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ABSTRACT

Weather data is a classic example of spatio-temporal data,
with time and space as two of its key attributes. Clustering
has been one of the key techniques used for analyzing the
storm trajectories. Trajectory based clustering algorithms
consider whole trajectories as clustering units, or in some
cases the segments of the trajectory, i.e., sub-trajectories,
are considered in order to capture local similarities among
long trajectories. Our work takes a different approach, by
considering a trajectory as a set of points, then focusing on
the point data for finding the regions that are hot spots for
the storms. We use DBSCAN algorithm, and consider spa-
tial (longitude, latitude) as well as non-spatial attributes
(viz., wind speed and time) for the similarity measure. The
results show the impact of the respective non-spatial at-
tributes on the spatial attributes during clustering and hence
the identified dense regions. For the temporal analysis, we
used a relative temporal framework by normalizing relative
time stamp order in the trajectory by the length of the tra-
jectory to consider storms of different lengths. We use qual-
ity measures to validate our clusters. Post processing on
the obtained clusters identifies the regions from where the
storms are more likely to originate, and the regions where
the storms are most likely to land. Another useful result is
the key regions that the storms are most likely to traverse.

1. INTRODUCTION
The abundance of spatio-temporal tracking data in appli-

cations like global positioning system (GPS), hurricane and
storm tracking data and animal movement data have made
their analysis very important. This analysis is vital in know-
ing and managing the traffic pattern of vehicles, monitoring
and predicting weather conditions, examining wild animal
behavior and movement as well as analyzing the spread of
a disease. A number of attempts have been made in this
domain to analyze these kinds of data sets. Some of these
analysis could be found in [3, 4, 6–12]
For our task of identifying the dense regions of hurri-
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cane activity, we use a clustering algorithm called DBSCAN
[5]. Clustering is a very useful task in data mining, which
groups similar objects (physical or abstract) together [2].
The weather trajectory data has been analyzed using clus-
tering algorithms in [6] and [7] (see Section 2).

Since the hurricane data is in the form of a trajectory,
that represents the spatial locations of hurricane at different
time instances, DBSCAN has been used which is a spatial
clustering algorithm. For the current analysis we consider
the hurricane data as point data, unlike the approach in [6]
and [7]. This approach has been motivated by the need of the
analysis and also by the fact that the hurricane trajectory
lengths are different.

We cluster the data to obtain dense regions that effectively
identify the hot spots for the storm activity. These dense re-
gions have been identified considering different combinations
of parameters. Initially we do only the spatial dense regions
identification considering latitude and longitude, then we in-
corporate wind speed also as an additional attribute. This
has been done to evaluate the impact of the non spatial at-
tribute on the dense regions identification. Finally we do
clustering considering the spatial as well as the temporal at-
tribute to identify the spatio-temporal dense regions. For
this analysis we consider the relative time framework as we
are interested in the storm progression. We normalize the
temporal value in the range of [0−1], to handle the different
length hurricanes. Our framework for combining the spatial
and non-spatial attributes is inspired by the approach in [3].

We identified some dense regions that would be useful
for the domain experts. First the locations from where the
storms are most likely to originate, second the locations
where the storms are most likely to land and finally, the
regions that have been mostly affected by the storm activ-
ity. For the storm staring location identification, we cluster
the initial portion of the hurricane, whereas, for the poten-
tial storm landing locations we cluster the last portion of the
hurricane trajectory. The clustering considering the whole
hurricane length data will find out the dense regions of high
storm activity.

We have used the hurricane (Atlantic region) data set for
50 years from 1950 to 1999. The data set was obtained
from [1]. The data has six attributes, which are latitude,
longitude, time, wind speed, pressure, and status. The data
has been sampled in the interval of 6 hours. The dataset
has 15319 data points and 496 trajectories.

2. RELATED WORK
In this section, we give a brief overview of eight related



articles [4, 6–12].
In [4] a non-parametric approach to spatial trajectory

clustering, called DENTRAC (DENsity based TRAjectory
Clustering) is proposed. DENTRAC uses the non-parametric
density estimation technique. The post processing of the
obtained spatial clusters is performed to get more domain
specific knowledge.
The article [6] proposes a partition-and-group framework

for clustering the trajectory data. Using the concept of min-
imum descriptive length (MDL) principle, most important
points on the trajectory called characteristic points are iden-
tified. The original trajectories are now represented by con-
necting the consecutive characteristic points. Each segments
thus obtained are called trajectory partitions. These trajec-
tory partitions are then clustered using a modified version
of DBSCAN algorithm, which clusters the line segments.
Finally the clusters are represented by the representative
trajectories.
In [7], a clustering algorithm is given for the trajectory

data that uses the combination of techniques from data min-
ing, computational geometry and string processing. The
trajectories are pre-processed to remove noise after which
they are segmented into sub-trajectories. These segments
are then classified and accordingly labeled on their geomet-
ric properties e.g., “wide left right” or “short straight seg-
ments”. The next phase of the algorithm finds the frequent
occurring substrings; these are called themotifs. Algorithm
then maps the sub trajectories corresponding to the motifs
to some feature space. The next stage performs the density
based clustering and the final stage does the post processing
of the clusters.
In [8] a novel algorithm called Slicing-STS-Miner has been

proposed for mining the sequential patterns from the spatio
temporal data. This analysis is very valuable for analyzing
the evolution of phenomena in spatial and temporal domain.
A sptio temporal pattern called convoy has been proposed

in [9]. In this article authors propose various efficient algo-
rithms for the convoy detection.
In the article [10], the trajectory clustering technique of [6]

has been extended for trajectory classification. In this ar-
ticle two levels of clustering; namely, the region-based and
trajectory based clustering is done. Clustering is used to find
the discriminative features for classification. The first level
of the clustering is region level which identifies the higher
level, region based features of the trajectories. The second
level of the clustering identifies the lower level movement
based features. These two clustering collaboratively iden-
tify the high-quality features for the classification.
In [11] authors propose a classification technique for the

trajectory data which incorporates the duration of the tra-
jectory as an important feature.
In [12], a similar technique to [9] for mining spatio tem-

poral pattern called the flocking behavior is proposed. The
flock refers to the set of the trajectories that remain close
to each other for some reasonable time interval. In the flock
pattern mining both the time as well as the spatial attributes
are required.

3. TRAJECTORY CLUSTERING ON POINT

DATA
In our approach we have considered the trajectory data

set as consisting of just the individual data points in the

trajectories. In this analysis we are not constraining these
points to belong to their respective parent trajectory or sub
trajectory by enforcing them to belong to a line segment or
a sequence of line segments as has been done in [6] and [7].
Since the core algorithm behind our analysis is DBSCAN [5]
we review that algorithm first.

3.1 DBSCAN
DBSCAN is a density based clustering algorithm. It has

two important parameters called the MinPts and MinDst.
These two parameters determine the density of the data to
be clustered. For a point to be evaluated as dense, we need to
look at a neighborhood of sizeMinDst centered around it. In
this neighborhood there should be at least MinPts number
of data points to make this particular data item dense. On
the basis of the density of the data points in the data set,
DBSCAN identifies three types of points viz., 1)core points,
2)boundary points and 3)noise points. Figure 1 gives a
scenario of the data points and distinguishes between the
three kinds of data points. Formally, these points are defined
on the basis of MinPts − neighborhood, viz., (NMinPts

(p))
for a point p in the dataset D.

NMinPts
(p) = (a|a ∈ D and dist (p, a) ≤ MinDst) (1)

Figure 1: DBSCAN Types of data points: Core points,
Boundary points and Outliers

Algorithm 1 The DBSCAN Algorithm

DBSCAN(D,MinDst,MinPts)
C = 0
for all unvisited point P in dataset D do

mark P as visited
NeighborPts = regionQuery(P,MinDst)
if sizeof(NeighborPts) < MinPts then

mark P as NOISE
else

C = nextcluster
expandCluster(P,NeighborPts, C,MinDst,MinPts)

end if

end for

For every point p in the datasetD, itsMinPts−neighborhood,



viz., (NMinPts
(p)) is determined on the basis of the param-

eter MinDst and similarity measure viz., dist (p, a) (for ex-
ample, Euclidean distance), between the point and its neigh-
bors. If the size of NMinPts

(p) for a particular point p, is not
less than MinPts then the point is considered a core point.
If the point p is not core but it lies in the NMinPts

(q) of a
core point q, then it is called a boundary point. If it is not a
core point and also does not lie in the neighborhood of any
core point, then it is called an outlier (see Figure 1).
To define the clusters in terms of DBSCAN, three more

concepts have been defined, these are:
1) directly density reachable, 2) density reachable and
3) density connected. A point q will be directly density
reachable only from a core point (p), only when it lies in the
NMinPts

(p). For example, point q is directly density reach-
able from the core point p in Figure 1. Similarly a point
t would be density reachable from a core point p, if there
is a sequence of data points {x1, x2, . . . , xn|xi ∈ D}, where
xi is directly density reachable from xi−1, and also x1 = p,
whereas xn = t. For example point v is density reachable
from core point p in Figure 1. Similarly the density connec-
tivity between two points a and b in the data set is defined
as the existence of a core point c such that the points a and
b are density reachable from c. For example in Figure 1,
points q and u are density connected with respect to the
core point s (also r).
A cluster C is defined as the subset of objects satisfying

two criteria: 1) Connected: means that ∀p, q ∈ C, p and q
are density connected, 2) Maximal: It means that ∀p, q, if
p ∈ C and q is density reachable from p, then q ∈ C.
The structure of the DBSCAN is given in Algorithm 1, Al-
gorithm 2 and Algorithm 3.

Algorithm 2 expandCluster

expandCluster(P,NeighborPts, C,MinDst,MinPts)
add P to cluster C
for all each point P ′ in NeighborPts do

if P’ is not visited then

mark P ′ as visited
NeighborPts′ = regionQuery(P ′,MinDst)
if sizeof(NeighborPts′) >= MinPts then

NeighborPts = NeighborPts joined with
NeighborPts′

end if

end if

if P ′ is not yet member of any cluster then
add P ′ to cluster C

end if

end for

3.2 Dense region extraction
Our contribution in this article is in analysis of the hurri-

cane data to find the regions of high storm activity. We used
DBSCAN algorithm which uses the parameter MinDst for
finding the neighborhood and hence the density of the data
points. Since the hurricane data set which has been used in
this paper has spatial as well as non-spatial attributes, first
we find the neighborhood considering only the spatial neigh-
borhood, then we considered a non-spatial attribute (wind
speed) also.

Algorithm 3 regionQuery

regionQuery(P,MinDst)
return all points within P ′s MinDst − neighborhood
(includingP )

3.2.1 Spatial Clustering

For the spatial clustering we considered the latitude and
the longitude values of the data points. We considered the
Haversine formula for computing the distance between the
two data points represented by their latitude and longitude
values, i.e., Pi = (φi, λi), where φi is the latitude and λi is
the longitude of the data point Pi. If we have two points
P1 = (φ1, λ1) and P2 = (φ2, λ2), the Haversine formula is
given as:

a = sin(∆/2) + cos(φ1)× cos(φ2)× sin2(∆λ/2)

c = 2× arctan 2(
√
a,

√

(1− a))

d = R× c

where ∆(φ) = φ2 − φ1 and ∆(λ) = λ2 − λ1, R = 6371Km
is the radius of the Earth, and d is the Haversine distance.
Since the spatial co-ordinates in geographical data sets are
reported in terms of the latitude and longitude, it will be
natural to adopt some distance measure that computes the
circular distance between two points lying on a spherical
object (earth).

3.2.2 Spatial and non spatial clustering

We extend the DBSCAN algorithm to handle the non spa-
tial attributes also for clustering. Our approach to this anal-
ysis is inspired by [3], where authors extended the DBSCAN
algorithm to incorporate non-spatial attributes. Let there be
a data set D = {d1, d2, . . . , dn}, where di = (xi, yi, ai, bi).
Let (xi, yi) be the spatial attributes and (ai, bi) the non
spatial attributes. According to [3], we can consider the
spatial as well as the non spatial distances to find out the
respective neighborhoods. More formally, let us consider
the distance between two data points d1 = (x1, y1, a1, b1)
and d2 = (x2, y2, a2, b2). Now if we denote the non-spatial
distance as dists between d1 and d2, then dists(d1, d2) =
√

(x1 − x2)2 + (y1 − y2)2. Similarly, we can find the non-
spatial distance between the same data points d1 and d2 as
distns(d1, d2) =

√

(a1 − a2)2 + (b1 − b2)2. Here we assume
that the Euclidean distance is meaningful between the data
points in spatial as well as non spatial domain. Let us de-
fine two user specified spatial and non-spatial threshold as
ǫs and ǫns, respectively. Now we can define two neighbor-
hoods of a point dk, which are the spatial neighborhood and
the non-spatial neighborhood. The spatial neighborhood is
Nǫs(k) = {dj ∈ D|dists(dk, dj) ≤ ǫs}, and the non-spatial
neighborhood is Nǫns

(k) = {dj ∈ D|dists(dk, dj) ≤ ǫns}.
Finally the composite neighborhood will include the data
points common in Nǫs(k) and Nǫns

(k) which is N(k) =
Nǫs(k) ∩ Nǫns

(k). Effectively, the neighborhood N(k) con-
sists of the data points around dk, which are closer to it with
respect to spatial as well as non-spatial distance, given the
respective thresholds ǫs and ǫns.

For the non-spatial attribute we have used wind speed in
our analysis, because wind speed is an important attribute
of hurricanes. Further, only the wind speed data is available
in the data set for all the records.



3.2.3 Spatio temporal clustering

Since the hurricane data is naturally spatio-temporal data,
we need to consider the time also in the analysis. In the
current work we have considered time also as a non-spatial
attribute. We use the time in the following formulation. Let
the user specified temporal threshold be ǫt. Here the data
point di = (φi, λi, ti), where φi is the latitude, λi is the lon-
gitude, and ti is the time. dists is the Haversine distance,
where as the distns is simply the Manhattan distance, viz.,
distns(di, dj) = |ti − tj |.
In the hurricane data set, hurricanes have been sampled

at 6 hours intervals, so a trajectory of a particular hurricane
of length l is represented as Tri = {(φi1, λi1, 1), (φi2, λi2, 2)
. . . (φil, λil, l)}. In this work we have considered the relative
time framework, where instead of using the absolute time in
the hurricane tracks, we consider the relative time from the
start of a particular track. This framework is more impor-
tant in the current analysis because our aim is to analyze
this data from the hurricane’s movement patterns point of
view. Since the hurricanes are of different length, we have
normalized the time component by the length of the hurri-
cane trajectory. Which is:

Trni =

{(

φi1, λi1,
0

l − 1

)

,

(

φi2, λi2,
1

l − 1

)

. . . (φil, λil, 1)

}

Because of this normalization the time component of the
trajectory will vary from (0−1.0). Please note that the lower
value of ti close to 0.00 will signify that the trajectory data
point is in its initial stage, where as the higher values close to
1.00 would signify that the particular data point lies towards
the end of the hurricane. Similarly the values of ti close to
0.5 will signify the middle data points in the trajectory. If
we use the spatial and this temporal information together
in the DBSCAN for finding the clusters then we will obtain
spatio-temporal clusters.

4. EXPERIMENTS AND ANALYSIS
We have done the implementation and analysis using MAT-

LAB on the hurricane data set described at the end of Sec-
tion 1.

4.1 Analysing spatial attributes
Fig 2 shows the result of the DBSCAN algorithm applied

on the 50 years storm data. For this experiment the pa-
rameter values were MinDst = 35 and MinPts = 10. We
obtained 15 clusters of different sizes across the region. This
choice of the parameters MinDst and MinPts is based on
the experimentation. We tried to get the values of these
parameters on the basis of the suggestions in [5], but we got
just one single cluster as the output. Therefore, we ran the
DBSCAN algorithm for different combinations of MinDst

and MinPts and picked the above value for the case where
we got well separated and compact clusters.
In order to analyze the results depicted in Fig 2 we will

utilize Table 1, which summarizes certain properties of the
15 clusters. The big cluster in the center (Magenta stars)
shows the most dominant region of the storms. Numer-
ical values corresponding to this cluster, which has clus-
ter id 4, can be obtained from Table 1. This cluster with
cluster id 4 is ranked first with respect to the number of
trajectories(Stormrank (#traject.)) as well as the num-
ber of data points belonging to it viz., (Stormrank (#data
points) ). The number of different storm trajectories that
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Figure 2: Storm Clustering with spatial attributes

Table 2: Storm Clustering analysis, Impact of Non

spatial attribute MinPts = 10, MinDst = 35
MinDstWspeed Mean(Std(Cluster i)) (#clusters)

20 13.5669 5
30 16.222 6
40 22.4366 9
50 23.2284 9
60 25.458 12
70 25.9649 14
80 26.3079 14
90 27.6229 15
100 27.6691 15

pass through this cluster is 185 and it has total of 1673 storm
data points ( Table 1). We conclude that this region is the
most prominent region in terms of hurricane storm activity.
The next dominant region corresponds to the cluster with
cluster id 3 (green stars), which has the second rank in terms
of the number of storm trajectories (viz., 80) (Table 1) that
passed through it and the number of storm data points (viz.,
471) in it. On the other side, we have some smaller size clus-
ters that are lowest in the ranks. Clusters with id 10 and 14
rank as the last two in terms of the number of storms that
pass through them, where as the storms with id 12 and 13
rank as the lowest two in terms of the ranking on the basis of
the storms data points that belong to them. We have some
medium class storm clusters also. This kind of analysis will
identify spatially the regions that are susceptible to storms,
and at the same time we can identify relative susceptibility
among them.

4.2 Qualitative analysis of clusters
In this work we have extended DBSCAN algorithm to find

out the dense regions in hurricane point data while consider-
ing the non-spatial attributes along with the natural spatial
attribute. The two non-spatial attributes considered in this
work are wind speed and time. We varied the wind speed
threshold MinDstWspeed from 20− 100 (interval of 10), and
the temporal threshold ǫt from 0.2−1.0 in the interval of 0.1.
Since we got a range of clustering results when we changed
these parameters, we needed a quality measure for the re-
sults of clustering. We used the quality measure proposed



Table 1: Storm clustering analysis, on Spatial clustering , MinPts = 10, MinDst = 35
Storm ID Stormrank (#traject.) Stormrank (#data points) #traject.(Clusteri) #DataPts.(Clusteri) Color(Symb.)

1 6 4 53 361 Red (star)
2 3 3 68 371 Blue (star)
3 2 2 80 471 Green (star)
4 1 1 185 1673 Magenta (star)
5 7 7 37 76 Cyan (star)
6 5 5 58 244 Cyan (square)
7 10 9 16 24 Red (square)
8 4 6 60 144 Blue (square)
9 9 11 18 20 Green (square)
10 14 10 9 22 Magenta (square)
11 8 8 27 40 Black (star)
12 13 14 12 15 Red (circle)
13 11 15 14 15 Blue (circle)
14 15 12 9 20 Green (circle)
15 12 13 14 17 Yellow (circle)

in [6]. This measure is given below:

numclus
∑

i=1





1

2Ci

∑

x∈Ci

∑

y∈Ci

dist(x, y)2



+
1

2|N |
∑

w∈N

∑

z∈N

dist(w, z)2

(2)
where, numclus is the number of clusters, N is the set of
noise points and Ci is the ith cluster. This quality measure
computes the sum of the square error (SSE), which means
the smaller this value, the better will be the clustering result.

4.2.1 Analysing combination of spatial and non-spatial
attributes

We did some additional analysis that would give us more
concrete information in terms of the nature of the storms.
The data set includes the attribute value wind speed, which
is available for all the data points, and is one of the key
characteristics of hurricanes. We used this as a non-spatial
attribute and redefined the distance parameter in the DB-
SCAN algorithm to combine spatial and non spatial values.
This approach is inspired by the work in article [3]. Now the
clusters that we get are the spatial regions that are prone to
similar kind of storms in terms of the wind speed. In the re-
definition of the MinPts, we need to consider the neighbors
as the data points which are closer to the particular data
point with respect to the spatial distance as well as similar
in wind speed values.
As expected when we constrained the neighborhood crite-

ria by incorporating non-spatial attribute, viz., wind speed
the number of clusters as well as the size of the clusters was
reduced. This is because now the clusters represent the re-
gions that were influenced by the same nature of storms.
When we relaxed the similarity in the wind speed to be 100
the result degenerated to the case of totally spatial cluster-
ing, as the wind speed similarity had no impact. But as
we reduced the value of wind speed similarity to lower val-
ues (70, 50 and 30 respectively), we got a smaller number
of clusters and they got more compact. In order to reflect
that extent of compactness we have a column in Table 2
Mean(Std(Cluster i)), viz., the mean of the standard de-
viation of the wind speed in the individual clusters for the
particular choice of the wind speed similarity threshold. The
standard deviation goes down as we reduce the value of wind
similarity. This measure gives an intuitive measure of the
compactness and the homogeneous nature of the clusters.
Now using the measure in Equation 2, since it has the no-

Table 3: Qualitative measure of clustering results

MinDstWspeed(mph) QWspeed(mph) Qspatial(km)
20 4.92E+04 3.35E+04
30 1.49E+05 8.62E+04
40 1.15E+06 2.56E+05
50 1.43E+06 2.96E+05
60 1.83E+06 3.46E+05
70 2.20E+06 4.11E+05
80 2.41E+06 4.73E+05
90 2.53E+06 5.18E+05
100 2.55E+06 5.18E+05

tion of distance, we used two distances separately. First we
used the spatial distance using the latitude and longitude of
the data points, and second the difference in wind speed of
two data points. We got the following performance in Ta-
ble 3. The results shows that as we reduce theMinDstWspeed

value from 100 to 20 the clustering result improved in terms
of QWspeed as well as Qspatial. This result is obvious as the
reduction in the threshold value MinDstWspeed forces more
compact and homogeneous clusters.

Table 4 shows the spatio temporal clustering result. Here
we have done the clustering using the normalized time pa-
rameter along with the spatial attributes. We reduced the
temporal threshold ǫt from 1.0 to 0.2 and found the perfor-
mance of the clustering results to improve in terms of the
quality Qǫt and Qspatial. These two parameters denote the
quality measure in terms of the temporal and spatial homo-
geneity of the clusters.

Note that although the lower values of the quality mea-
sure in Equation 2 signify better clustering result, these best
performance results may not be what the end user wants.
This is because the clustering concept is very subjective.

4.3 Analysing storm starting and landing in-
formation

One more analysis that we have done on the storm data
is about the landing and the starting information for the
storms. Here we first considered only the starting three data
points corresponding to the first three time stamps, for all
the storm trajectories. The DBSCAN algorithm was run on
this data set. The resulting clusters give the regions from
where the storms are most likely to start. Figure 3 shows
the potential regions from where the storms may originate.



Table 4: Qualitative measure of clustering results

ǫt Qǫt Qspatial

0.2 1.81E+00 1.13E+04
0.3 2.23E+01 9.30E+04
0.4 1.23E+02 3.04E+05
0.5 1.54E+02 3.54E+05
0.6 1.79E+02 4.11E+05
0.7 1.96E+02 5.05E+05
0.8 2.02E+02 5.18E+05
0.9 2.03E+02 5.19E+05
1.0 2.03E+06 5.19E+05
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Figure 3: Storm starting clusters

Similarly we did the analysis on the last three data point
of the storm trajectories. The result in Figure 4 shows the
potential regions, where the storms may end.
Our motivation for doing the separate analysis for the

landing and starting trajectory portion is based on the fact
that when we consider all of the data points for the clustering
using DBSCAN, these (landing and starting) information
related with the storm activity may be lost as noise.

5. CONCLUSION
In this work we analyzed hurricane storm trajectory data

to find areas of extreme hurricane density, as well as areas
where hurricanes originate and land. We took a different
approach to trajectory analysis by focusing on points along
the trajectory, rather than line segments as in previous work.
We used the DBSCAN algorithm for the clustering analysis.
Initially the clusters are obtained on the basis of only the
spatial attributes. After that, we looked at the influence of
the non-spatial attributes, in particular wind speed, on the
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Figure 4: Storm Landing clusters

clusters obtained. We also propose a spatio temporal DB-
SCAN algorithm where the normalized relative time infor-
mation with the point data has been considered as another
non-spatial attribute for DBSCAN. We post processed the
clustering results to obtain the storm starting, storm land-
ing and storm tracking information. Our work differs from
other work because of the focus on trajectory points, which
results in identifying high-activity regions, as well as regions
at start and end of storms.

6. REFERENCES
[1] http://weather.unisys.com/hurrricane/atlantic/

index.html.

[2] Data Mining: Concepts and Techniques, 2nd ed.

Morgan Kaufmann, 2006.

[3] Derya Birant and Alp Kut. ST-DBSCAN: An
algorithm for clustering spatial-temporal data. Data

Knowl. Eng., 60(1):208–221, January 2007.

[4] Chun-Sheng Chen, Christoph F. Eick, and NouhadJ.
Rizk. Mining spatial trajectories using non-parametric
density functions. In Petra Perner, editor, Machine

Learning and Data Mining in Pattern Recognition,
volume 6871 of Lecture Notes in Computer Science,
pages 496–510. Springer Berlin Heidelberg, 2011.

[5] Martin Ester, Hans peter Kriegel, Jorg S, and Xiaowei
Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. pages 226–231.
AAAI Press, 1996.

[6] Jae gil Lee and Jiawei Han. Trajectory clustering: A
partition-and-group framework. In In SIGMOD, pages
593–604, 2007.

[7] Joachim Gudmundsson, Andreas Thom, and Jan
Vahrenhold. Of motifs and goals: mining trajectory
data. In Proceedings of the 20th International

Conference on Advances in Geographic Information

Systems, SIGSPATIAL ’12, pages 129–138, New York,
NY, USA, 2012. ACM.

[8] Yan Huang, Liqin Zhang, and Pusheng Zhang. A
framework for mining sequential patterns from
spatio-temporal event data sets. IEEE Transactions

on Knowledge and Data Engineering, 20(4):433–448,
2008.

[9] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou,
Christian S. Jensen, and Heng Tao Shen. Discovery of
convoys in trajectory databases. Proc. VLDB Endow.,
1(1):1068–1080, August 2008.

[10] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector
Gonzalez. Traclass: Trajectory classification using
hierarchical region-based and trajectory-based
clustering. Proc. VLDB Endow., 1(1):1081–1094,
August 2008.

[11] Dhaval Patel, Chang Sheng, Wynne Hsu, and Mong Li
Lee. Incorporating duration information for trajectory
classification. In Proceedings of the 2012 IEEE 28th

International Conference on Data Engineering, ICDE
’12, pages 1132–1143, 2012.

[12] Marcos Vieira, Petko Bakalov, and Vassilis Tsotras.
On-line discovery of flock patterns in spatio-temporal
data, 2009.


