

SONET/SDH

- SONET (Synchronous Optical Network) is the current standard for high speed carrier infrastructure in North America.
- SDH (Synchronous Digital Hierarchy) is the European counterpart (closely related).
- Before SONET/SDH, the infrastructure was based on PDH (Plesiochronous (or asynchronous) Digital Hierarchy – 1960s).

Problems with PDH 1. Each terminal (switch) in the network runs its own clock, thus actual rates and offsets can be huge (bit rate differences up to 1.8kbps). This means that when slower speed signals are multiplexed by interleaving their bits, extra bits need to be "stuffed" into the new stream. In PDH, bit rates are not exact multiples of lower bit rates (e.g. 24*64k=1.536M≠1.544M)

Problems with PDH

- It is difficult to "pick out" (drop) a low bit rate stream out of a high bit rate stream w/o completely demultiplexing the stream.
 - Multiplexer "mountains" (stacked up).
 - Expensive and compromises network reliability (large amount of electronics).

Solution: SONET

- Network availability:
 - Specific network topologies are supported (point-to-point, ring, linear add-drop)
 - => service restoration time is less than 60ms (while with PDH it was up to several minutes)

SONET Multiplexing

- Easily implemented in VLSI.
- SONET and SDH terms are unfortunately very different.
- SONET basic rate is 51.48Mbps (STS-1 ; synchronous transport signal).
- Higher rate signals are obtained by interleaving the bytes of N (aligned) frames (STS-N) (scrambling is used to prevent long runs of 0s or 1s)

SONE	ET/SDH/	OC Rates	
SONET Signal	SDH Signal	Optical Carrier	Bit Rate [Mbps]
STS-1			51.84
STS-3	STM-1	OC-3	155.52
STS-12	STM-4	OC-12	622.08
STS-24			1244.16
STS-48	STM-16	OC-48	2488.32
STS-192	STM-24	OC-192	9953.28
STS-768	STM-256	OC-768	39,814.32
Gergely Zaruba - CSE6344 Fall 200	1		

1

SONET/SDH Rates

- SONET's basic rate is to easily accommodate DS1 and DS3 signals, while SDH's objective was to accommodate E1,E3 and E4 signals.
- The frame structure makes extensive use of pointers to indicate the location of payload in the frame (payload is not fixed in the frame). This is required because off clock offsets and transients.

SONET Multiplexing

- Non-SONET streams below the STS-1 rate are mapped into Virtual Tributaries (VTs) (or VC – virtual containers in SDH). There are 4 different VTs as shown in the next picture.
- VTs can also float in an STS-1
- STS-Nc signals have "locked" payload that cannot be further demultiplexed via SONET (e.g., for ATM over SONET).

	SONE	l Over	rhead	Ву	/tes
-	To sca	re stude	ents ©		Path overhead
Î	Framing Al	Framing A2	Trace/Growth J0/Z0		Trace J1
ction	BIP-8 B1/undefined	Orderwire E1/undefined	User F1/undefined		BIP-8 B3
3 S	Datacom D1/undefined	Datacom D2/undefined	Datacom D3/undefined		Signal label C2
Ť	Pointer 111	Pointer H2	Pointer 113		Path status G1
	BIP-8 B2	Datacom D5/undefined	Datacom D6/undefined		User channel F2
cad	Datacom D4/undefined	APS K1/undefined	APS K2/undefined		Indicator H4
Line overhe	Datacom D7/undefined	Datacom D8/undefined	Datacom D9/undefined	1	Growth Z3
	Datacom D10/undefined	Datacom D11/undefined	Datacom D12/undefined]	Growth Z4
ļ	Sync status/Growth S1/Z1	REI-L/Growth M0 or M1/Z2	Orderwire E2/undefined		Tandem connection Z5

3it Rate	Code	Wavelength (nm)	Fiber	Loss (dB)	Transmitter	Dispersion (ps/nm)
STM-1	1-1	1310	G.652	0-7	LED/MLM	18/25
	S-1.1	1310	G.652	0-12	MLM	96
	S-1.2	1550	G.652	0-12	MLM/SLM	296/NA
	L-1.1	1310	G.652	10-28	MLM/SLM	246/NA
	L-1.2	1550	G.652	10-28	SLM	NA
	L-1.3	1550	G.653	10-28	MLM/SLM	296/NA
STM-4	I-4	1310	G.652	0-7	LED/MLM	14/13
	S-4.1	1310	G.652	0-12	MLM	74
	S-4.2	1310	G.652	0-12	SLM	NA
	L-4.1	1310	G.652	10-24	MLM/SLM	109/NA
	L-4.2	1550	G.652	10-24	SLM	ffs
	L-4.3	1550	G.653	10-24	SLM	NA
	V-4.1	1310	G.652	22-33	SLM	200
	V-4.2	1550	G.652	22-33	SLM	2400
	V-4.3	1550	G.653	22-33	SLM	400
	U-4.2	1550	G.652	33-44	SLM	3200
	U-4.3	1550	G 653	33-44	SI M	530

Bit Rate	Code	Wavelength (nm)	Fiber	Loss (dB)	Transmitter	Dispersion (ps/nm)
STM-16	I-16	1310	G.652	0-7	MLM	12
	S-16.1	1310	G.652	0-12	SLM	NA
	S-16.2	1550	G.652	0-12	SLM	ffs
	L-16.1	1310	G.652	10-24	SLM	NA
	L-16.2	1550	G.652	10-24	SLM	1600
	L-16.3	1550	G.653	10-24	SLM	ffs
	V-16.2	1550	G.652	22-33	SLM	2400
	V-16.3	1550	G.653	22-33	SLM	400
	U-4.2	1550	G.652	33-44	SLM	3200
	U-4,3	1550	G.653	33-44	SLM	530

SONET Physical Specs						
Bit Rate	Code	Wavelength (nm)	Fiber	Loss (dB)	Transmitter	Dispersion (ps/nm)
STM-64	I-64.1r	1310	G.652	0-4	MLM	3.8
	I-64.1	1310	G.652	0-4	SLM	6.6
	I-64.2r	1550	G.652	0-7	SLM	40
	1-64.2	1550	G.652	0-7	SLM	500
	I-64.3	1550	G.653	0-7	SLM	80
	I-64.5	1550	G.655	0-7	SLM	ffs
	S-64.1	1550	G.652	6-11	SLM	70
	S-64.2	1550	G.652	3/7-11	SLM	800
	5-64.3	1550	G.653	3/7-11	SLM	130
	S-64.5	1550	G.655	3/7-11	SLM	130
	L-64.1	1310	G.652	17-22	SLM	130
	L-64.2	1550	G.652	11/16-22	SLM.	1600
	L-64.3	1550	G.653	16-22	SLM	260
	L-64.3	1550	G.653	0-7	SLM	ffs
	V-64.2	1550	G.652	22-33	SLM	2400
	V-64.3	1550	G.653	22-33	SLM	400

SONET Infrastructure

- SONET can be deployed as:
 - Ring
 - Linear configurations
 - Point-to-point links
- End nodes for point-to-point links are called: Terminal Multiplexers (TMs – or line terminating equipment – LTE).
- ADMs are used to add/drop low speed streams to/from higher speed streams.
- ADMs can be inserted between TMs in point-topoint configurations to yield linear configurations.

SONET Infrastructure

- Maintaining service availability in presence of failures (protection) has become a key driver for SONET deployment => rings are the most common topologies.
- Rings consist of ADMs with protection mechanisms.
- Usually SONET equipment can be configured to work in any of these configurations

