
K-DBSCAN: Identifying Spatial Clusters With
Differing Density Levels

Madhuri Debnath
Department of Computer Science

and Engineering
University of Texas at Arlington

Arlington, Texas
Email: madhuri.debnath@mavs.uta.edu

Praveen Kumar Tripathi
Department of Computer Science

and Engineering
University of Texas at Arlington

Arlington, Texas
Email: praveen.tripathi@mavs.uta.edu

Ramez Elmasri
Department of Computer Science

and Engineering
University of Texas at Arlington

Arlington, Texas
Email: elmasri@cse.uta.edu

Abstract—Spatial clustering is a very important tool in the
analysis of spatial data. In this paper, we propose a novel
density based spatial clustering algorithm called K-DBSCAN with
the main focus of identifying clusters of points with similar
spatial density. This contrasts with many other approaches,
whose main focus is spatial contiguity. The strength of K-
DBSCAN lies in finding arbitrary shaped clusters in variable
density regions. Moreover, it can also discover clusters with
overlapping spatial regions, but differing density levels. The goal
is to differentiate the most dense regions from lower density
regions, with spatial contiguity as the secondary goal. The original
DBSCAN fails to discover the clusters with variable density and
overlapping regions. OPTICS and Shared Nearest Neighbour
(SNN) algorithms have the capabilities of clustering variable
density datasets but they have their own limitations. Both fail to
detect overlapping clusters. Also, while handling varying density,
both of the algorithms merge points from different density levels.
K-DBSCAN has two phases: first, it divides all data objects
into different density levels to identify the different natural
densities present in the dataset; then it extracts the clusters using
a modified version of DBSCAN. Experimental results on both
synthetic data and a real-world spatial dataset demonstrate the
effectiveness of our clustering algorithm.

I. INTRODUCTION

Clustering is the process of grouping a set of objects into
classes or clusters so that the similarity between the objects
within the same cluster is maximized. For researchers who
work with geographical and other types of spatial data, data
mining has offered many useful and promising tools for data
analysis. Spatial clustering is one of these tools [1].

Spatial Clustering has a wide range of applications. Some
of them include crime hot-spot analysis, identification of sim-
ilar land usage, earthquake analysis, agricultural environment
analysis and merging of regions with similar weather patterns.

Spatial databases have some unique challenges. So, in
order to choose a clustering algorithm that is suitable for a
particular spatial application, some important issues need to
be considered [2].

• Clustering algorithms should identify irregular shapes.
Partitioning algorithms like K-means [3] or K-medoids
[4] can discover clusters with spherical shapes and
similar size. Density-based clustering algorithms like
DBSCAN [5] are more suitable to find arbitrary
shaped clusters.

• The algorithms should not be sensitive to the order
of input. That means, clustering results should be
independent of data order. For example, cluster quality
and efficiency in K-means [3] depends on the choice
of initial seeds, while cluster results in DBSCAN [5]
do not depend on the data order.

• Algorithms should handle data with outliers. Density-
based algorithms like DBSCAN [5] and OPTICS [6]
can handle noise, while K-means [3] cannot.

• Algorithms should not be too sensitive to user spec-
ified parameter. For example, existing density-based
algorithms like DBSCAN [5], DENCLUE [7] and
OPTICS [6] need a careful choice of threshold for
density, because they may produce very different
results even for slightly different parameter settings.

• Lastly, clustering algorithms should handle spatial data
with varying density. DBSCAN [5] fails to cluster this
kind of data.

Motivated by these challenges, we propose a new density-
based spatial clustering algorithm K-DBSCAN to analyse
spatial data that can handle data with different density levels.
Unlike the DBSCAN [5] algorithm, it does not depend on the
global ε parameter to calculate neighbourhood, rather each data
point dynamically generates its own parameter to define its
neighbourhood. Hence, it has less sensitivity to user specified
parameter.

Our proposed K-DBSCAN algorithm can be utilized in
several applications. For example, it can be used to find spatial
clusters with differing population density levels, even when
these clusters are overlapping. Spatial analysis of regions based
on population has important application in urban planning,
healthcare and economic development. Population density lev-
els of different regions are different.

The rest of the paper is organized as follows. In Section
2, we review some related works. We describe our proposed
algorithm in Section 3. Section 4 presents experimental results
of our algorithm and compares the quality of the clustering
result with three other well-known algorithms. In Section 5,
we present a practical application of our algorithm with a real-
world spatial dataset. Finally Section 6 concludes the paper.

2015 International Workshop on Data Mining with Industrial Applications

978-1-4673-8111-6/15 $31.00 © 2015 IEEE

DOI 10.1109/DMIA.2015.14

52

2015 International Workshop on Data Mining with Industrial Applications

978-1-4673-8111-6/15 $31.00 © 2015 IEEE

DOI 10.1109/DMIA.2015.14

51

II. RELATED WORK

Spatial Clustering algorithms can be partitioned into four
general categories: Partitioning, hierarchical, density-based and
grid-based.

Partitioning algorithms divide the entire dataset into a
number of disjoint groups. Each disjoint group is a cluster.
K-means [3], EM (Expectation Maximization) [8] and K-
medoid [4] are three well-known partitioning based clustering
algorithms. These use an iterative approach and try to group the
data into K clusters, where K is a user specified parameter. The
shortcoming of the algorithms is that they are not suitable for
finding arbitrary shaped clusters. Further, they are dependent
on the user specified parameter K.

Hierarchical clustering algorithms use a distance matrix
as an input and generates a hierarchical set of clusters. This
hierarchy is generally formed in two ways: bottom-up and top-
down [4]. The top-down approach starts with all the objects in
the same cluster. In each successive iteration a bigger cluster
is split into smaller clusters based on some distance measure,
until each object is in one cluster itself. The clustering level
is chosen between the root (a single large cluster) and the
leaf nodes (a cluster for each individual object). The bottom-
up approach starts with each object as one cluster. It then
successively merges the clusters until all the clusters are
merged together to form a single big cluster. The weakness
of the hierarchical algorithms is that they are computationally
very expensive.

BIRCH [9] and CURE [10] are hierarchical clustering
algorithms. In BIRCH, data objects are compressed into small
sub-clusters, then the clustering algorithm is applied on these
sub-clusters. In CURE, instead of using a single centroid, a
fixed number of well scattered objects are selected to represent
each cluster.

Density-based methods can filter out the outliers and can
discover arbitrary shaped clusters. DBSCAN [5] is the first
proposed density-based clustering algorithm. This algorithm
is based on two parameters: ε and MinPts. Density around
each point depends on the number of neighbours within its
ε distance. A data point is considered dense if the number
of its neighbours is greater than MinPts. DBSCAN can
find clusters of arbitrary shapes, but it cannot handle data
containing clusters of varying densities. Further, the cluster
quality in DBSCAN algorithm depends on the ability of the
user to select a good set of parameters.

OPTICS [6] is another density based clustering algorithm,
proposed to overcome the major weakness of DBSCAN algo-
rithm. This algorithm can handle data with varying density.
This algorithm does not produce clusters explicitly, rather
computes an augmented cluster ordering such that spatially
closest points become neighbours in that order.

The DENCLUE [7] algorithm was proposed to handle high
dimensional data efficiently. In this algorithm density of a data
object is determined based on the sum of influence functions
of the data points around it. DENCLUE also requires a careful
selection of clustering parameters which may significantly
influence the quality of the clusters.

The Shared Nearest Neighbour (SNN) [11] clustering al-
gorithm was proposed to find clusters of different densities

in high dimensional data. A similarity measure is based on
the number of shared neighbours between two objects instead
of traditional Euclidean distance. This algorithm needs 3
parameters (k, ε, MinPt).

Grid-based clustering algorithm divides the data space into
a finite number of grid cells forming a grid structure on
which operations are performed to obtain the clusters. Some
examples of grid based methods include STING [12], Wave-
Cluster [13] and CLIQUE [14]. The STING [12] algorithm
calculates statistical information in each grid cells. The Wave-
Cluster [13] algorithm applies wavelet transformation to the
feature base. Input parameters include the number of grid
cells for each dimension. This algorithm is applicable for low
dimensional data space. The CLIQUE [14] algorithm adopts a
combination of grid-based and density-based approaches and
this algorithm can detect clusters in high-dimensional space.

III. PROPOSED ALGORITHM

In this section, we focus on the basic steps of our proposed
algorithm. We propose K-DBSCAN algorithm, which works in
two phases.

• K Level Density Partitioning: In this phase, we calcu-
late the density of each data point based on its distance
from its nearest neighbouring data points. Then we
partition all the data points into K groups based on
their density value.

• Density Level Clustering: In this phase, we introduce
a modified version of DBSCAN algorithm that works
on different density levels.

A. K-DBSCAN Phase 1 - K level Density Partitioning

In real world spatial datasets, different data objects may
be located in different density regions. So, it is very difficult
or almost impossible to characterize the cluster structures by
using only one global density parameter [15].

Fig. 1: Points in different density regions

Consider the example from Figure 1. In this example,
points in clusters C1, C2 and C3 represents very dense neigh-
bourhoods. Points in cluster C4 represents a less dense region,
while points in cluster C5 represent a sparse neighbourhood.
Point P1 and P2 should be considered as noise or outliers. As
different data points are located in different density regions, it
is impossible to obtain all the clusters simultaneously using
one global density parameter. Because, if we consider the
density estimation for points located in C1, we have to choose

5352

a smaller ε value and we will find clusters C1, C2 and C3.
All other points will be considered as outliers. However, if we
want to discover cluster C5, we have to choose a larger value
of ε, but this may result in a bigger cluster by including most
of the data points as its neighbour (for example, C1 may merge
with C5 forming a bigger cluster).

Consider another example in Figure 2. Here cluster C1 is
surrounded by another cluster C2. Points in C2 represent a less
dense region, while points in C1 are in a high density region.
It is also difficult to identify both clusters using DBSCAN [5].

Fig. 2: One cluster surrounding another cluster

To overcome these problems, we aim to partition all the
data points based on their density values. The density value of
a point depends on the distance of the point from its nearest
neighbours.

There are different measures to find the density of a point.
In DBSCAN [5], density of a point is defined as the total
number of neighbours within a given radius(ε) of the point.
But this does not work well in dataset with varying densities.
A large number of points may be considered as noise due
to lack of significant neighbourhood, in terms of global ε.
SNN [11] clustering algorithm used the same definition for
density measure, but they did it in terms of shared nearest
neighbour similarity, which is relatively insensitive to variation
of density. Still we have to estimate a global radius parameter,
ε.

In this paper, we have defined a new measure to find
density. Here we introduce some important definitions required
for this algorithm.

Definition 1: l-nearest neighbour distance: The l-nearest
neighbour distance of a point P , denoted as distl(P) is the
distance between the point P and its lth nearest neighbour.
Where, l ≥ 1 . If l-set(P) is the set of l closest neighbours of
point P and di is the distance from point P to its ith closest
neighbour, then

distl(P) = max {di} (1)

Definition 2: l-density: The l-density of a point P, denoted
as l-density(P) is defined as follows

l-density(P) =
1

l

l∑
i=1

di (2)

1) Partitioning: We divide the data points into K groups
based on their density values. For each point P, we calculate
l-density(P). Then, we implement the K-means [3] clustering
algorithm to divide all points into K groups based on their
l-density values. As a result, each point will be assigned to a
number from 1 to K. We denote this number as the density
level of a point. The motivation behind this is to divide the
points into K density levels.

For example, consider that, we have 10 points from p1 to
p10. We compute their l-density(P) values which are,

l-density = {1.2, 1.5, 4.5, 4.2, 3.3, 1.9, 2.2, 3.7, 4.0, 4.9}.

We implement K-means algorithm on this set with K = 2,
we get the resulting density level set.

density-level = {1, 1, 2, 2, 2, 1, 1, 2, 2, 2}.

Points p1, p2, p6 and p7 have the same density level 1.
Whereas, points p3, p4, p5, p8, p9 and p10 have density level
2.

Definition 3: Density-Level: Density-Level of a point P ,
denoted by density-level(P) is an integer number, labelled
by K-means algorithm. For two points P and Q, if their
density levels are the same, then the l-density of P and Q
are approximately similar. Note that, density-level is only a
categorical parameter.

2) How to choose the value of K: In this algorithm K is
a user specified parameter, which plays an important role in
finding a good clustering result. The value of K indicates the
number of different dense regions in the whole data space. If
we choose value of K = 1, it signifies that all the data points
are in the same dense region.

In order to determine the value of K, we sort the l-density
value of all points in increasing order and plot them. We look
for the strong or slightly strong bends in this graph. Consider
a sample dataset in Figure 3a, whose sorted l-density plot is
given in Figure 3b. There is a clear bend in this graph. So,
we can visualize the dataset and divide it into 2 density levels.

In this dataset, we implement K-means [3] clustering
algorithm with K = 2. Hence, we get two intermediate clusters
based on two density levels. Blue points have level 2 density
and red points have level 1 density (see Figure 3c).

B. K-DBSCAN Phase 2 - Density Level Clustering

Step 1 partitions the data points into different density
levels. Step 2 is a modified version of DBSCAN algorithm,
which considers spatial distance as well as the density level
difference between points while clustering.

the K-DBSCAN algorithm does not depend on the single
global parameter ε, rather each point defines its neighbourhood
region dynamically based on its density value. We introduce
the idea of Density level neighbourhood of a point. Density

5453

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

(a) Dataset-1

�������	
�

(b) Sorted l-density plot

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

(c) Two density levels

Fig. 3: K-level Density Partitioning

level neighbours of a point Pi are the points that reside inside
the neighbourhood region of Pi and that have the same density
level as that of Pi.

Consider the example in Figure 4. We assume that, density
level of all points in C1 is 1 and density level of all points in
C2 is 2. So, point P1 is assigned with density-value 2. Only
the blue points inside P1’s neighbourhood radius are defined
as Density level neighbourhood of P1.

Fig. 4: Neighbourhood of a Point

Definition 4: Neighbourhood radius of a point (εi): The
neighbourhood radius of a point Pi is defined as εi is εi =
distl(Pi).

Definition 5: Density Level Neighbourhood of a point
N(Pi): This is defined by N(Pi) = {Q ∈ D | dist(Pi, Q)
≤ εi and density-level(Pi) = density-level(Q)}.

The following definitions from 6 to 9 are similar to the
DBSCAN definitions except for the differences in neighbour-
hood that take density level into account in definitions 6 and
7.

Definition 6: Directly density reachable: A point q is
directly density reachable from point Pi wrt. εi if q ∈ N(Pi).

Definition 7: Density reachable: A point q is density reach-
able from point Pi if there is a chain of points p1......pn, p1 =
Pi and pn = q such that pk is directly density reachable from
point pk+1.

Definition 8: Density connected: A point P is density
connected to point Q if there is an intermediate point o such
that both P and Q are density reachable from point o.

Definition 9: Cluster: A cluster C is a non-empty subset of
the whole dataset of points satisfying the following conditions:
1. ∀ p, q: if p ∈ C and q is density reachable from p, then
q ∈ C.
2. if p, q ∈ C: p is density connected to q.

Definition 10: Outliers: A cluster must have at least
MinPts, which is a user specified parameter. If the number
of points in a cluster is less than the threshold MinPts, we
consider the points as outlier, that do not belong to any cluster.

Clustering Algorithm: In this section, we present our
density-based clustering algorithm. The structure of K-
DBSCAN algorithm is given in Algorithm 1, which invokes
ExpandCluster (see Algorithm 2) method and RegionQuery
(see Algorithm 3) method. Input D is the set of data points.
Another inputDL is an array containing the density-levels of all
points generated by a K-means [3] algorithm, that we described
in the Partitioning phase (see Section 3.1.1).

Algorithm 1 K-DBSCAN
Inputs:
D: a set of data points (P1, P2, P3,Pn)
DL: a set of density level of the corresponding data points
(dl1, dl2, dl3....dln)
Outputs:
CL: a set of clusters

1: procedure K-DBSCAN(D, DL)
2: C ← 0 /* C is cluster id */
3: for each unvisited point Pi do
4: mark Pi as visited
5: Calculate εi /* see Definition 4 */
6: dli ← DL[Pi]
7: NeighborP ts← regionQuery(Pi, dli, εi)
8: C ← C + 1
9: ExpandCluster(Pi, NeighborP ts, C,DL)
10: end for
11: end procedure

RegionQuery method returns all the density level neigh-
bours of a point (see Definition 5). ExpandCluster method does
the cluster formation. If a point P is assigned to a cluster C,
its density level neighbours are also part of the same cluster
C. This process continues until all the density connected (see
Definition 8) points are found (see Algorithm 2).

5554

Algorithm 2 ExpandCluster

1: procedure EXPANDCLUSTER(Pi,Neighbor,C,DL)
2: Assign Pi to Cluster C
3: for each point pj in Neighbor do
4: Calculate εj
5: dlj ← DL[pj]
6: NeighboursP tsj ← regionQuery(pj, dlj, εj)
7: for all points pk in NeighbourP tsj do
8: if DL[Pi] = DL[pk] then
9: NeighbourP ts← NeighbourP ts∪ pk
10: end if
11: end for
12: if pj is not yet assigned to any cluster then
13: assign pj to cluster C
14: end if
15: end for
16: end procedure

Algorithm 3 RegionQuery
Inputs:
Pi: i-th data point
dli: density level of point Pi

εi: Neighbourhood radius of point Pi

Outputs:
S: a set of neighbour points

1: procedure REGIONQUERY(Pi, dli, εi)
2: Return all points within Pi’s εi-neighbourhood (includ-

ing Pi) and that has the same density-level as dli
3: end procedure

IV. EXPERIMENTS AND COMPARISON WITH OTHER
METHODS

In this section, we evaluate the effectiveness of our clus-
tering algorithm. We used two different datasets. Dataset-1 is
a synthetic dataset, whereas, dataset-2 is a real-world spatial
dataset. We compare our method with three well known density
based clustering algorithm, DBSCAN [5], Shared Nearest
Neighbour (SNN) [11] and OPTICS [6].

A. Experiment 1

Dataset-1 is a synthetic dataset, that was also used in [15]
(see Figure 3a). We use K = 2 (2 density levels) and MinPts
= 5. The result of K-DBSCAN is shown in Figure 5a. In this
result, different colors indicate different clusters. We get 5
clusters. cluster C5 is the big cluster with lower density level
that surrounds the other clusters C1, C2, C3, C4.

We change the value of K to 3 (3 density levels). Figure 5b
shows the result. Here we get 8 clusters. Cluster C8 represents
the lowest density level. Cluster C4, C5 and C6 and C7 are at
the middle density level. Whereas cluster C1, C2 and C3 are
at the highest density level.

Figure 6a shows the result of DBSCAN algorithm with
parameters ε = 2 and MinPts = 5. We got 3 clusters here
(red, blue and green points). A large number of points are not
being clustered as they are considered as outliers. We change
the value of ε = 4 and Figure 6b shows the result. We get only

one big cluster (red points). Obviously one big cluster does
not contain any meaningful information.

Figure 7a, Figure 7b and Figure 7c show the results of
Shared Nearest Neighbour [11] algorithm on the same dataset.
In this algorithm, the value nearest neighbour list size, k, is
important to determine the granularity of clusters. If k is too
small, even a uniform cluster will be broken up into multiple
clusters, and the algorithm will produce a large number of
small clusters. On the other hand, if k is too large, the
algorithm will generate only a few, well separated clusters [11].
We use 3 different values for k and compare the results with
our algorithm.

Figure 7a shows the result of SNN algorithm with k =
15. Here this algorithm produces 37 small clusters, with a lot
outliers.

Figure 7b shows the clustering result with k = 30. We get
18 clusters. We can see that cluster C3 (From Figure 5) has
been broken into multiple different clusters. Similarly, cluster
C5 (From Figure 5) has also been broken down into multiple
clusters. Also, we find the points in different density levels are
mixed together and form a single cluster.

Figure 7c shows the result with k = 50. Here, we get 8
clusters. But still one of the dense clusters (Cluster C1 from
Figure 5b) has been broken into multiple small sized clusters.
Further, some points from different density levels are merged
together to form a single cluster.

Now, we compare our method with OPTICS [6] algorithm.
From a set of points, OPTICS [6] generates an ordering of
points and corresponding reachability values [6]. Using the
reachability plot, clusters of different densities can be obtained.
Figure 8a shows the reachability plot obtained by OPTICS
algorithm for Dataset-1. In this plot, x-axis displays the order
in which OPTICS visits the points. Whereas, y-axis displays
the reachability distance of corresponding points. Each valley
represents a cluster. The deeper the valley, the more dense the
cluster.

Extracting clusters can be done manually by selecting a
threshold on the y-axis. We can clearly see the threshold
value = 4.5 will give us a good result. Figure 8b shows
the clustering result. It is clear that, clusters contain points
of varying densities, but the big overlapping cluster is missing
here (cluster C5 from Figure 5a).

B. Experiment 2

In the second experiment, we use a real-world spa-
tial dataset (Dataset-2), generated from OpenStreetMap [16],
which covers a small area of Dhaka city in Bangladesh (see
Figure 9a). We parsed all house or apartment locations in this
region. This dataset contains 325 points. Figure 9b shows the
K-DBSCAN clustering result using K = 2 (2 density levels).
Our algorithm generates a total of 8 clusters. Cluster C1 to C7

are the most dense clusters, whereas cluster C8 represents the
lower density.

To compare with DBSCAN, we first use value ε = 0.004
and MinPts = 5 (see Figure 9c). Points that formed cluster
C8 in our algorithm (see Figure 9b) are not being clustered
using these parameters, because they are considered as outliers.

5655

(a) K = 2
(b) K = 3

Fig. 5: K-DBSCAN results on Dataset-1

65 70 75 80 85 90 95
50

55

60

65

70

75

(a) ε = 2

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

(b) ε = 4

Fig. 6: DBSCAN results on Dataset-1, MinPts = 5

65 70 75 80 85 90 95
20

30

40

50

60

70

80

90

(a) k = 15

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

(b) k = 30

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

(c) k = 50

Fig. 7: SNN clustering results on Dataset-1

5756

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

cluster order of the objects

R
ea

ch
ab

ili
ty

 d
is

ta
nc

e

(a) Reachability distance

65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

(b) OPTICS clustering result

Fig. 8: OPTICS clustering result on Dataset-1

We increase the value of ε to 0.009 and implement DBSCAN
again (see the result in Figure 9d). Here we find the same
cluster(magenta points) as cluster C8 (Figure 9b), but clusters
C1 to C5 merged together to form a single cluster (red points).

We implement Shared Nearest Neighbour (SNN) [11]
algorithm on dataset 2. We use nearest neighbour size k =
50. Figure 9e shows the result. We get a total of 8 clusters.
Points that formed cluster C8 in our algorithm (see Figure 9b)
are not being clustered in this result.

Next we implement OPTICS [6] algorithm on dataset 2.
We get a total of 4 clusters. Still the points that formed cluster
C8 in our algorithm (see Figure 9b) are not being clustered in
this result (see Figure 9f).

C. Qualitative Measure of Clustering Results

We attempt to measure the qualitative measure of clustering
result of K-DBSCAN algorithm. Our goal is to differentiate the
most dense regions from lower density regions. Motivated by
this goal, we define a cluster quality measure that is based
on density variation of the points in the clusters. First, we
calculate the average density of all points of a cluster. Then
we get the standard deviation of density values of that cluster.
In addition to this, we consider the noise penalty to penalize
an excessive number outliers. The formulas for these density
quality measures are given in (3) - (7).

ai =
1

|Ci|

∑
x∈Ci

density(x) (3)

σi =

√√√√
∑

x∈Ci

(ai − density(x))2

|Ci|
(4)

NoiseP =
Total number of outliers
Total number of Points

(5)

MDV =
1

numcluster

numcluster∑
i=1

σi (6)

QMeasure = MDV +NoiseP (7)

Table I compares the qualitative measure of our clustering
algorithm on Dataset-1 with the other different algorithms,
whereas, Table II shows the qualitative measure on Dataset-2.
The lower the QMeasure value, the better the result. We can
clearly see that, our algorithm performs better on both cases
than all other algorithms.

We then incorporates a measure of spatial contiguity of
clusters in addition to the density and noise measures, by using
SSE (Sum of squared error) [17], normalized to 0 to 1 range,
(8) and (9).

SSE =

numcluster∑
i=1

⎛
⎝ 1

2|C|

∑
x∈Ci

∑
y∈Ci

dist(x, y)2

⎞
⎠ (8)

Total = MDV +NoiseP + SSE (9)

Table III and IV show the results for Dataset-1 and Dataset-
2 respectively. Smaller value indicates better result. Dataset-1
gives us better result for K = 3 or K = 4. With 2 density
levels (K = 2), we get one big overlapping cluster (see
Figure 5a). That is why we get a larger value of SSE. As the
density levels increase, the big overlapping cluster is broken
into multiple well separated clusters, which gives us a better
result (see Figure 5b). Qualitative results of DBSCAN change
dramatically for change of parameter values. Whereas, our
method gives comparatively consistent results when changing
the parameter value (K).

Our method gives us the best result in Dataset-2. As there
are no overlapping clusters, we get 8 well separated clusters
(see Figure 9b).

5857

90.32 90.34 90.36 90.38 90.4 90.42 90.44 90.46
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

23.84

(a) Dataset-2

90.35 90.4 90.45
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

��

��

��

��

��

��

�	

�

(b) K-DBSCAN, K=2

90.35 90.4 90.45
23.71

23.72

23.73

23.74

23.75

23.76

23.77

23.78

23.79

23.8

(c) DBSCAN, ε = 0.004

90.35 90.4 90.45
23.68

23.7

23.72

23.74

23.76

23.78

23.8

23.82

23.84

(d) DBSCAN, ε = 0.009

90.32 90.34 90.36 90.38 90.4 90.42 90.44 90.46
23.7

23.72

23.74

23.76

23.78

23.8

23.82

(e) SNN, k = 50

90.35 90.4 90.45
23.7

23.72

23.74

23.76

23.78

23.8

23.82

(f) OPTICS

Fig. 9: Clustering results on Dataset-2

5958

Algorithm MDV NoiseP QMeasure
K-DBSCAN (K=2) 0.3503 0.0037 0.354
K-DBSCAN (K=3) 0.3080 0.029 0.337
K-DBSCAN (K=4) 0.2451 0.085 0.330

SNN (k=15) 0.4354 0.263 0.699
SNN (k=30) 0.4966 0.103 0.597
SNN (k=50) 0.7328 0 0.733
OPTICS 0.6364 0.222 0.859
DBSCAN
(ε = 0.2)

0.2278 0.333 0.561

DBSCAN(ε =

0.4)
0.8861 0.0111 0.897

TABLE I: QMeasure for Dataset-1

Algorithm MDV NoiseP QMeasure
K-DBSCAN(K=2) 0.00083 0.0565 0.0573

SNN(k=50) 0.0017 0.0598 0.0615
OPTICS 0.0011 0.664 0.675

DBSCAN(ε =

0.004)
0.0006 0.698 0.6986

TABLE II: QMeasure for Dataset-2

V. APPLICATION OF K-DBSCAN

In order to illustrate the practical application of our al-
gorithm, we apply K-DBSCAN to a real-world population
dataset [18]. This dataset gives the population density for Texas
state for 1990. This dataset is gridded with 0.25 × 0.25 degree
resolution. Each grid cell contains the count of the number of
people inside it. For the experiments in this paper, we represent
each population count of 50 persons by 1 point. Within each
grid, if there were n people residing in it, we generated n/50
locations (latitude, longitude) so that each point represents 50
persons.

��

��

��

��

��

��

�	

�

��

���
���

���

���

��	

���

��
���

���

���

���

���
���

��
 ��	

���
���

���

Fig. 10: Spatial Clusters based on population density

We use density level parameter K = 4. Figure 10 shows
the result. We get total 27 clusters with 4 population density
levels. 3 clusters (C1 to C3) among them have the highest
density levels. We can see from Figure 10 that these regions
are in Houston, Dallas and San-Antonio. Clusters C4 to C13

have the second highest population density. Clusters C14 to

Algorithm MDV NoiseP SSE Total
K-DBSCAN (K=2) 0.350 0.004 0.404 0.758
K-DBSCAN (K=3) 0.308 0.029 0.299 0.636
K-DBSCAN (K=4) 0.245 0.085 0.273 0.603

SNN (k=15) 0.435 0.263 0.004 0.703
SNN (k=30) 0.497 0.103 0.0512 0.649
SNN (k=50) 0.733 0 0.0512 0.784
OPTICS 0.636 0.222 0.0570 0.916
DBSCAN
(ε = 0.2)

0.228 0.333 0.024 0.585

DBSCAN
(ε = 0.4)

0.887 0.011 0.511 1.401

TABLE III: Total Qualitative Measure for Dataset-1

Algorithm MDV NoiseP SSE Total
K-DBSCAN (K=2) 0.0008 0.057 0.020 0.078

SNN (k=50) 0.0017 0.059 0.045 0.106
OPTICS 0.0011 0.664 0.021 0.697
DBSCAN

(ε = 0.004)
0.0006 0.698 0.131 0.830

TABLE IV: Total Qualitative Measure for Dataset-2

C23 have the third highest density levels. Clusters C24 to C27

are the regions with lowest population density.

VI. CONCLUSION

In this paper, we propose a density-based clustering algo-
rithm which can handle arbitrary shaped clusters and datasets
with varying densities. We did experiments on both synthetic
data and real-world spatial data. Unlike the DBSCAN algo-
rithm, K-DBSCAN does not depend on a single global density
threshold ε, which is difficult to determine. Rather, we have
to find a threshold for density level K, which can be easily
determined from the points density distribution. Experimental
results show that our algorithm can correctly cluster the data
points that have different density levels and different shapes.
We compared the clustering quality of our algorithm with 3
other well known algorithms.

REFERENCES

[1] J. Han, M. Kamber, and A. K. H. Tung, “Spatial clustering
methods in data mining: A survey,” in Geographic Data
Mining and Knowledge Discovery, Research Monographs in
GIS. Taylor and Francis, 2001. [Online]. Available: http://www-
faculty.cs.uiuc.edu/ hanj/pdf/gkdbk01.pdf

[2] E. Kolatch, “Clustering algorithms for spatial databases: A survey,” PDF
is available on the Web, 2001.

[3] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 281-
297. California, USA, 1967, p. 14.

[4] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in KDD, vol. 96, 1996, pp. 226–231.

[6] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in ACM SIGMOD
Record, vol. 28, no. 2. ACM, 1999, pp. 49–60.

[7] A. Hinneburg and D. A. Keim, “An efficient approach to clustering in
large multimedia databases with noise,” in KDD, vol. 98, 1998, pp.
58–65.

6059

[8] A. P. Dempster, N. M. Laird, D. B. Rubin et al., “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[9] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in ACM SIGMOD Record,
vol. 25, no. 2. ACM, 1996, pp. 103–114.

[10] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” in ACM SIGMOD Record, vol. 27, no. 2.
ACM, 1998, pp. 73–84.

[11] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data.” in SDM.
SIAM, 2003, pp. 47–58.

[12] W. Wang, J. Yang, and R. Muntz, “Sting: A statistical information grid
approach to spatial data mining,” in VLDB, vol. 97, 1997, pp. 186–195.

[13] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: a
wavelet-based clustering approach for spatial data in very large
databases,” The VLDB Journal, vol. 8, no. 3-4, pp. 289–304, 2000.

[14] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic sub-
space clustering of high dimensional data for data mining applications.
ACM, 1998, vol. 27, no. 2.

[15] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan, “A local-density based
spatial clustering algorithm with noise,” Information Systems, vol. 32,
no. 7, pp. 978–986, 2007.

[16] http://www.openstreetmap.org.

[17] J. Han and M. Kamber, “Data mining: Concepts and techniques.”

[18] http://webmap.ornl.gov.

6160

