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ABSTRACT
In this article we propose a framework to discover interesting
directional patterns in trajectory data sets. The proposed
framework has five stages; trajectory smoothing, directional
segmentation, directional classification, filtering and finally
clustering. The main contributions are in the stages for
smoothing, directional classification and filtering. Trajec-
tory smoothing is an important step in the analysis of com-
plex, non-smooth trajectories data sets, such as animal move-
ment data. In directional classification stage, different sub-
trajectories are assigned to the classes corresponding to their
directional orientation. In the filtration stage the outlier
trajectories are removed from the respective classes using a
novel convex hull based approach. We used animal move-
ment data in this work.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Trajectory, clustering, spatio-temporal

1. INTRODUCTION
Trajectory data is an example of spatio temporal data where
the spatial location as well as the time order associated with
each data point is very important. Some examples of spa-
tio temporal data are tracking data in applications like cell
phone and vehicle tracking, hurricane and storm tracking
data, and animal movement data [4, 5, 10]. The directional
aspect of trajectory analysis is very important in various
applications [11], for example in map matching [3] and in
direction based query processing [4]. This kind of analysis
is very useful in applications such as analyzing weather data
(hurricane tracks), public transport data (GPS) and animal
movement data.

The first stage of the proposed framework deals with trajec-
tory smoothing, which is important in analyzing trajectories
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Figure 1: Small angles (45◦)
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Figure 2: Large angles (90◦)

that exhibit non-smooth characterstics. Trajectory smooth-
ing (simplification) has been addressed in [6, 11]. Non-
smoothness is marked by frequent sharp directional changes.
The trajectories in animal movement data exhibits this non-
smooth property. In the smoothing step we approximate the
original trajectories by eliminating these sharp angular turns
to focus on directional characteristics of the trajectory.

In the next stage we do directional segmentation of the tra-
jectories. We impose directional consistency on the trajec-
tories (sub trajectories) by allowing them to deviate initially
by a maximum of 45◦, and eventually by a maximum of 90◦.
If any trajectory shows a deviation more than 90◦, we split
it into sub-trajectories such that the directional consistency
is maintained. We consider 16 directional ranges shown in
Figure 1 and Figure 2. Each sub-trajectory is assigned to
one of these 16 classes. Analysis of trajectory data after seg-
mentation has been a well studied domain in spatio temporal
data, for example [5, 8–10].

The filtration stage removes outlier sub-trajectories from the
directional classes to focus on important directional ranges.
We considered two approaches for this task. The first ap-
proach uses the minimum bounding rectangle (MBR), whereas
the second one uses a novel convex hull (CH) based ap-
proach. The MBR based approach results in big spaces
around a trajectory; hence it is a very vague approximation
of the trajectory. The CH based approach approximates the



trajectories to a much closer extent. We finally use a modi-
fied DBSCAN [7] algorithm to identify the inherent clusters,
which capture the significant directional patterns in the data
sets. We used animal movement data [1] that consists of
movement of Elk in 1993 and comprises 33 trajectories and
20065 data points.

2. RELATED WORK
The article [9] proposes a partition-and-group framework for
clustering trajectory data. Using the concept of minimum
descriptive length (MDL) the original trajectories are seg-
mented. These segments are called trajectory partitions,
which are then clustered using a modified version of DB-
SCAN algorithm, which clusters the line segments. Finally
the clusters are represented by representative trajectories.

In [8], a clustering algorithm is given for the trajectory
data that uses a combination of techniques from data min-
ing, computational geometry and string processing. Tra-
jectories are pre-processed followed by segmentation and
classification. The next phase finds the frequent occurring
sub-strings; these are called motifs, and then maps the
sub-trajectories corresponding to the motifs to some feature
space. The next stage performs density based clustering and
the final stage does the post processing of the clusters.

In [10], the trajectory clustering technique of [9] has been
extended for trajectory classification. Two levels of cluster-
ing, namely region-based and trajectory based clustering,
are done. Clustering is used to find the discriminative fea-
tures for classification.

Trajectory smoothing has been addressed in [6,11]. In [11]
authors propose a trajectory smoothing method that pre-
serves the direction information. The aforementioned works
are similar to the present work on the basis of trajectory
segmentation followed by the clustering of the trajectory
segments. However, our contribution is on the directional
consistency, so our trajectory segmentation method is purely
direction based. The other contributions are trajectory sim-
plification and convex hull based outlier removal concepts.

3. PROPOSED FRAMEWORK
Before we describe the proposed framework, we define a tra-
jectory and its major defining characteristics. Let us con-
sider, a trajectory data set D comprising of n trajectories
viz., D = (Tr1, T r2, . . . , T rn).

Trajectory Definition: A trajectory Trj of size s is a se-
quence of points [p1, p2, . . . , ps], where p1 is it’s initial point
and ps is the final point. An ith point pi in Trj is associated
with spatial co-ordinates (xi, yi) and the associated time ti.

Trajectory Segments (Lk): A trajectory Trj consists of
line segments Lk = pkpk+1 which are formed by joining
the kth and (k + 1)th consecutive points in it, where k ∈
[1, . . . , s− 1].

Angular Attribute (θ): This is a very important attribute
of a trajectory for directional analysis, which considers the
angles between its Lk and Lk+1 consecutive line segments.
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Figure 3: Self intersecting Trajectories

This involves three successive points: pk, pk+1 and pk+2.

θ = min( 6 (pkpk+1, pk+1pk+2), 360◦−
6 (pkpk+1, pk+1pk+2))

(1)

where, angle between the two line segments pkpk+1 and
pk+1pk+2 is 6 (pkpk+1, pk+1pk+2). Angle is measured in anti-
clockwise rotation from pkpk+1 to pk+1pk+2. We consider
the smaller of the angles between the two line segments so
that 0 ≤ θ ≤ 180◦. A large value of θ represents a small
change in direction whereas a small value represents a sharpe
change. 6 is the symbol for absolute value of an angle.

The proposed framework consists of the following stages:
1) trajectory smoothing, 2) trajectory segmentation, 3) di-
rectional classification, 4) convex hull based sub-trajectory
filtration, and 5) clustering.

3.1 Trajectory Smoothing
The animal movement trajectories [1] tend to be very hap-
hazard and non-unifromly sampled. For meaningful trajec-
tory data analysis, trajectory smoothing becomes impera-
tive. Our smoothing of trajectories considers self-intersecting
trajectories (see Figure 3), which are not explicitly addressed
in previous work.

Trajectory Smoothness (sm (Tr)): Smoothness of a tra-
jectory determines its directional consistency over its whole
length. As a smoothness measure, we consider the mean
(smµ (Tr)) as well as the standard deviation (smsd (Tr)) of
the anglular attributes of a trajectory. If Θ is the vector of
the angular attributes of a trajectory Tr, then : smµ(Tr) =
mean(Θ) , smsd(Tr) = sd(Θ). A large smµ(Tr) and a
small smsd(Tr) would indicate a smooth trajectory, whereas
small values for smµ(Tr) indicate a very jagged trajectory.
The simplified (approximated) trajectory should have bet-
ter smoothness to highlight its main directional properties.
If an initial trajectory is Tr, then the goal of the smooth-
ing process is to simplify it to a trajectory Trs such that
smµ(Tr) ≤ smµ(Trs) and smsd(Tr) ≥ smsd(Trs).

To address the unevenly sampled trajectories, we segment
a bigger trajectory into sub-trajectories at a point where,
the time difference between the successive sampled points is
larger than a given threshold (30 minutes for animals).
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Figure 5: Basic to General direction encoding

Figure 3 shows how we deal with the self-intersecting trajec-
tories as part of the smoothing process. The segment p10p11
intersects the segment p8p9 because the angle between the
segment p9p10 and p10p11 is very small. As mentioned ear-
lier, small angles indicate sharp turns leading to non-smooth
trajectories. Self-intersecting trajectories are the results of
extreme cases of small angles. Using small angle threshold ε,
if an intermediate angle is less than this threshold, we filter
it out by discarding the intermediate point (p10 in this case).
This will result in the formation of the new segment p9p11.
If the resulting angle is still less than ε, further smoothing
is applied.

3.2 Trajectory Segmentation
In this step of the proposed framework, trajectories are seg-
mented into sub-trajectories belonging to one of the 16 di-
rections depicted in Figure 1 and Figure 2. Eight of these
directions (Figure 1), are 45◦ apart covering the whole 360◦

angular space, whereas the remaining ones (Figure 2) are 90◦

apart. This choice of the smaller angle directional segment
viz., 45◦ and a larger overlapping directional segments viz.,
90◦ was made so that a trajectory that moves along a bound-
ary between two 45◦ regions, does not keep being segmented
into very short segments. For example, if a trajectory moves
between region 1 and region 2, a longer sub-trajectory in re-
gion b would be created.

Initially we examine the slope of the line segments form-
ing the trajectory, and label the line segments according to
their slope. Since the basic angle for segmentation in this
work is 45◦, the total number of these labels is 360/45 = 8.
Therefore the label for a particular line segment will be the
quotient when the angle of the slope is divided by 45. The
example in Figure 4 corresponds to a trajectory from hurri-
cane data. Using the basic directional encoding algorithm,
the trajectory is now labeled as (556667881111123) (Fig-
ure 4).

The next step works on the basic directional encoding ob-
tained and scans the basic directional code of the trajectory
from left to right and looks for a break point (please see
Figure 5). The break point is the position along the ba-
sic directional encoding where, the direction changes by 2
or more labels. Along with the break point a Label list is
also stored, this list will hold the basic angular transitions so
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Figure 6: Distance between two sub-trajectories

that it may be accordingly encoded in the general directional
code. For example in Figure 5, break points create 4 sub-
trajectories 55666, 788, 111112 and 3, the last is discarded as
too short. Corresponding Labeli lists have the entries (5, 6),
(7, 8) and (1, 2), respectively. These transitions correspond
to the general angle code of f , h and b respectively (Fig-
ure 2, Figure 5). The break point will act as a marker while
segmenting the original trajectory into its directional sub-
trajectory. Here the output will be (fffffhhhbbbbbb). The
final segmentation returns the three sub-trajectories which
are (fffff), (hhh) and (bbbbbb).

We use convex hull (CH) to approximate each trajectory,
and use convex hull intersecting theorem called separating
axis theorem to filter the outliers [2].

3.3 Clustering
After removing the outlier sub-trajectories using the CH
based technique, we do the clustering of the remaining sub-
trajectories to obtain the final directional patterns. We
use a modified version of DBSCAN [7], which is a density
based clustering algorithm. This is very similar to the one
used in [9], except for the fact that here we have the sub-
trajectories as the basic data to be clustered instead of line
segments. We omit the details of DBSCAN due to space
limitations, see [7, 9] for details.

For the DBSCAN algorithm we need a distance measure
to find the similarity between the sub-trajectories. Fig-
ure 6 shows how we computed the distance between the
two sub-trajectories. There are two possibilities, Figure 6(a)
where the two sub-trajectories have the same length, and
Figure 6(b) where the length of the two sub-trajectories is
not the same. For the first case we simply consider the av-
erage of the distance between the sequential points in the
sub-trajectories. In the second case we consider only the
average of the distance between the first points and the last
points in the sub-trajectories. In Figure 6(a) for example
the distance will be:
D(Tr1, T r2) = (d(a, e) + d(b, f) + d(c, g) + d(d, h)) /4 whereas,
in Figure 6(b) it will be:
D(Tr3, T r4) = (d(i,m) + d(l, n)) /2. In this atricle the dis-
tance d(x, y) is the Haversine formula.

4. EXPERIMENTS AND RESULTS
The framework has been implemented in MATLAB. We use
animal data set as described in Section 1. The impact of
smoothing is evident in Table 1, as smµ has been improved
(is higher) and, the value of smsd is lower after the applica-
tion of smoothing, compared to that of the original trajec-
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Figure 4: Basic directional encoding

Table 1: Effect of Smoothing on Animal (Elk) data set

Trajectories smµ(Tr) smsd(Tr)
Original Animal Data 75.93 55.72
Smoothed Animal Data 87.96 51.08
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Figure 7: Animal Qmeasure

tories. These results are the aggregate values considering all
the trajectories together.

For clustering (DBSCAN algorithm), we use Minline = 7
(minimum number of sub-trajectories in the neighborhood
of a trajectory for density consideration) and Mindst (neigh-
borhood radius) has been computed as per the suggestions
in [9].

Qualitative analysis of clusters: We used the quality
measure proposed in [9]. This measure is given below:

numclus∑
i=1

 1

2Ci

∑
x∈Ci

∑
y∈Ci

dist(x, y)2

+
1

2|N |
∑
w∈N

∑
z∈N

dist(w, z)2

(2)
where, numclus is the number of clusters, N is the set of
noise sub-trajectories and Ci is the ith cluster. This quality
measure computes the sum of the square error (SSE), which
means the smaller this value, the better will be the clustering
result.

In order to show the effectiveness of the proposed CH based
filtration method over the MBR based method we present
the results in Figure 7 using the evaluation method given
in Equation 2. The clustering results using CH as the fil-
tration approach (DBSCANCH) has resulted in lower val-
ues of Qmeasure compared to the MBR based method
(DBSCANMBR) when applied to animal movement data
for all the directional classes.

5. CONCLUSION
In this article we proposed a novel framework for the di-
rectional analysis of trajectory data. We proposed a new
trajectory smoothing approach as well as a novel CH based
filtration method using convex hulls of subtrajectories. A
novel technique for identifying the directional orientation
of the trajectory data was proposed. This framework will
be very useful in finding the directional movement patterns
of animal trajectory for studying their behaviour and their
habitat.
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