
A Novel Approach to Trajectory Analysis Using
String Matching and Clustering

Madhuri Debnath
Department of Computer Science

and Engineering

University of Texas at Arlington

Arlington, Texas

Email: madhuri.debnath@mavs.uta.edu

Praveen Kumar Tripathi
Department of Computer Science

and Engineering

University of Texas at Arlington

Arlington, Texas

Email: praveen.tripathi@mavs.uta.edu

Ramez Elmasri
Department of Computer Science

and Engineering

University of Texas at Arlington

Arlington, Texas

Email: elmasri@cse.uta.edu

Abstract—Clustering of sub-trajectories is a very useful
method to extract important information from vast amounts of
trajectory data. Existing trajectory clustering algorithms have
focused on geometric properties and spatial features of trajec-
tories and sub-trajectories. In contrast to the existing trajectory
clustering algorithms, we propose a new framework to cluster
sub-trajectories based on a combination of their spatial and
non-spatial features. This algorithm combines techniques from
grid based approaches, spatial geometry and string processing.
First, we convert each trajectory into a representative sequence
that captures the trajectory direction and location. We identify
common sub-trajectories from all the sequences using a modified
string matching algorithm. Then, we extract non-spatial features
from the common sub-trajectories. Finally, we present a density
based clustering algorithm to cluster the sub-trajectories. Ex-
perimental results show that our framework correctly discovers
groups of similar sub-trajectories with their similar non-spatial
features.

I. INTRODUCTION

Because of vast improvements in GPS and current sensor
technologies, large scale trajectory data are available. The data
provided by the technologies are raw data. Hence it becomes
significant to discover important and meaningful information
by analysing them. Some examples of trajectory data are
vehicle position data, hurricane track data, animal or pedestrian
movement tracking data, radio frequency identification (RFID)
data.

Trajectories are represented as a sequence of spatio-
temporal points. Analysing trajectory data has many other
applications such as managing the traffic pattern of vehicles,
monitoring and predicting weather conditions, examining wild
animal behaviour and movement, as well as analysing the
spread of disease. A number of attempts have been made in
this domain to analyse these kind of data sets. Some of these
analyses can be found in [1],[2],[3],[4],[5].

Existing trajectory clustering algorithms have focused on
spatial proximity and spatial features (latitude and longitude)
of trajectories. Similarity of non-spatial attributes of trajecto-
ries has not been considered. Examples of non-spatial attributes
for hurricane trajectories are wind speed, length, area coverage,
whereas for that of vehicle trajectories are speed, length and
frequency of stops between movements. These attributes can
be significantly different from each other. For example, two

hurricane trajectories or their sub-trajectories may have com-
mon tracking patterns based on spatial location and direction,
but they may have different wind speed and wind pressure or
time-span of two hurricane can be different.

Fig. 1. An example of two trajectories

Example: Consider the two trajectories in Fig. 1. The
trajectory data that we use is from the hurricane dataset [6].
In this dataset, time points in a trajectory are 6 hours apart.
Trajectory that starts at t0 and ends at t4 has total duration of
24 hours. Another trajectory starting at t0 and ending at t2 has
total duration of 12 hours. It is obvious that average wind speed
of the second trajectory is higher than the first one, because
they have the same approximate length but a different number
of points.

In this paper, we aim to cluster trajectories considering both
spatial features and non-spatial features. The main motivation
behind this is to find groups of spatial dense regions of
trajectories with similar non-spatial attribute behaviour. Here
we give one example to illustrate that discovering common
sub-trajectories considering both type of feature is useful.

1) Storm trajectory analysis has an important applica-
tion in forecasting hurricane landfall information [2].
Storms with high wind speed and intensity is more
significant than those of low speed and intensity
value. So, analysing these attributes will be useful
to predict the storm locations with high wind speed
and intensity.

The rest of the paper is organized as follows. In Section
2, we review some related works. We describe our proposed
algorithm in Section 3. Section 4 presents experimental results
of our algorithm. Finally, Section 5 concludes the paper.

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.130

986

2013 IEEE 13th International Conference on Data Mining Workshops

978-0-7695-5109-8/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDMW.2013.130

986

II. RELATED WORKS

In this section, we briefly describe some works that are
most relevant to this one. In [7], the authors proposed a model
based clustering algorithm, where a set of trajectories are
represented using a regression mixture model. EM algorithm
is used to determine cluster membership. They considered the
whole trajectory as a basic unit of clustering.

In [2], the authors proposed a partition and group frame-
work to cluster trajectories. In the partitioning phase, trajecto-
ries are divided into some line segments. This division has been
done using the notion of characteristic points which reflect the
most significant points in the trajectory. In the grouping phase,
these line segments are clustered using DBSCAN algorithm
[8]. The obvious drawback of this algorithm is that only the
line segments are being clustered.

In [1], the authors proposed a modular approach to cluster
sub-trajectories. This approach is based on combination of
techniques from computational geometry, string processing and
data mining.

In [9], the authors proposed a technique for mining a spatio
temporal pattern called the flocking behaviour in an online
fashion. The flocking patterns refer to the set of the trajectories
that remain close to each other for some reasonable time in-
terval. The authors considered both the time information along
with the spatial attributes in mining the flocking behaviour.

In [5], the authors proposed a non-parametric approach to
cluster spatial trajectories. This article deals with trajectory
clustering and the post analysis of the clustering results.
In this approach, they proposed a clustering algorithm that
uses a randomized hill climbing technique to find some local
maxima of the density function. Final clusters are obtained by
grouping together the trajectories belonging to the same local
maxima. The post processing of the obtained spatial clusters
is performed to get more domain specific knowledge.

Another important analysis of spatio-temporal tracking data
has been proposed in [10]. The authors proposed a framework
for mining the sequential patterns from the spatio-temporal
data. They proposed a sequence index that is important in
identifying the significant spatio-temporal sequential patterns
from the spurious ones. A novel algorithm called Slicing-STS-
Miner has been proposed to use the given sequence index
in order to efficiently obtain the spatio-temporal sequential
patterns.

In [11], the authors extended their previous work on
trajectory clustering [2] and proposed a new algorithm of
trajectory classification. They proposed two types of clustering:
1) region-based clustering and 2) trajectory based clustering.
The motivation is to arrive at the discriminative features, which
are very vital in generating the classifier model for the classifi-
cation task. The first level of the clustering, which is the region
level, identifies the higher level, region based features of the
trajectories, ignoring the movement based features at this stage.
The second level of the clustering identifies the lower level
movement based features. These two clustering collaboratively
identify the high-quality features for the classification task.

In [12], authors proposed an algorithm for automatically
identifying dominant patterns from a dense crowded scenes.

They used longest common subsequence algorithm to find
similarity of two point track segments and then clustered them
to identify smooth dominant motions in a crowded scene.

In [13], authors extended DBSCAN algorithm to incorpo-
rate the non-spatial attribute along with spatial attribute, but
they did not apply it in trajectory data.

III. PROPOSED FRAMEWORK

Our proposed framework has four phases which are, 1)
dimension reduction, 2) trajectory segmentation, 3) non-spatial
feature extraction and 4) clustering.

In the first phase, we map each trajectory from high
dimensional (usually 2 or 3) space to one-dimensional space.
This mapping simplifies trajectory representation and their
comparison in later stages of our framework.

The second phase deals with the identification of common
sub-trajectories among the dataset. This phase exploits the
string matching concept to identify common sub-trajectories
among all trajectories. In this work we use a modified version
of Longest Common String Matching (LCS) algorithm [14].

In the third phase, we extract non-spatial features from
the sub-trajectories obtained from the second phase. Some
examples of non-spatial features are wind speed, trajectory
length etc.

In the fourth phase, we cluster the sub-trajectories based
on the combination of their spatial and non-spatial features.
We use DBSCAN algorithm for clustering.

A. Representation of Trajectory

Each trajectory is represented as a sequence
of n spatial locations with time information viz.,
(t0, l0), (t1, l1), (t2, l2), (t3, l3),(tn, ln). Here, n is
the trajectory length. Each location li is a 2-dimensional
point. The length of one trajectory can be different from
another one. At the same time, the shape and movement of
each trajectory is different. We can consider one trajectory as
n× 3 dimensional matrix, where n = number of points in the
trajectory.

Trajectory T1 =

⎡
⎢⎢⎢⎣

t0 x0 y0
t1 x1 y1
t2 x2 y2
..
tn xn yn

⎤
⎥⎥⎥⎦

In this phase of our algorithm, we focus on mapping a tra-
jectory from two dimensional space to one dimensional space.
Note that, this dimensionality reduction is done for simpler
spatial trajectory representation for its better segmentation.
There are several techniques to accomplish this [15]. The most
prominent ones include the Z-order, Gray Codes and Hilbert
Curve. In spatial database management systems, these mapping
techniques are used to store and index location information on
disk, as disk storage is logically one dimensional device [15].
In this paper, we aim to simplify the trajectory data to facilitate
recognition of moving pattern and to compare it with other
trajectory data. For this task we propose our novel algorithm.

987987

We divide the whole problem space domain into M × N
grid cells, where each grid cell has equal length and width.
We consider each grid cell as a spatial region. Each region is
identified with a unique identification number viz., id. The
identification number is assigned in row major order. For
example, in the first row, 1..N column is identified with
numbers from 1 to N . In the second row, all columns are
identified with N +1 to N +N and so on (see Algorithm 1).

1) Example: Let us consider the following example of one
trajectory.

Trajectory T1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1.5 1.5
6 1.8 2.5
12 3.5 2.8
18 5.5 4.8
24 6.2 5.5
30 4.8 5.8

⎤
⎥⎥⎥⎥⎥⎦

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 10

11 20

21 30

31 40

41 50

51 60

61 70

71 80

81 90

91 100

Fig. 2. Trajectory T1

Let us, divide the problem space domain into 10×10 square
grid cells, with each grid cell representing 1 spatial region.
Now we assign each grid cell a unique identification number
from 1 to 100, as we have a total of 100 grid cells. In first row,
columns are identified from 1 to 10, in the second row, they
are identified from 11 to 20. In order to map the trajectory
T1 in this grid, it’s first point which is viz., (0, (1.5, 1.5)) is
mapped to grid location number 12. Fig. 2 shows the first and
last grid cell number in each row.

We assume that the interval between two successive points
is the same (as is given in the dataset) [6]. For example,
trajectory represented as T1 = (12, 22, 24, 46, 57, 55) (see Fig.
2). Hence, a trajectory of length n is a sequence of T [n] = (
l1, l2, l3.....ln), where li is the grid location that approximately
represent a trajectory point.

The advantage of this approach is its simplicity and it
takes linear time to map each point to an one-dimension
space. We can also do the reverse mapping from grid cell
representation to approximate 2-D position of a point. For
example, if grid id = lo and we have N columns, then x
coordinate can be retrieved as lo mod N and y coordinate can
be retrieved as �l0/N� (see Algorithm 2). Note that, because
of the approximate mapping of the 2-D points to the grid ids

the reverse mapping does not guarantee the exact 2-D points,
only approximate location.

For example, grid location l0 = 12 is mapped to 2-D point
(2, 2) and l1 = 22 is converted to 2-D point (2, 3). To measure
distance between two grid locations, we measure Euclidean
distance between 2-D approximate points of two grid ids (see
Algorithm 3).

Algorithm 1 Transformation of 2-D point to 1-D value

1: procedure ONE-D-TRANSFORM(x, y,N)
2: p← ceil(x+ floor(y) ∗N)
3: return p
4: end procedure

Algorithm 2 Transformation of 1-D value to approximate 2-D
point

1: procedure TWO-D-TRANSFORM(l0, N)
2: x← l0 mod N
3: y ← �l0/N�
4: return (x, y)
5: end procedure

Algorithm 3 Grid distance between two grid location

1: procedure GRID-DISTANCE(li, lj , N)
2: < xi, yi >← Two-D-Transform (li,N)
3: < xj , yj >← Two-D-Transform (lj ,N)

4: d←
√
(x2

i − x2
j) + (y2i − y2j)

5: return d
6: end procedure

B. Segmentation Algorithm

In the previous section, we focused on the approximate
and simplified representation of a trajectory. In this section, we
define an approach to segment a trajectory into sub-trajectories.
We compare two trajectories and find the approximate common
segments between them. This idea originates from Longest
Common Substring (LCS) matching algorithm [14].

1) Longest Common Approximate Trajectory Segments
(LCATS): Given two trajectory sequence S of length m
(s1,s2,s3,.....sm) and T of length n (t1,t2,t3,......,tn). Let X
(x1,x2,...,xp) be a sub-sequence of S and Y (y1,y2,..yp) be a
sub-sequence of T. X and Y are called approximate common
trajectory segments of S and T if for each points of X and
Y, grid-distance(xi,yi) ≤ ε. In LCATS Problem, we wish to
find the longest common trajectory segments between two
trajectories. We have used dynamic programming approach to
find the LCATS between two trajectories.

Example: Consider the following example (see Fig. 3).
Here, S, T, V are three different trajectories. (a, b, c, d) and
(h, i, j, k) are LCATS of trajectory S and T. (m,n, o) and
(p, q, r) are LCATS of trajectory S and V.

2) Identifying sub-trajectories : We consider all trajectories
to find the common patterns with other trajectories. To reduce
the cost of comparing a trajectory sequence with another
trajectory sequence, we come up with the idea to use the notion

988988

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

T

S

V

a b

c d e

fg

h i

j k

l m n o

p q r

s

t

u

Fig. 3. Longest Common Approximate Sub-trajectories

of Minimum Bound Rectangle (MBR). MBR is a popular
technique for indexing spatial objects. It is also used to indicate
approximate spatial positions of spatial objects.

3) Example: Consider the example in Fig. 4. Minimum
bounding rectangle of trajectory 1 and 2 intersects with each
other. So, there is a possibility that they have some common
segments between them. But MBR of trajectory 3 is not
intersecting with any one of them. So, we do not consider
trajectory 3 to compare with trajectory 1 and 2.

�

�

�

Fig. 4. MBR of three trajectories

C. Non-spatial feature extraction

After the segmentation phase described in the previous
section, we obtain a set of sub-trajectories. In this section,
we identify some non-spatial features associated with them.
Non-spatial features are application dependent. In different
application domain, different non-spatial features provide sig-
nificant information. For example, In storm trajectory data
some significant features are:

1) Average wind speed during the storm
2) Time-length of each storm
3) Wind pressure
4) storm intensity
5) Area coverage

Algorithm 4 Identifying Sub-trajectories

Input: T : a set of trajectories (T1, T2, ...Tn)
Output: S : a set of sub-trajectories (s1, s2, ...sm)

1: procedure IDENTIFY-SUB-TRAJECTORIES(T)
2: S ← ∅
3: for i = 1→ n do
4: for j = i+ 1→ n do
5: if MBR of Ti intersects MBR of Tj then
6: U ←LCATS(Ti,Tj)
7: if U is not Null then
8: S ← {U}
9: end if

10: end if
11: end for
12: end for
13: end procedure

D. Density-based Clustering

In this section, we present the sub-trajectory clustering
algorithm to group them based on the combination of their
spatial and non-spatial features.

The aim of density-based clustering algorithm is to identify
dense regions that are separated by low-density region. Two
most important characteristics is that, they can identify clusters
with arbitrary shape and they can find outliers [8].

In this phase we consider two issues,

1) We define two different distance functions. First dis-
tance function dists aims to find the spatial proximity
between two sub-trajectories. The second distance
function distns is to find their non-spatial attribute
similarity.

2) We cluster them considering both distance functions.

1) Distance function dists (spatial distance): We define
a new distance measure to find the spatial proximity of
two sub-trajectories. This distance function is based on the
aggregated nearest neighbour distance between the points of
the trajectories.

We are given two sub-trajectories Sa and Sb. Here |Sa|
denotes the length of Sa and |Sb| denotes the length of Sb. If
|Sa| ≥ |Sb|, the spatial distance between two sub-trajectories
Sa and Sb is defined as

dists(Sa, Sb) =
1

|Sa|
|Sa|∑
i=1

min
j={1,2,··· ,|Sj |}

{d(Sai, Sbj)} (1)

That is, for each point in Sa, we find the minimum distance
to a point in Sb, and then calculate the average of these
distances.

Example: Consider the two sub-trajectory Sa and Sb in
Figure 5. Here |Sa| ≥ |Sb|. Hence,

dists(Sa, Sb) = 1
6 { d(sa1, sb1)+d(sa2, sb1)+d(sa3, sb1)+

d(sa4, sb2) + d(sa5, sb3) + d(sa6, sb3) }

989989

Fig. 5. Spatial distance between two sub-trajectories.

2) Distance function distns (non-spatial distance): In
Section (C), we describe some non-spatial features. In this
paper, we use Euclidean distance method to measure non-
spatial attribute similarity among sub-trajectories.

Now we summarize the important notation required for
density-based clustering algorithm. This approach is inspired
by ST-DBSCAN algorithm [13]. Let D denote the set of all
sub-trajectories in the database. This algorithm is based on
three threshold : εs, εns, MinS. The notations we used in the
algorithm is:

εs-Neighbourhood: The εs-Neighbourhood of a sub-
trajectory Nεs(Si) is defined by {Sj ∈ D|dists(Si, Sj) ≤ εs
}.

εns-Neighbourhood: The εns-Neighbourhood of a sub-
trajectory Nεns

(Si) is defined by {Sj ∈ D|distns(Si, Sj)
≤ εns }.

Neighbourhood: The Neighbourhood of a sub-trajectory
N(Si) is defined by {Sj ∈ Nεs(Si) ∩Nεns(Si) }.

Core object: A sub-trajectory Si is considered as a core
object if |N(Si)| ≥MinS.

Border sub-trajectory: A sub-trajectory is considered as
a border object if it is not a core object but density reachable
from at least one core object.

Directly-density-reachable: A sub-trajectory Si is
directly-density-reachable from another sub-trajectory Sj

with respect to εs, εns and MinS if 1) Si ∈ N(Sj) and 2)
|N(Sj)| ≥MinS.

Density-reachable: A sub-trajectory Si is density-
reachable from another sub-trajectory Sj with respect to εs, εns
and MinS if there are a chain of objects Sj , Sj−1,Sj−2,· · · · · ·
Si+1, Si ∈ D such that Sk is directly density reachable from
Lk+1 with respect to εs, εns and MinS.

Density-connected: A sub-trajectory Si is density-
connected to a sub-trajectory Sj with respect to εs, εns and
MinS if there is sub-trajectory Sk ∈ D such that both Si and
Sj are density reachable from Sk with respect to εs, εns and
MinS.

Density-based cluster: A cluster C of sub-trajectories is
a non-empty subset of D satisfying the following condition:

• ∀Si,Sj : if Si ∈ C and Sj is density-reachable from
Si, then Sj ∈ C.

• ∀Si, Sj ∈ C: Si is density-connected to Sj with
respect to εs, εns and MinS.

3) Clustering Algorithm: In Algorithm 5, we present
the clustering algorithm. Given a set D of sub-trajectories,
this algorithm generates a set of clusters based on three
threshold values: εs, εns and MinS. εs determines object’s
spatial neighbourhood area and εns determines it’s non-spatial
neighbourhood area. Based on these two threshold, this algo-
rithm determines the neighbour sub-trajectories for each sub-
trajectory.

Algorithm 5 density-based clustering

Inputs
D : a set of trajectory segments
εs : Maximum distance to find spatial neighbour
εns : Maximum distance to find non-spatial neighbour
MinS : Minimum number of sub-trajectories necessary
to form a cluster

Output:
C : a set of clusters

1: procedure DENSITY-CLUSTER(D, εs, εns,MinS)
2: cId← 1
3: for i = 1→ n do
4: if Si is not visited and not clustered yet then
5: Mark Si as visited
6: X = GET-NEIGHBOUR(Si)
7: if |X| < MinS then
8: Si is marked as noise
9: else

10: assign clusterId to ∀S ∈ X
11: Insert all X into the Queue Q
12: while Q is not Empty do
13: pop the current object Sj

14: Y = getNeighbour(Sj)
15: if |Y | ≥ MinS then
16: for ∀s ∈ Y do
17: if Sj is not noise then
18: if Sj is not in Cluster then
19: assign Sj in CId
20: end if
21: end if
22: end for
23: end if
24: end while
25: Increment CId by 1
26: end if
27: end if
28: end for
29: end procedure

IV. EXPERIMENTS AND RESULT EVALUATION

In this section, we evaluate the effectiveness of our cluster-
ing algorithm. We use a real trajectory data set viz., hurricane
tracking data [6]. The data comprises Atlantic hurricanes from
1950 to 2000 (50 years). It contains 496 trajectories and 15,998
points. Each track in the data set consists of a sequence
of hurricane data sampled at 6-hours intervals. The sample
for each instance in a particular trajectory track has latitude,

990990

Algorithm 6 GET-NEIGHBOUR

Inputs
D : a set of trajectory segments
εs : Maximum distance to find spatial neighbour
εns : Maximum distance to find non-spatial neighbour
MinS : Minimum number of sub-trajectories necessary to form a cluster
Output:
S : a set of sub-trajectories

1: procedure GET-NEIGHBOUR(si, εs, εns)
2: X ← Spatial Neighbours with respect to εs and MinS
3: Y ← Non-spatial Neighbours with respect to εns and

MinS
4: N ← X ∩ Y
5: return N
6: end procedure

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Fig. 6. Clustering results considering spatial distance εs = 0.002, MinS =
7

longitude, wind speed and wind pressure as its attributes. We
did the experiments using MATLAB because of its better
visualization.

In our experiments we used latitude and longitude as
spatial attributes, and wind speed as non spatial attribute
within a particular hurricane trajectory. The first stage of our
framework, which is identifying sub-trajectories, resulted in
4044 sub-trajectories.

For these sub-trajectories, the average wind speed for each
sub-trajectory is used as its non-spatial attribute. This is mainly
motivated by the fact that wind speed is a key characteristic
of the storm.

Figs 6, 7 and 8 show the clustering results obtained using
only the spatial neighbourhood parameter (viz., εs), whereas
the MinS parameter is 7 throughout the experiments. The
parameter εs determines the size of the spatial neighbourhood
to be evaluated for the density of a particular point. From
Figs 6 and 7 it can be seen that changing the value of εs
from 0.002 to 0.00195 did not change the clustering result
significantly. Whereas, it can be seen from the result in Fig 8
for the value of εs = 0.0018, that the clustering result changed
significantly from those in the Figs 6 and 7 respectively.

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Fig. 7. Clustering results considering only spatial distance with εs = 0.00195,
MinS = 7

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Fig. 8. Clustering results considering only spatial distance with εs = 0.0018,
MinS = 7

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Fig. 9. Clustering results with εs = 0.002, εns = 0.2, MinS = 7

991991

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

50

55

Fig. 10. Clustering results with εs = 0.00195, εns = 0.15, MinS = 7

10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

50

55

Fig. 11. Clustering results with εs = 0.0018, εns = 0.15, MinS = 7

After the experiments with only the spatial neighbourhood
parameter, we incorporated the non spatial neighbourhood
parameter also. Figs 9, 10, 11 show the results of our
clustering algorithm using different parameter values of εs,
εns. Since we incorporate non spatial attributes also in the
clustering process, we used εns parameter corresponding to the
non spatial attribute (viz., wind speed) for the neighbourhood
criteria. These parameters are very vital for the performance of
the DBSCAN algorithm. For that reason we provide the results
for three different sets of these parameters. This parameter
specifies the threshold for the dense regions, i.e., a data
point will be considered core (dense) only if it has at least
MinS = 7 data points in its neighbourhood.

Fig 9 uses εs = 0.002, εns = 0.2 and MinS = 7. For
these set of parameters the result shows four major clusters.
The biggest cluster of the trajectories is shown in red and is
in the central position with respect to the other clusters. This
signifies that this particular region witnessed more hurricane
activities. Other than this cluster we can see the next significant
cluster shown in green. The third most significant cluster for
this particular parameter set is the one in dark blue.

Fig 10 uses εs = 0.00195, εns = 0.15 and MinS = 7. For
these set of parameters the resulting clusters are very different
from the ones given in Fig 9. Here the number of clusters is

1.6 1.7 1.8 1.9 2

x 10
−3

8

10

12

14

16

18

20

22

��������	
��

Fig. 12. Clustering result analysis based on non-spatial distance

more than the former case and also there is no clear dominating
clustering region. The clusters also seem to be overlapping to
some extent.

Finally, Fig 11 uses εs = 0.0018, εns = 0.15 and MinS =
7. Now the resulting clusters are looking better from the ones
given in Fig 10. Here the number of clusters is reduced and the
clusters are also more concrete with comparatively less extent
of overlapping. Comparing this result with the one in Fig 9,
it can be seen that the number of clusters is more in Fig 11.
Also, the size of the clusters is comparatively smaller for the
current set of parameters.

From the above set of experiments it can be seen that the
results of the clustering are very susceptible to the choice of the
parameters for the clustering algorithm. The changing behavior
of the clustering result from Fig 6 to Fig 11 is natural as
with the reduction in the values of εs, as well as εns, we are
restricting the size of the clusters to include only the more
dense regions. In particular, the drastic improvement in the
clustering result can be noticed between Fig 8 and Fig 9. This
is because of the incorporation of the non spatial neighbour-
hood parameter which results in more compact clusters.

Fig 12 shows the comparative results of the proposed
clustering methodology using different sets of parameters.
The clustering using a combination of spatial and non-spatial
parameter produces more compact clusters with respect to non-
spatial distance.The Y -axis has the Mean(std(clusteri)) for
the clustering results, whereas the X-axis shows the different
εs values. We are intuitively using the Mean(std(clusteri))
to compute the compactness of the clusters. This measure
computes the average value of the standard deviations of the
wind speed, within the respective clusters for a particular set of
attributes (viz., εs and εns). The highest values (which signifies
worst result) for this measure correspond to the case where
clustering is done using only the spatial neighbourhood pa-
rameter. From Fig 12, we can see the consistent improvement
in the results (i.e., reduction in the value of the measure) as
spatial neighbourhood parameter is reduced. The best result
has been obtained for the εs = 0.0017 and εns = 0.10 which
is reasonable as this set of parameters forces the clusters to be
the most compact compared to the rest.

Fig 13 shows the cluster result analysis based on spatial
distance. To measure spatial compactness of each cluster we
compute minimum bound rectangle area containing all sub-

992992

1.7 1.8 1.9 2 2.1

x 10
−3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

��������	
��

Fig. 13. Clustering result analysis based on spatial distance

25 30 35 40 45 50 55 60 65 70
30

35

40

45

50

55

Fig. 14. Cluster region and its centroid point

trajectories of the respective cluster and the centroid point (c)
of that area (see Fig 14). Then we compute the average value
of standard deviation of spatial distance (ds) of sub-trajectories
from the centroid point (c), where ds is defined as

ds =
1

|Sa|
|Sa|∑
i=1

{d(Sai, c)} (2)

where, ds is the distance of a particular sub-trajectory Sa from
the centroid point (c) and d(Sai, c) is the Euclidean distance
of a trajectory point Sai from the centroid point. In Fig 13,
Y -axis represents the Mean(std(ds)) for each εs parameter
and the X-axis shows the corresponding εs values.

Fig 13 shows that the spatial compactness of clusters
does not suffer when using combination of spatial and non-
spatial attributes for clustering. The best spatial compactness
is achieved when combination is used.

V. FUTURE WORKS AND CONCLUSION

In this paper, we propose a novel framework to cluster
trajectories. In the first phase, we map each trajectory to one-
dimensional space. This dimension reduction approach helps
to simplify trajectories representation and reduce the cost
of comparison with other trajectories. In the second phase,
we present our own algorithm to identify all common sub-
trajectories based on spatial proximity. In the third phase, we

extract significant non-spatial features from them. Finally, we
present a nearest neighbour based approach to measure spatial
distance of sub-trajectories. Then we cluster all sub-trajectories
based on the combination of spatial and non-spatial features.

We perform our experiment on real life hurricane track
data. We then compare the clustering that combines the spatial
and non spatial attributes, with the clustering based on spatial
attributes only. The combined approach always produces bet-
ter cluster compactness for non-spatial distance, and spatial
compactness is not adversely affected.

Spatial datasets are quite large and it is an open research
issue to handle big data efficiently. In our future work, we plan
to design an algorithm in a distributed framework. We will
analyse some other trajectory data sets like vehicle and animal
movement. In this approach we do not consider temporal
information. We plan to include temporal information during
clustering.

REFERENCES

[1] J. Gudmundsson, A. Thom, and J. Vahrenhold, “Of motifs and goals:
mining trajectory data,” in Proceedings of the 20th International Con-
ference on Advances in Geographic Information Systems. ACM, 2012,
pp. 129–138.

[2] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007, pp.
593–604.

[3] J. Hsieh, S.-L. Yu, and Y.-S. Chen, “Trajectory-based video retrieval
by string matching,” in Image Processing, 2004. ICIP’04. 2004 Inter-
national Conference on, vol. 4. IEEE, 2004, pp. 2243–2246.

[4] Y. Yanagisawa, J.-i. Akahani, and T. Satoh, “Shape-based similarity
query for trajectory of mobile objects,” in Mobile data management.
Springer, 2003, pp. 63–77.

[5] C.-S. Chen, C. F. Eick, and N. J. Rizk, “Mining spatial trajectories
using non-parametric density functions,” in Machine Learning and Data
Mining in Pattern Recognition. Springer, 2011, pp. 496–510.

[6] http://weather.unisys.com/hurrricane/atlantic/index.html.

[7] S. Gaffney and P. Smyth, “Trajectory clustering with mixtures of regres-
sion models,” in Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 1999,
pp. 63–72.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
Kdd, 1996.

[9] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of
flock patterns in spatio-temporal data,” in Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2009, pp. 286–295.

[10] Y. Huang, L. Zhang, and P. Zhang, “A framework for mining sequential
patterns from spatio-temporal event data sets,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 20, no. 4, pp. 433–448, 2008.

[11] J.-G. Lee, J. Han, X. Li, and H. Gonzalez, “Traclass: trajectory classifi-
cation using hierarchical region-based and trajectory-based clustering,”
Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 1081–1094,
2008.

[12] A. M. Cheriyadat and R. J. Radke, “Detecting dominant motions in
dense crowds,” Selected Topics in Signal Processing, IEEE Journal of,
vol. 2, no. 4, pp. 568–581, 2008.

[13] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–
temporal data,” Data & Knowledge Engineering, vol. 60, no. 1, pp.
208–221, 2007.

[14] D. Gusfield, Algorithms on strings, trees and sequences: computer
science and computational biology. Cambridge University Press, 1997.

[15] S. Shekhar and S. Chawla, Spatial databases: a tour. Prentice Hall
Englewood Cliffs, 2003, vol. 2003.

993993

