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Abstract— Localization in sensor networks is the process of
obtaining geographical location information for all deployed
sensors. Localizing each sensor node is becoming increasingly
important as more and more algorithms and protocols in the
disciplines of routing, energy management, and security have
been proposed that rely on (semi-) accurate location information.
In this paper, we study a particular approach to sensor node
localization that uses sequentially deployed beacons to localize
sensors. Our model assumes that the localization information can
be obtained by observing beacons 1-hop away from the sensors.
We show that under this simplified model the beacon deployment
problem, i.e., to find the minimum number of beacons, is (still)
NP-Complete. We then provide an approximation algorithm with
a logarithmic approximation ratio based on a set cover greedy
heuristic; we study both offline and online versions of this
approximation. Finally, we incorporate the localization accuracy
into the beacon deployment strategy by explicitly specifying
the Cramer Rao Bound (CRB) as the condition. We verify the
performance of the proposed algorithms using simulations, and
show that accurate localization can be effectively achieved using
the proposed algorithms.

Index terms: sensor networks, localization

I. INTRODUCTION

Location discovery for nodes in sensor networks is emerging
as one of the more important tasks as it has been observed and
shown that (semi-) accurate location information can greatly
improve the performance of other tasks such as routing, energy
conservation, or maintaining network security. For instance,
algorithms such as LAR [1], GRID [2], and GOAFR+ [3]
rely on the location information to provide more stable routes
during unicast route discovery. The availability of location
information is also required for geocast protocols such as
LBM [4], GeoGRID [5], and PBM [6]. To minimize the power
consumption, the GAF algorithm [7] uses location information
to modify the network density by turning off certain nodes at
particular instances.

In practice, it is often impossible to strategically deploy
sensor nodes one-by-one with localizability in mind. For in-
stance, sensor networks for military applications could be mass
deployed from airplanes. In such case, one of the methods
to obtain location information is by positioning a number of
beacons after the sensors have been deployed. Since beacons
are often expensive, there is a strong economical incentive to
minimize their numbers.

In this paper, we consider the beacon deployment problem
according to the following model. We assume that a certain
number of unlocalized sensors already reside somewhere in a
deployment area. The beacon deployment (BD) problem deals
with the question of optimally deploying beacons to localize
those nodes. The beacons are assumed to be deployed one
at a time in an online fashion. After a beacon is deployed,
we assume that it can identify the sensor nodes that it covers.
This model can be realized in a number of ways. For instance,
a mobile robot equipped with a GPS receiver can be sent to
move over the deployment area. A computer onboard the robot
can run an online algorithm to solve the beacon deployment
problem. When this algorithm decides that a beacon should
be deployed at a certain location, it will instruct the robot to
go to that location and broadcast its coordinates there. Then,
the algorithm decides on the next beacon location and moves
there, repeating the above process. Alternatively, we can use
a data dissemination method such as HEAP [8], where the
beacon deployment algorithm is hosted on a centralized node
at a fixed location. The result of each beacon deployment
is disseminated through a virtual tree imposed on the sensor
network, until it reaches the centralized node at the root.

In this work, we consider a simplified version of the beacon
deployment (BD) problem where we assume that all sensor
nodes in the network are to be localized directly from beacons.
(By directly, we mean that sensor nodes need to be localized
from the beacons 1-hop away, i.e., no multihop information
is used during the localization.) The goal is to minimize the
number of beacons while keeping the network localizable.

II. PREVIOUS WORK

Localization of nodes in ad hoc and in sensor networks has
been extensively studied in various contexts. In this section,
we concentrate on the problem of localization by deploying
beacons. An adaptive beacon placement algorithm is proposed
in [9], where beacons are deployed sequentially based on
empirically data of the perceived localization error. The per-
ceived error is obtained by observations among neighboring
beacons. When beacons are densely deployed over an area,
the perceived localization error among them should reflect the
error characteristics of the terrain or environment, which can
then be applied to estimate the localization error of the actual
sensor nodes. In [9] two beacon deployment algorithms are
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proposed, MAX and GRID, both of which deploy the beacons
to locations where the estimated error is perceived to be at its
maximum. The two algorithms differ in the size of the area
they consider. Further work in [8] provides a framework to
realize the adaptive algorithm in the real world by proposing a
distributed algorithm to disseminate the perceived localization
error into a centralized location.

The authors of [10] describe a beacon deployment strategy
with a different objective: to minimize the number of deployed
beacons (cameras) to localize mobile objects. They ask the
question: “given the workspace and an error threshold, what
is the minimum number, and placement of cameras so that
the error in localization is less than the threshold at every
point in the workspace? [10]”. Two cameras, by the means of
angle measurement, are needed to localize nodes. The goal
is to minimize the number of cameras so that the overall
error is below a threshold. While this method is not designed
to localize sensors, it introduces the notion of explicit error
thresholds as part of the design.

III. OUR CONTRIBUTION

In this work, we first show some computational complexity
results of the beacon deployment (BD). We then propose
a number of approximation methods to solve the problem.
The approximation algorithms are presented in both offline
and online versions. The offline version solves a simplified
(although still a theoretically hard) problem by assuming that
sensor node locations are known. The offline version is studied
because it serves as the performance guideline to the online
version. The online version deals with the realistic scenario
of progressively deploying beacons to localize sensors of
unknown locations. Finally, using simulations, we show that
the result of the proposed offline and online algorithms, in
terms of the total number of beacons deployed, is reasonably
close to the optimum especially at higher sensor densities.

More precisely, we first show that the general optimal bea-
con deployment problem is NP-Complete (when the number of
sensor nodes is the factor). We then propose an approximation
algorithm based on the set cover problem to solve the beacon
deployment problem that requires each sensor node to be cov-
ered by at least k beacons. We also extend the approximation
algorithm to explicitly deal with issues that impact localization
accuracy such as availability of beacons, measurement errors,
and relative position of beacons. Our methods minimize the
number of beacons (i.e., minimize equipment cost) under the
accuracy constraint explicitly specified as a threshold to the
Cramer Rao Bound (CRB).

Our work on the online version of the deployment meth-
ods is closest to that of [9], as both algorithms select the
beacon location to minimize the localization uncertainty. The
primary difference is that while the work in [9] measures the
uncertainty using empirical data, we choose to use a more
theoretical sound concept of error bounds. Furthermore, the
algorithms in [9] use connectivity measurements (i.e., Centroid
method) only. Our methods could as well work with ranging

measurements (e.g., based on time of arrival or received signal
strength measurements).

IV. PROBLEM DEFINITION AND COMPLEXITY

The offline version of the BD problem asks for the minimum
number of beacons needed to localize a given network. The
network is “given” in the sense that we know all node loca-
tions. The offline version seems pointless since by definition
all nodes have already been localized. But we study this
problem so that we have a base for comparison (an optimal
performer) for the online algorithms.

The condition for a node being localizable depends on the
measurement type. Consider the trivial case where all nodes
have ranging and signal direction measurement capacity; here
one measurement from any beacon (i.e., one neighboring bea-
con) is sufficient to localize a node. If nodes have capabilities
for only signal direction measurements, two beacon neighbors
are required. Three beacon neighbors are required if only
ranging measurements are available. In general, let the number
of beacons required for a particular measurement type be k; we
denote BD(k) as the version of beacon deployment problem
where sensor nodes require measurements from k beacons, i.e.,
each sensor should have at least k beacon-neighbors for the
sensor network to be localizable. In the following discussions
we are going to assume that the deployment space for beacons
is defined by a grid, i.e., we discretize the location space
beacons can occupy from a continuous search space, so that
we now deal with a combinatoric optimization problem. We
denote Vsensor as the set of sensors, and Vgrid as the set of all
grid locations.

BD(k) is clearly NP, since when given a solution candidate
(a certificate), a polynomial time algorithm can validate this
solution in O(k · |Vsensor| · |Vgrid |). BD(k), in fact, is a special
case of the multiset covering (MSC) problem with special
geometric constraints. We define MSC(k) as the problem of
finding the minimum number of sets that would cover each
element at least k times. The MSC is a general case of the set
covering (SC) problem, which is known to be NP-Complete.
Here, define a graph consisting of all sensors {Vsensor} and
grid locations {Vgrid} as vertices. An edge exists between a
beacon/sensor pair iff the sensor can hear the beacon. Each
vertex vgrid ∈ Vgrid can be viewed as a set containing the
vertices in Vsensor such that there is an edge between vgrid

and vsensor ∈ Vsensor. Thus, the trivial case when k = 1 is just
the set covering problem. The problem is still NP-Complete
when k > 1.

V. APPROXIMATION METHODS

A. Offline Approximation of BD(k)

For the set covering (SC) problem, there is a well-known
greedy algorithm with approximation ratio to the optimal
solution of O(ln(|X |)), where |X | is the size of the largest
set . At each step, the greedy algorithm selects a set that
covers the maximum number of uncovered members in the
superset X , until the entire superset has been covered. The
greedy algorithm performs close to the lower bound of the
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approximation ratio, as it has been shown in [11] that the
unweighted set cover problem cannot be approximated within
a factor (1− ε) ln(|X |), for any ε > 0.

Based on the greedy algorithm for set covering, we can give
a pseudo code for the BD(k) offline greedy algorithm as shown
in Algorithm 1. At each step, the algorithm selects a beacon
location from Vgrid that covers the most sensor nodes that
haven’t been k-covered. The algorithm stops once all sensor
nodes have been k-covered and returns the set of beacons
selected. In terms of complexity, the outer loop at line 5
runs at most O(min(k · |Vsensor|, |Vgrid |)) times, and the loop
statements between line 6 and 11 can be implemented to run
in O(|Vsensor| · |Vgrid |). Thus, the overall runtime complexity is
O(min(k · |Vsensor|, |Vgrid |) · |Vsensor| · |Vgrid |)

Algorithm 1 Greedy Offline Approximation of BD(k)
1: operator i � j: location i can be covered by broadcast from

location j
2: initialize ps← 0 for all s ∈Vsensor
3: U ←Vgrid
4: C← Ø
5: while ∃s ∈Vsensor : ps < k do
6: select gmax← argmaxg∈U |{s : ps < k,s � g}|
7: for all s : ps < k,s � gmax do
8: ps← ps +1
9: end for

10: U ←U−{gmax}
11: C←C

⋃{gmax}
12: end while
13: return C

Even through BD(k) is a generalization of the set covering
problem where k > 1, the same logarithmic approximation
ratio can be obtained, as stated by the following theorem.

Theorem 5.1: The greedy offline approximation algorithm
of BD(k) has an approximation ratio of ln(|Vsensor|)+1.

Proof: Omitted due to page limit.
Fig. 1(a) depicts a simple scenario illustrating the operation

of the offline greedy algorithm. The scenario consists of
two sensor nodes a and b, shown as circles, residing in a
deployment area of a 5x5 grid. The task is to deploy the
minimum number of beacons, shown as squares, so that each
sensor node connects to at least three beacons (k = 3). The
coverage radius of the beacons is 3 (i.e., a beacon at (0,0) will
cover sensors at (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0),
(2,1), (2,2) and (3,0)). As seen in Fig. 1(a), a sequence of
three beacons are deployed by the offline greedy algorithm.
The algorithm keeps a potential variable ps for each sensor
s. Initially, the potentials are pa = 0, pb = 0, and the set U
contains all 25 grid points. The first beacon is selected at grid
(2,1) as a greedy choice because the beacon would cover both
sensor nodes. Evidently, there is more than one grid point that
covers both, but we simply choose one of them. After the
first beacon location is selected, the potentials of both sensor
nodes increase to 1 (pa = 1 and pb = 1). The selected location
(2,1) is removed from the set U and added to the cover set
C. Since both potentials (pa and pb) are not k yet, a second
beacon is inserted and its location is greedily selected from the

 

(a) Offline

 

(b) Online

Fig. 1. Example of the greedy approximation of BD(k)

remaining grid points in U . The algorithm continues until both
potentials reach k (when both sensor nodes are k covered).

B. Online Approximation of BD(k)

The offline algorithm of solving BD(k) assumes that the
locations of the sensor nodes are known, which essentially
defeats the purpose of the beacon deployment. However, as
shown even this simplified problem is NP-Complete when
trying to minimize the number of beacons. In this section,
we remove the node position knowledge assumption. We
consider this problem to be an online problem in the sense
that we have to select the next beacon location based on the
feedback (i.e., how many sensor nodes have been covered)
of the previous beacon locations. (In the offline version the
feedback result is known before the beacon is deployed.) Our
basic assumption of the online version is that sensor nodes
are uniformly distributed over the entire deployment area.
We also assume knowledge on the population of the sensor
nodes. Based on these assumptions, we can design a greedy
online deployment algorithm, Algorithm 2, that selects beacon
locations by maximizing the coverage probability.

The online greedy algorithm maintains ps,g as the probabil-
ity of the sensor node s residing at grid location g. Assuming
that sensor nodes are uniformly distributed, ps,g is initialized
to 1/|Vgrid |, where |Vgrid | is the size of the potential beacon
locations. To select the next beacon’s location, the algorithm
first sums up all the neighborhood probabilities ps,g for each
grid point; a greedy choice is then made to pick the grid point
with the maximum overall ps,g value. For each of the sensor
nodes that are already covered k times, the ps,g value is set to
0, indicating that the k-cover condition of this node is satisfied.
For all other sensor nodes, the procedure Ad justProbability
(Algorithm 3) is called to adjust the ps,g values based on
the latest beacon choice. The purpose of Ad justProbability
is to reduce the scope of the possible location for each sensor
node and thus help the algorithm to make better choices
in subsequent iterations. The algorithm stops when all the
probabilities (ps,g) become zero, i.e., when all sensor nodes
are k covered. Fig. 1(b) depicts a possible outcome of the
online greedy algorithm given the same scenario of localizing
two sensor nodes in a 5x5 grid and k = 3. The shown instance
of the online algorithm took four beacons (one more than the
offline version).
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Algorithm 2 Greedy Online Approximation of BD(k)
1: operator i � j: location i can be covered by broadcast from

location j
2: initialize ps,g← 1/|Vgrid | for all s ∈Vsensor and g ∈Vgrid
3: U ←Vgrid
4: C← Ø
5: while ∃s ∈Vsensor,g ∈Vgrid : ps,g > 0 do
6: select gmax← argmaxg∈U ∑g′�g ∑s ps,g′
7: for all s ∈Vsensor do
8: if s is covered by k beacons then
9: ps,g← 0 for all g

10: else
11: Ad justProbability(p,s,gmax)
12: end if
13: end for
14: U ←U−{gmax}
15: C←C

⋃{gmax}
16: end while
17: return C

Algorithm 3 Ad justProbability(p,s,g)
1: sum← 0
2: if s � g then
3: for all g′ : g′ �� g do
4: sum← sum+ ps,g′
5: ps,g′ ← 0
6: end for
7: I← set of all g′ : g′ � g, ps,g′ > 0
8: for all g′ ∈ I do
9: ps,g′ ← ps,g′ + sum/|I|

10: end for
11: else
12: for all g′ : g′ � g do
13: sum← sum+ ps,g′
14: ps,g′ ← 0
15: end for
16: I← set of all g′ : g′ �� g, ps,g′ > 0
17: for all g′ ∈ I do
18: ps,g′ ← ps,g′ + sum/|I|
19: end for
20: end if

The initialization phase of Algorithm 2 has a runtime of
O(|Vsensor| · |Vgrid |). The condition of the outer loop at line
5 can be validated in O(|Vsensor| · |Vgrid |). Within the outer
loop, the greedy selection step at line 6 has a runtime of
O(|Vsensor| · |Vgrid |), and the for loop at line 7 also has a
runtime of O(|Vsensor| · |Vgrid |) (the runtime of the function
Ad justProbability is O(|Vgrid |). Thus, the total run time of
each iteration of the outer loop is O(|Vsensor| · |Vgrid |). In
the worst case, the algorithm will cover all grid points, in
which case the outer loop will execute in O(|Vgrid |) time.
Overall, the worse case runtime complexity of the algorithm
is O(|Vsensor| · |Vgrid |2).

One note on the actual implementation: although the online
greedy algorithm assumes that the sensor nodes are uniformly
distributed, it is equally effective if the spatial distribution of
sensors is known before the deployment process starts. One
can simply adjust the initial probability distribution to match
the perceived location distribution. If it is expected that the

sensor nodes are more likely to concentrate on a smaller area in
the deployment region then the probability distribution should
be adjusted to give higher probability to the locations within
this area. A more accurate initial probability distribution will
enable the online algorithm to make better decisions.

C. Measurement Quality and CRB

Our prior analysis makes the simple assumption that for a
particular measurement model (i.e., ranging, angle, or both),
k measurements are required to localize the node. Each
measurement is treated equally. In reality, however, noisy
measurements imply that not all measurements should be
treated equally. Certain measurement might contain more
useful information than others. Take localization using ranging
for instance, the angle between the measurements can be
important. Intuitively, we would prefer the ranging measure-
ments to come from more “spread out” beacons. Fortunately,
a convenient metrics is available to numerically qualify the
perceived localization error in relation to the measurements.

In the context of localization, the Cramer Rao Bound (CRB)
[12] is often used to mathematically qualify the lower bound
on the localization error. For the localization problem, the
CRB is a function of the following: 1) the relative locations of
the sensor nodes and the beacons, 2) the measurement model
determined by the measurement type, and 3) the noise model
characterizing the terrain and the environment. Previous works
have derived the CRB formulas for a number of measurement
types including RSSI ranging, TOA ranging, and AoA [12].
Note that the actual localization algorithm being used has no
impact on the CRB. Thus, the CRB is essentially a bound
determined solely by the particular localization scenario. It
gives an indication of how difficult a particular localization
scenario is and what is the best any localization algorithm can
do given the scenario.

D. CRB-Based Approximation of BD

We raised the issue that the localization accuracy is im-
pacted by the beacon location and the measurement noise.
Depending on the particular beacon location, the actual local-
ization result can vary greatly because of the measurement
noise. Thus, in practice it might not be sufficient to only
require that each sensor node is covered by k beacons (k = 3
for 2-dimensional ranging localization), since the localization
accuracy varies depending on how the k beacons are placed. In
this section, we address the accuracy issue in the BD problem.
In particular, we modify the offline and online approximation
algorithms presented earlier to use the CRB as the stoppage
and greedy selection criteria.

For the greedy offline algorithm, we can modify it such
that it will continue to deploy beacons until the CRBs of all
sensor nodes are reduced below a given threshold crbT . For
each sensor node s, we track the location of beacons that cover
s. Let function CRB(s) return the CRB of the node s with the
already deployed beacons. We also define a function called
CRBP(s,g) that returns the potential of the new CRB with a
new beacon g added. (The CRBs of initially unlocalized sensor
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nodes are set to infinity.) At each iteration, a greedy choice,
gmax, is made to pick the next beacon location that will cause
the maximum reduction to the CRB of the sensor nodes, i.e.,
maximizing CRBP(s,g)−CRB(s):

gmax← argmax
g∈U

∑
s:s�g

(CRBP(s,g)−CRB(g))

For the online version, since the exact location of each
sensor node s is unknown, we present it as a probability
distribution over the entire deployment area, where ps,g is
the probability of node s residing close to the grid location
g. Furthermore, the CRB calculation needs to based on a
perceived instead of the exact sensor location. Thus, if a sensor
s is perceived to be located at g′, CRBg′(s) returns the CRB of s
at g′. The greedy beacon selection is then based on maximizing
the sum of ps,g′ · (CRBP

g′(s,g)−CRBg′(s)) for all locations g′
within the range of the beacon at location g. In other words,
the greedy location choice is the one that maximizes the
overall CRB reduction of all sensor nodes considering their
probabilities of residing within the beacon range:

gmax← argmax
g∈U

∑
g′�g

∑
s

ps,g′ · (CRBP
g′(s,g)−CRBg′(s))

Fig. 2 shows results of the offline and online greedy
algorithms of BD(crbT ) running on a simple scenario of two
sensor nodes (with the same RSSI parameters as in [13]). The
CRB threshold is set to crbT = 1. The sample run for the
offline version selected three beacons while the online version
picked four. Comparing to the results in Fig. 1, which were
obtained using k-cover (k = 3) as the objective, it is clear
that the CRB requirement gives better spread of the beacon
locations. In the case of the offline version, the three beacons
selected in Fig. 1(a) constitute a spread of 45◦ angle for both
sensor nodes, while the beacons in Fig. 2(a) constitute a spread
of 90◦ for node a and 63◦ for node b. Wider angle spread
is also observed in the online version. The better spread of
the beacon locations dictated by the CRB requirement would
ultimately result in more accurate localization.

In practice, the threshold crbT is a system configurable
variable, which should be adjusted according to the desired
localization accuracy. As expected, a lower crbT would re-
sult in better localization accuracy at the expense of more
deployed beacons. The choice of crbT also affects the runtime
complexity. In the worst case, when crbT is close to zero,
the outer loops of both offline and online versions would
continue executing until all potential beacon locations are
used, i.e., O(|Vgrid |). This worst case runtime complexity of the
offline and online algorithm is O(|Vgrid |3 + |Vsensor| · |Vgrid |2)
and O(|Vgrid |4 + |Vsensor| · |Vgrid |2), respectively.

VI. SIMULATION RESULTS

We evaluate the performance of the various BD approxi-
mation methods using computer simulations. The simulation
environment consists of a number of sensor nodes uniformly
distributed over a deployment area of a 50 by 50 grid. For
every deployment scenario, we run each of the approximation

 

(a) Offline

 

(b) Online

Fig. 2. Example of the greedy approximation of BD(crbT )

methods and collect the number of beacons needed to localize
all sensor nodes. The beacons are assumed to have a trans-
mission range of 5 grid radius. For BD(k), we assume a 2-D
localization which requires k = 3. In the case of BD(crbT ), we
assume the range is obtained via RSSI readings with a constant
Gaussian noise added. We use the same signal propagation and
noise model as in [13], with the reference distance d0 = 1m, the
path loss exponent np = 2, and the noise variance σ2

dB = 1.7.
In addition to BD(k) and BD(crbT ), we also include the
result of a simple random deployment algorithm, in which
the beacon locations are i.i.d. uniform randomly selected until
the stoppage criteria (k = 3 or CRB < crbT ) is satisfied. The
simulation result presented in the figures is the average of 30
different runs with the 95% confidence interval shown as the
vertical lines.

Fig. 3 compares the total number of beacons deployed for
each of the approximation methods while varying the number
of sensor nodes residing in the deployment area. Fig.3(a)
shows the result of using k = 3 as the stop condition, and
Fig.3(b) uses CRB threshold of crbT = 1. As expected, in both
the k and the crbT cases, the online approximation methods
deploy more beacons than the offline versions. However, the
difference does not seem to increase as the number of sensor
nodes increases. This indicates that the online version would
be preferable with a denser deployment area, since the relative
difference between the online and offline version becomes
smaller as the number of sensor nodes increases.

To demonstrate the effect of the threshold crbT in beacon
deployment, we use a scenario of 20 sensor nodes in the
deployment area while varying crbT from 0.1 to 1.2. The
number of beacons deployed by the random algorithm, and
offline and online version of the BD(crbT ) approximation
methods are shown in Fig.4(a). Note that as the crbT threshold
decreases, the increase in the beacon population is faster than
linear. As shown in Fig.4(b), the actual localization error
decreases as the crbT lowered. Furthermore, Fig.4(b) shows
that the localization error stays relatively constant for all three
deployment algorithms, even though the random algorithm de-
ploys a significantly higher number of beacons than online and
offline BD(crbT ). This result demonstrates that the selected
threshold crbT effectively controls the localization error. Thus,
by selecting the appropriate crbT , we can balance the trade-off
between the localization accuracy and the overhead associated
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Fig. 3. Number of beacons deployed with various BD approximation methods

with the number of beacons deployed.

VII. CONCLUSIONS

In this paper, we have studied the beacon deployment prob-
lem for localizing sensors (i.e., sensor nodes). The objective
is to deploy the minimum number of beacons to localize all
sensor nodes. We have proposed a number of approximation
algorithms to solve this NP-Complete problem. An offline
version of the approximation algorithm greedily picks the
beacon location that covers the largest number of uncovered
sensor nodes and is used as a basis for result comparison.
The online version maintains a probability distribution of
the estimated node locations, and selects a location for the
beacon by maximizing the potential of reducing the overall
variances of the location distributions. We further describe a
variation of the proposed algorithms that uses the Cramer Rao
Bound (CRB) as the evaluation criteria, which incorporates
the localization accuracy into the deployment problem.

While our simulations only consider the ranging using
RSSI as the measurement, the proposed framework will work
for any other measurement types such as ToA and AoA.
Essentially, the k-cover and crbT requirements are independent
of the measurement types except for the model from which
k and CRB are calculated. While in this work the sensor
nodes are localized via the beacons directly, we are working
on extending our framework to allow collaboration among
sensor nodes. Intuitively, such the collaboration could result
in smaller number of beacons required, as sensor nodes would
need to hear less of the beacons directly.
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