC 
buffer (and flash the yellow LED). Floating point operations (especially mixing them with 
integers) should be avoided as much as possible.  

5.2.2. The USI (I2C) Interrupt Handler 
Built in I2C support is somewhat limited in the 2013. This interrupt vector will be called 

whenever we have transmitted a given amount (USICNT) of bits. To deal with I2C in a proper 
manner, a state automaton has to be set up. It may appear strange that we are “sending” NACK 
messages although there is no such thing in I2C (keeping the SDA high is not acknowledging 
anyway); however this is done to maintain the states of our automaton. The interrupt handler is 
also responsible of receiving and interpreting commands as well as assembling a response when 
the 1611 is requesting data. 

5.2.3. Timer-A Interrupt Handler 
Timer-A is used to enable coarse timing mainly used for flashing the green LEDs. It is set to 

increment to 0xFFFF after which an overflow occurs, calling this interrupt handler routine. The 
handler will set a global variable true (which will be reset in the main loop of main after it has 
been processed). 

5.2.4. SDA16 Interrupt Handler 
This interrupt handler will be called when a new SDA16 result is available. It will copy this 

new result in a global variable (and set another global variable) to be processed in the main loop. 
After turning on the continuous sampling the first three samples will be thrown away by the 2013 
hardware.  

5.2.5. Port-1 Interrupt Handler 
This interrupt handler is called when Port1.4 of the 2013 is raised (by Port3.0 of the 1611) 

thus triggering the 2013 to restart its sampling process. The SD16 will be restarted and the 
number of samples set to zero (which will force the running average buffer to be emptied). 

6. Simple Visual-C++ Client 
A simple Visual-C++ written client is provided [16] in both a compiled and source code form 

to test the ADC66. No programming documentation is made available for this client software; 
however its operation is simple (using separate threads for the interface and for reading and 
writing to the serial port). A sample screen of the client is depicted in Figure 6. 

To operate the client, the COM port has to be set (in the lower right corner) and the port 
opened (“Connect”).  There are fields for displaying raw bytes received, comments, and decoded 
data.  In addition, there are fields for showing readings from eight slaves, together with a 
standard deviation of all values received.  

There are preprogrammed fields to send almost all commands to the 1611, or the user can 
assemble his own command with up to three parameters (it is important in this case to set the #pr 



field). Due to sloppy programming (and bad Visual-C++ conventions) the display fields cannot 
be scrolled; however, new information always appears in the top. Fields can be reset by “Reset”. 

 
Figure 6. A simple communications client. 
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Appendix 1. (7,4) Hamming Coding and  Decoding 
 

//Array of codes: 
unsigned char HammingCode[16] =  
    {  
        0x00 , 0x0F , 0x13 , 0x1C ,  
        0x25 , 0x2A , 0x36 , 0x39 ,  
        0x46 , 0x49 , 0x55 , 0x5A ,  
        0x63 , 0x6C , 0x70 , 0x7F };  
 
//coding is simple:  
void Convert2Code(unsigned char input)  
{  
      
    unsigned char p_low = HammingCode[input & 0x0F];  
    unsigned char p_high = HammingCode[(input>>4) & 0x0F];  
    SendByte(p_low);  
    SendByte(p_high);  
}  
 
 
//decoding is a little more involved 
// the first three functions are helper functions , the last one does the 
decoding 
 
char CorrectAndDecode(unsigned char code)  
{  
    unsigned char mask = 1;  
    unsigned char n;  
    char i;  
    for (i = 0; i < 8; i++)  
    {  
        n = A_CodeToData (code ^ mask);  
        if (n != -1)  
            // Corrected it!  
            return n;  
        mask <<= 1;  
    }  
    // did not work  
    return -1;  
}  
 
char A_CodeToData (unsigned char code)  
{  
    char i;  
    for (i = 0; i < 16; i++)  
    {  
        if (code == HammingCode[i])  
        {  
            return i;  
        }  
    }  
    // Not a code!  
    return -1;  
}  
 
char CodeToData(unsigned char code)  
{  
    char n;  
    n = A_CodeToData(code);  
    if(n != -1)  
        return n;  
    n = CorrectAndDecode(code);  
    return n;  
}  
 



int ByteToData(unsigned char low_byte, unsigned char high_byte)  
{  
    int highval=CodeToData(high_byte);  
    int retval=CodeToData(low_byte);  
    if((retval==-1)||(highval==-1))  
        return -1;  
    return(retval+(highval<<4));  
} 
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Appendix 2.  
NRL66 Schematics 



 



Appendix 3. ADC66 Component Locations 
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Appendix 4. TB66 Schematics 
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Appendix 5. An ADC66 Daughterboard (DB66) 
 

To extend the ADC66 with eight more ADC slaves, we have developed a piggy-back 
daughterboard (DB66) that connects to the ADC66 using the expansion connector. Figure 7 
depicts the ADC66 combined with this daughterboard. In this appendix we are going to provide 
descriptions, pictures, and slave programming directions to the daughterboard. At the time of this 
writing, the RJ-45 connectors of the DB66 remain unconnected as signals to be processed need 
to be selected.  

ADC66
daughter

ADC66
mother

ADC66
daughter

ADC66
mother

 
Figure 7. ADC66 with piggy-backed daughterboard. 

Programming Slaves on the DB66 
Theoretically, slaves should be programmable through the ADC66 board by setting JPTST, 

JPSCL, JPDSCL, and JPDTST appropriately; however, it is recommended that when 
programming either set of slaves (the ones on the ADC66 or the ones on the DB66) the DB6 to 
be disconnected from the ADC66. On the DB66, the SCL and TST jumper blocks have been 
replaced by dip switches. During regular operation all JPDSCL switched need to bi in their “on” 
posisiont and all JPDTST switches need to be in their “off” position (as depicted in Figure 8).  
When programming slaves only one switch in JPDSCL and only one (the correspondingly 
numbered) switch in JPDTST can be “on”. JPDSCL1/JPDTST1 will program US6, 
JPDSCL2/JPDTST2 will program US7, …, and JPDSCL8/JPDTST8 will program US13. As the 
DB66 is disconnected from the ADC66, JPDIN needs to be jumpered (and JPDOUT needs to be 
off). JPDB is the JTAG connector (which has the same functionality and connections as JPST). 

Connecting Analog Input signals 
At the time of this writing it was unclear what signals the new slaves are going to be 

processing. Thus their respective inputs have been connected to the ground using a 100nF 
capacitor and connected (using twisted pairs) to the unused upper part of the DB66 (as depicted 
by IN6-, IN6+, …, IN13-, IN13+ in Figure 9). Additional signal conditioning active or passive 
components may be placed here and their inputs connected to RJ6,…,RJ13. 



Remarks 
The heat sinks on the corners of the ADB66 are only used as distance holders so the board 

lays flat when turned upside-down (in its install position). Only the LEDs of RJ6 to RJ13 are 
connected, the rest of the pins can be connected as desired. The expansion connector on the 
bottom side was manufactured from a floppy-drive cable and when soldered, it switched sides of 
pins (see pin1 designation of connector and solder anchor in Figure 9). The schematic to the 
DB66 is similar to the schematic of the ADC66 and can be seen in Figure 10. 

 

Figure 8. Top side of DB66.



 

 

Figure 9. Bottom side of DB66. 



 

Figure 10. DB66 
schematic. 


