BoostMap: A Method for Efficient Approximate Similarity Rankings

Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios* Computer Science Department Boston University 111 Cummington Street Boston, MA 02215 email: {athitsos, jalon, sclaroff, gkollios}@cs.bu.edu

Abstract

This paper introduces BoostMap, a method that can significantly reduce retrieval time in image and video database systems that employ computationally expensive distance measures, metric or non-metric. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. Embedding construction is formulated as a machine learning task, where AdaBoost is used to combine many simple, 1D embeddings into a multidimensional embedding that preserves a significant amount of the proximity structure in the original space. Performance is evaluated in a hand pose estimation system, and a dynamic gesture recognition system, where the proposed method is used to retrieve approximate nearest neighbors under expensive image and video similarity measures. In both systems, in quantitative experiments, BoostMap significantly increases efficiency, with minimal losses in accuracy. Moreover, the experiments indicate that BoostMap compares favorably with existing embedding methods that have been employed in computer vision and database applications, i.e., FastMap and Bourgain embeddings.

1 Introduction

Content-based image and video retrieval is important for interactive applications, where users want to identify content of interest in large databases [11]. Identifying nearest neighbors in a large collection of objects can also be used as a tool for clustering or nearest neighbor-based object recognition [2, 4, 19]. Depending on the number of objects and the computational complexity of evaluating the distance between pairs of objects, identifying the k nearest neighbors can be too inefficient for practical applications. Measuring distances can be expensive because of

high-dimensional feature vectors, or because the distance measure takes super-linear time with respect to the number of dimensions [3, 4].

This paper presents BoostMap, an efficient method for obtaining rankings of all database objects in approximate order of similarity to the query object. The algorithm is domain-independent and can be applied to *arbitrary* distance measures, metric or non-metric. The query object still needs to be compared to all database objects, but comparisons are done after the query and database objects have been embedded to a Euclidean space, where distances can be measured rapidly using a weighted Manhattan (L_1) distance. In many applications ([4], for example) where evaluating exact distances is the computational bottleneck, substituting the original distances with L_1 distances can lead to orders-of-magnitude improvements in efficiency.

With respect to existing embedding methods for efficient approximate similarity rankings, this paper makes the following contributions:

- Embedding construction explicitly optimizes a quantitative measure of how well the embedding preserves similarity rankings. Existing methods (like Bourgain embeddings [13] and FastMap [10]) typically use random choices and heuristics, and do not attempt to optimize some measure of embedding quality.
- A novel formulation is introduced, that treats embeddings as classifiers and embedding construction as a machine learning problem. This formulation allows the use of AdaBoost, a powerful machine learning method, for embedding construction.
- The advantages of our method vs. existing embedding methods are demonstrated in two computer vision applications, namely hand pose estimation and dynamic gesture recognition, in quantitative experiments.

Embeddings are seen as classifiers, which estimate for any three objects a, b, c if a is closer to b or to c. Starting

¹This research was funded in part by the U.S. National Science Foundation, under grants IIS-0208876, IIS-0308213, and IIS-0329009, and the U.S. Office of Naval Research, under grant N00014-03-1-0108.

with a large family of simple, one-dimensional (1D) embeddings, we use AdaBoost [18] to combine those embeddings into a single, high-dimensional embedding that can give highly accurate similarity rankings.

Database objects are embedded offline. Given a query object q, its embedding F(q) is computed efficiently online, by measuring distances between q and a small subset of database objects. In the case of nearest-neighbor queries, the most similar matches obtained using the embedding can be reranked using the original distance measure, to improve accuracy, in a filter-and-refine framework [12]. Overall, the original computationally expensive distance measure is applied only between the query and a small number of database objects.

2 Related Work

Various methods have been employed for similarity indexing in image and video databases, including hashing and tree structures [23]. However, the performance of such methods degrades in high dimensions; this problem is an instance of the general problem called "curse of dimensionality." Furthermore, tree-based methods typically rely on Euclidean or metric properties, and cannot be applied to arbitrary non-metric spaces. Approximate nearest neighbor methods [14, 19] scale better with the number of dimensions, but such methods have only been proposed for some specific metrics, and they are not applicable to arbitrary distance measures.

In domains where the distance measure is computationally expensive, significant computational savings can be obtained by constructing a distance-approximating embedding, which maps objects into another space with a more efficient distance measure. A number of methods have been proposed for embedding arbitrary metric spaces into a Euclidean or pseudo-Euclidean space [5, 10, 13, 17, 20, 22, 24]. Some of these methods, in particular MDS [24], Bourgain embeddings [13], LLE [17] and Isomap [20] are not applicable for online similarity retrieval, because they still need to evaluate exact distances between the query and most or all database objects. Online queries can be handled by Lipschitz embeddings [12], FastMap [10], MetricMap [22] and SparseMap [13], which can readily compute the embedding of the query, measuring only a small number of exact distances in the process. These four methods can be applied in spaces with arbitrary distance measures, and are the most related to our approach.

Image and video database systems have made use of Lipschitz embeddings [2, 6, 7] and FastMap [15, 16], to map objects into a low-dimensional Euclidean space that is more manageable for tasks like online retrieval, data visualization, or classifier training. The goal of our method is to improve embedding accuracy in such applications.

3 Problem Definition

Let X be a set of objects, and $D_X(x_1, x_2)$ be a distance measure between objects $x_1, x_2 \in X$. D_X can be metric or non-metric. Let (q, x_1, x_2) be a triple of objects in X. We define the *proximity order* $P_X(q, x_1, x_2)$ to be a function that outputs whether q is closer to x_1 or to x_2 :

$$P_X(q, x_1, x_2) = \begin{cases} 1 & \text{if } D_X(q, x_1) < D_X(q, x_2) \\ 0 & \text{if } D_X(q, x_1) = D_X(q, x_2) \\ -1 & \text{if } D_X(q, x_1) > D_X(q, x_2) \\ \end{cases}$$

A Euclidean embedding $F : X \to \mathbb{R}^d$ is a function that maps objects from X into the d-dimensional Euclidean space \mathbb{R}^d , where distances are typically measured using an L_p or weighted L_p measure, denoted as $D_{\mathbb{R}^d}$. In this paper, we are interested in constructing an embedding F that, given a query object q, can provide good approximate similarity rankings of database objects, i.e. rankings of database objects in order of decreasing similarity (increasing distance) to the query. To specify the quantity that our method tries to optimize, we introduce in this section a quantitative measure of how well an embedding preserves similarity rankings.

In particular, any embedding $F : X \to \mathbb{R}^d$ defines a *proximity classifier* \overline{F} , that estimates the proximity order function P_X using $P_{\mathbb{R}^d}$, i.e. the proximity order function of \mathbb{R}^d with distance $D_{\mathbb{R}^d}$:

$$\bar{F}(q, x_1, x_2) = P_{\mathbb{R}^d}(F(q), F(x_1), F(x_2)) .$$
 (2)

 \overline{F} outputs one of three possible values: -1, 0, or 1. Alternatively, we can define a continuous-output classifier $\widetilde{F}(q, x_1, x_2)$, that simply outputs the difference between the distances from F(q) to $F(x_2)$ and to $F(x_1)$:

$$\tilde{F}(q, x_1, x_2) = D_{\mathbb{R}^d}(F(q), F(x_2)) - D_{\mathbb{R}^d}(F(q), F(x_1)) .$$
(3)

 \overline{F} can be seen as a discretization of \widetilde{F} , such that \overline{F} outputs 1, 0 or -1 if \widetilde{F} outputs respectively a value that is greater than, equal to, or less than zero.

We define the classification error $G(\bar{F}, q, x_1, x_2)$ of applying \bar{F} on a particular triple (q, x_1, x_2) as:

$$G(\bar{F}, q, x_1, x_2) = \frac{|P_X(q, x_1, x_2) - \bar{F}(q, x_1, x_2)|}{2} .$$
 (4)

Finally, the overall classification error $G(\bar{F})$ is defined to be the expected value of $G(\bar{F}, q, x_1, x_2)$, over all triples of objects in X:

$$G(\bar{F}) = \frac{\sum_{(q,x_1,x_2)\in X^3} G(\bar{F},q,x_1,x_2)}{|X|^3} \,.$$
(5)

If $G(\overline{F}) = 0$ then we say that F satisfies the property of *proximity preservation* [12]. In that case, if x is the k-nearest neighbor of q in X, F(x) is the k-nearest neighbor of F(q) in F(X), for any value of k.

Figure 1: An embedding F_r of five 2D points into the real line, using r as the reference object. The target of each 2D point on the line is labeled with the same letter as the 2D point. The classifier \overline{F}_r (Eq. 2) classifies correctly 46 out of the 60 triples we can form from these five objects (assuming no object occurs twice in a triple). Examples of misclassified triples are: (b, a, c), (c, b, d), (d, b, r). For example, b is closer to a than it is to c, but $F_r(b)$ is closer to $F_r(c)$ than it is to $F_r(a)$.

Overall, the classification error $G(\overline{F})$ is a quantitative measure of how closely the approximate similarity rankings obtained in F(X) will resemble the exact similarity rankings obtained in X. Using the definitions in this section, our problem definition is very simple: we want to construct an embedding $F: X \to \mathbb{R}^d$ in a way that minimizes $G(\overline{F})$.

We will address this problem as a problem of combining classifiers. In Sec. 4 we will identify a family of simple, 1D embeddings. Each such embedding F' is expected to preserve at least a small amount of the proximity structure of X, meaning that $G(\bar{F}')$ is expected to be less than 0.5, which would be the error rate of a random classifier. Then, in Sec. 5 we will apply AdaBoost to combine many 1D embeddings into a high-dimensional embedding F with low error rate $G(\bar{F})$.

4 Some Simple 1D Embeddings

A 1D Euclidean embedding of space X is simply a function $F: X \to \mathbb{R}$. Given an object $r \in X$, a simple 1D Euclidean embedding F_r can be defined as follows:

$$F_r(x) = D_X(x, r) . (6)$$

The object r that is used to define F_r is typically called a *reference object* or a *vantage object* [12].

If D_X obeys the triangle inequality, F_r intuitively maps nearby points in X to nearby points on the real line \mathbb{R} . In many cases D_X may violate the triangle inequality for some triples of objects (an example is the chamfer distance [3]), but F_r may still map nearby points in X to nearby points in \mathbb{R} , at least most of the time [2]. On the other hand, distant objects may also map to nearby points (Figure 1).

Another family of simple, 1D embeddings is proposed in [10] and used as building blocks for FastMap. The idea is to choose two objects $x_1, x_2 \in X$, called pivot objects, and then, given an arbitrary $x \in X$, to define the embedding

Figure 2: Computing $F_{x_1,x_2}(x)$, as defined in Eq. 7: we construct a triangle ABC so that the sides AB, AC, BC have lengths $D_X(x,x_1), D_X(x,x_2)$ and $D_X(x_1,x_2)$ respectively. We draw from A a line perpendicular to BC, that intersects BC at point D. The length of line segment BD is equal to $F_{x_1,x_2}(x)$.

 F_{x_1,x_2} of x to be the *projection* of x onto the "line" $\overline{x_1x_2}$. As illustrated in Figure 2, the projection can be defined by treating the distances between x, x_1 , and x_2 as specifying the sides of a triangle in \mathbb{R}^2 , and applying the Pythagorean theorem:

$$F_{x_1,x_2}(x) = \frac{D_X(x,x_1)^2 + D_X(x_1,x_2)^2 - D_X(x,x_2)^2}{2D_X(x_1,x_2)}.$$
(7)

If X is Euclidean, then F_{x_1,x_2} will map nearby points in X to nearby points in \mathbb{R} . In practice, even if X is non-Euclidean, F_{x_1,x_2} often still preserves some of the proximity structure of X.

If the space X contains |X| objects, then each object can be used as a reference object, and each pair of objects can be used as a pair of pivot objects. Therefore, the number of possible 1D embeddings we can define on X using the definitions of this section is quadratic in the number of objects |X|. Sec. 5 describes how to selectively combine these embeddings into a single, high-dimensional embedding.

5 Constructing Embeddings via AdaBoost

Now we have identified a large family of 1D embeddings, defined using either a reference object, or a pair of pivot objects. Each 1D embedding F' corresponds to a continuousoutput binary classifier \tilde{F}' . These classifiers estimate, for triples (q, x_1, x_2) of objects in X, if q is closer to x_1 or x_2 . If F' is a 1D embedding, we expect \tilde{F}' to behave as a *weak classifier* [18], meaning that it will have a high error rate, but it should still do better than a random classifier. We want to combine many 1D embeddings into a multidimensional embedding that behaves as a *strong classifier*, i.e. that has relatively high accuracy. To choose which 1D embeddings to use, and how to combine them, we use the AdaBoost framework [18].

5.1 Overview of the Training Algorithm

The training algorithm for BoostMap is an adaptation of AdaBoost to the problem of embedding construction. The inputs to the training algorithm are the following:

- A training set $T = ((q_1, a_1, b_1), ..., (q_t, a_t, b_t))$ of t triples of objects from X.
- A set of labels $Y = (y_1, ..., y_i)$, where $y_i \in \{-1, 1\}$ is the class label of (q_i, a_i, b_i) . If $D_X(q_i, a_i) < D_X(q_i, b_i)$ then $y_i = 1$, else $y_i = -1$. The training set includes no triples where q_i is equally far from a_i and b_i .
- A set *C* ⊂ *X* of candidate objects. Elements of *C* can be used to define 1D embeddings.
- A matrix of distances from each c ∈ C to each q_i, a_i and b_i included in one of the training triples in T.

The training algorithm combines many classifiers \tilde{F}'_j associated with 1D embeddings F'_j , into a classifier $H = \sum_{j=1}^{d} \alpha_j \tilde{F}'_j$. The classifiers \tilde{F}'_j and weights α_j are chosen so as to minimize the classification error of H. Once we get the classifier H, its components \tilde{F}'_j are used to define a high-dimensional embedding $F = (F'_1, ..., F'_d)$, and the weights α_j are used to define a weighted L_1 distance, that we will denote as $D_{\mathbb{R}^d}$, on \mathbb{R}^d . We are then ready to use F and $D_{\mathbb{R}^d}$ to embed objects into \mathbb{R}^d and compute approximate similarity rankings.

Training is done in a sequence of rounds. At each round, the algorithm either modifies the weight of an already chosen classifier, or selects a new classifier. Before we describe the algorithm in detail, here is an intuitive, high-level description of what takes place at each round:

- 1. Go through the classifiers \tilde{F}'_j that have already been chosen, and try to identify a weight α_j that, if modified, decreases the training error. If such an α_j is found, modify it accordingly.
- 2. If no weights were modified, consider a set of of classifiers that have not been chosen yet. Identify, among those classifiers, the classifier \tilde{F}' which is the best at correcting the mistakes of the classifiers that have already been chosen.
- 3. Add that classifier \tilde{F}' to the set of chosen classifiers, and compute its weight. The weight that is chosen is the one that maximizes the corrective effect of \tilde{F}' on the output of the previously chosen classifiers.

Intuitively, weak classifiers are chosen and weighted so that they complement each other. Even when individual classifiers are highly inaccurate, the combined classifier can have very high accuracy, as evidenced in several applications of AdaBoost (for example in [21]).

Trying to modify the weight of an already chosen classifier before adding in a new classifier is a heuristic that reduces the number of classifiers that we need in order to achieve a given classification accuracy. Since each classifier corresponds to a dimension in the embedding, this heuristic leads to lower-dimensional embeddings, which reduce database storage requirements and retrieval time.

5.2 The Training Algorithm in Detail

This subsection, together with the original AdaBoost reference [18], provides enough information to allow implementation of BoostMap, and it can be skipped if the reader is more interested in a high-level description of our method.

The training algorithm performs a sequence of training rounds. At the j-th round, it maintains a weight $w_{i,j}$ for each of the t triples (q_i, a_i, b_i) of the training set, so that $\sum_{i=1}^{t} w_{i,j} = 1$. For the first round, each $w_{i,1}$ is set to $\frac{1}{t}$.

At the j-th round, we try to modify the weight of an already chosen classifier or add a new classifier, in a way that improves the overall training error. A key measure, that is used to evaluate the effect of choosing classifier \tilde{F}' with weight α , is the function Z_j :

$$Z_{j}(\tilde{F}',\alpha) = \sum_{i=1}^{t} (w_{i,j} \exp(-\alpha y_{i}\tilde{F}'(q_{i},a_{i},b_{i}))) .$$
 (8)

The full details of the significance of Z_j can be found in [18]. Here it suffices to say that $Z_j(\tilde{F}', \alpha)$ is a measure of the benefit we obtain by adding \tilde{F}' with weight α to the list of chosen classifiers. The benefit increases as $Z_j(\tilde{F}', \alpha)$ decreases. If $Z_j(\tilde{F}', \alpha) > 1$, then adding \tilde{F}' with weight α is actually expected to increase classification error.

A frequent operation during training is identifying the pair (\tilde{F}', α) that minimizes $Z_j(\tilde{F}', \alpha)$. For that operation we will use the shorthand Z_{\min} , defined as follows:

$$Z_{\min}(B,j) = \operatorname{argmin}_{(\tilde{F}',\alpha) \in B \times \mathbb{R}} Z_j(\tilde{F}',\alpha) .$$
(9)

In the above equation, *B* is a set of classifiers.

At training round j, the training algorithm goes through the following steps:

- 1. Let B_j be the set of classifiers chosen so far. Set $(\tilde{F}', \alpha) = Z_{\min}(B_j, j)$. If $Z_j(\tilde{F}', \alpha) < .9999$ then modify the current weight of \tilde{F}' , by adding α to it, and proceed to the next round. We use .9999 as a threshold, instead of 1, to avoid minor modifications with insignificant numerical impact.
- 2. Construct a set of 1D embeddings $\mathbb{F}_{j1} = \{F_r \mid r \in C\}$ where F_r is defined in Eq. 6, and C is the set of candidate objects that is one of the inputs to the training algorithm (Sec. 5.1).

- 3. For a fixed number m, choose randomly a set $C_j = \{(x_{1,1}, x_{1,2}), ..., (x_{m,1}, x_{m,2})\}$ of m pairs of elements of C, and construct a set of embeddings $\mathbb{F}_{j2} = \{F_{x_1,x_2} \mid (x_1, x_2) \in C_j\}$, where F_{x_1,x_2} is as defined in Eq. 7.
- 4. Define $\mathbb{F}_j = \mathbb{F}_{j1} \cup \mathbb{F}_{j2}$. We set $\tilde{\mathbb{F}}_J = \{\tilde{F} \mid F \in \mathbb{F}_j\}$.

5. Set
$$(F', \alpha) = Z_{\min}(\mathbb{F}_j, j)$$
.

- 6. Add \tilde{F}' to the set of chosen classifiers, with weight α .
- 7. Set training weights $w_{i,j+1}$ as follows:

$$w_{i,j+1} = \frac{w_{i,j} \exp(-\alpha y_i F'(q_i, a_i, b_i))}{Z_j(\tilde{F}', \alpha)} .$$
(10)

Intuitively, the more $\alpha \tilde{F}'(q_i, a_i, b_i)$ disagrees with class label y_i , the more $w_{i,j+1}$ increases with respect to $w_{i,j}$. This way triples that get misclassified by many of the already chosen classifiers will carry a lot of weight and will influence the choice of classifiers in the next rounds.

The algorithm can terminate when we have chosen a desired number of classifiers, or when, at a given round j, no combination of \tilde{F}' and α makes $Z_j(\tilde{F}, \alpha) < 1$.

5.3 Training Output: Embedding and Distance

The output of the training stage is a continuous-output classifier $H = \sum_{j=1}^{d} \alpha_j \tilde{F}'_j$, where each \tilde{F}'_j is associated with a 1D embedding F'_j . The final output of BoostMap is an embedding $F : X \to \mathbb{R}^d$ and a weighted Manhattan (L_1) distance $D_{\mathbb{R}^d} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$:

$$F(x) = (F'_1(x), ..., F'_d(x)) .$$
(11)

$$D_{\mathbb{R}^d}((u_1, ..., u_d), (v_1, ..., v_d)) = \sum_{j=1}^d (\alpha_j |u_j - v_j|) .$$
(12)

It is important to note (and easy to check) that, the way we define F and $D_{\mathbb{R}^d}$, if we apply Equation 3 to obtain a classifier \tilde{F} from F, then $\tilde{F} = H$, i.e. \tilde{F} is equal to the output of AdaBoost. This means that the output of AdaBoost, which is a classifier, is mathematically equivalent to the embedding F: given a triple (q, a, b), both the embedding and the classifier give the exact same answer as to whether q is closer to a or to b. If AdaBoost has been successful in learning a good classifier, the embedding F inherits the properties of that classifier, with respect to preserving the proximity order of triples.

Also, we should note that this equivalence between classifier and embedding relies on the way we define $D_{\mathbb{R}^d}$. For example, if $D_{\mathbb{R}^d}$ were defined without using weights α_j , or if $D_{\mathbb{R}^d}$ were defined as an L_2 norm, the equivalence would not hold.

Figure 3: Top: 14 of the 26 hand shapes used to generate the hand database. Middle: four of the 4128 3D orientations of a hand shape. Bottom: for two test images we see, from left to right: the original hand image, the extracted edge image that was used as a query, and a correct match (noise-free computer-generated edge image) retrieved from the database.

5.4 Complexity

If C is the set of candidate objects, and n is the number of database objects, we need to compute |C|n distances D_X to learn the embedding and compute the embeddings of all database objects. At each training round, we evaluate classifiers defined using |C| reference objects and m pivot pairs. Therefore, the computational time per training round is O((|C| + m)t), where t is the number of training triples. In our experiments we always set m = |C|.

Computing the d-dimensional embedding of a query object takes O(d) time and requires O(d) evaluations of D_X . Overall, query processing time is not worse than that of FastMap [10], SparseMap [13], and MetricMap [22].

6 Experiments

We used two datasets to compare BoostMap to FastMap [10] and Bourgain embeddings [5, 13]: a database of hand images, and an ASL (American Sign Language) database, containing video sequences of ASL signs. In both datasets the test queries were not part of the database, and not used in the training.

The hand database contains 107,328 hand images, generated using computer graphics. 26 hand shapes were used to generate those images. Each shape was rendered under 4128 different 3D orientations (Figure 3). As queries we used 703 real images of hands. Given a query, we consider a database image to be correct if it shows the same hand shape as the query, in a 3D orientation within 30 degrees of the 3D orientation of the query [2]. The queries were manually annotated with their shape and 3D orientation. For each query there are about 25-35 correct matches among the 107,328 database images. Similarity between hand im-

Figure 4: Four sample frames from the video sequences in the ASL database.

ages is evaluated using the symmetric chamfer distance [3], applied to edge images. Evaluating the exact chamfer distance between a query and the entire database takes about 260 seconds.

The ASL database contains 880 gray-scale video sequences. Each video sequence depicts a sign, as signed by one of three native ASL signers (Figure 4). As queries we used 180 video sequences of ASL signs, signed by a single signer who was not included in the database. Given a query, we consider a database sequence to be a correct match if it is labeled with the same sign as the query. For each query, there are exactly 20 correct matches in the database. Similarity between video sequences is measured as follows: first, we use the similarity measure proposed in [9], which is based on optical flow, as a measure of similarity between single frames. Then, we use Dynamic Time Warping [8] to compute the optimal time alignment and the overall matching cost between the two sequences. Evaluating the exact distance between the query and the entire database takes about six minutes.

In all experiments, the training set for BoostMap was 200,000 triples. For the hand database, the size of C (from Sec. 5.2) was 1000 elements, and the elements of C were chosen randomly at each step from among 3282 objects, i.e. C was different at each training round (a slight deviation from the description in Sec. 5), to speed up training time. For the ASL database, the size of C was 587 elements. The objects used to define FastMap and Bourgain embeddings were also chosen from the same 3282 and 587 objects respectively. Also, in all experiments, we set m = |C|, where m is the number of embeddings based on pivot pairs that we consider at each training round. Learning a 256-dimensional BoostMap embedding of the hand database took about two days, using a 1.2GHz Athlon pro-

Figure 5: Median rank of exact nearest neighbor (ENN), versus number of dimensions, in approximate similarity rankings obtained using three different methods, for 703 queries to the hand database.

Figure 6: Median rank of highest ranking correct match (HRCM), versus number of dimensions, in approximate similarity rankings obtained using three different methods, for 703 queries to the hand database. For comparison, the median HRCM rank for the exact distance was 21.

cessor.

To evaluate the accuracy of the approximate similarity ranking for a query, we used two measures: exact nearest neighbor rank (ENN rank) and highest ranking correct match rank (HRCM rank). The ENN rank is computed as follows: let b be the database object that is the nearest neighbor to the query q under the exact distance D_X . Then, the ENN rank for that query in a given embedding is the rank of b in the similarity ranking that we get using the embedding. The HRCM rank for a query in an embedding is the best rank among all correct matches for that query, based on the similarity ranking we get with that embedding. In a perfect recognition system, the HRCM rank would be 1 for all queries. Figures 5, 6, 7, and 8 show the median ENN ranks and median HRCM ranks for each dataset, for different dimensions of BoostMap, FastMap and Bourgain embeddings. For the hand database, BoostMap gives significantly better results than the other two methods, for 16 or more dimensions. In the ASL database, BoostMap does

Figure 7: Median rank of exact nearest neighbor (ENN), versus number of dimensions, in approximate similarity rankings obtained using three different methods, for 180 queries to the ASL database.

Figure 8: Median rank of highest ranking correct match (HRCM), versus number of dimensions, in approximate similarity rankings obtained using three different methods, for 180 queries to the ASL database. For comparison, the median HRCM rank for the exact distance was 3.

either as well as FastMap, or better than FastMap, in all dimensions. In both datasets, Bourgain embeddings overall do worse than BoostMap and FastMap.

With respect to Bourgain embeddings, we should mention that they are not quite appropriate for online queries, because they require evaluating too many distances in order to produce the embedding of a query. SparseMap [13] was formulated as a heuristic approximation of Bourgain embeddings, that is appropriate for online queries. We have not implemented SparseMap but, based on its formulation, it would be a surprising result if SparseMap achieved higher accuracy than Bourgain embeddings.

6.1 Filter-and-refine Experiments

In applications where we are interested in retrieving the k nearest neighbors or k correct matches, BoostMap can be used in a filter-and-refine framework [12], as follows:

• Filter step: given a query object q, select the p most similar objects from the database using the embedding.

ENN retrieval accuracy and efficiency for hand database									
Method	BoostMap		FastMap		Exact D_X				
ENN-accuracy	95%	100%	95%	100%	100%				
Best d	256	256	13	10	N/A				
Best p	406	3850	3838	17498	N/A				
D_X # per query	823	4267	3864	17518	107328				
seconds per query	2.3	10.6	9.4	42.4	260				

ENN retrieval accuracy and efficiency for ASL database									
Method	BoostMap		FastMap		Exact D_X				
ENN-accuracy	95%	100%	95%	100%	100%				
Best d	64	64	64	32	N/A				
Best p	129	255	141	334	N/A				
D_X # per query	249	375	269	398	880				
seconds per query	103	155	111	164	363				

Table 1: Comparison of BoostMap, FastMap and using bruteforce search, for the purpose of retrieving the exact nearest neighbors successfully for 95% or 100% of the queries, using filter-andrefine retrieval. The letter d is the dimensionality of the embedding. The letter p stands for the number of top matches that we keep from the filter step (i.e. using the embeddings). D_X # per query is the total number of D_X computations needed per query, in order to embed the query and rank the top p candidates. The exact D_X column shows the results for brute-force search, in which we not use a filter step, and we simply evaluate D_X distances between the query and all database images.

• Refine step: sort those p candidates by evaluating the exact distance D_X between q and each candidate.

As p increases, we are more likely to get the true k nearest neighbors in the top p candidates found at the filter step, but we also need to evaluate more distances at the refine step. The best choice of p and d, where d is the dimensionality of the embedding, will depend on domain-specific parameters like k, the time it takes to compute the distance D_X , the time it takes to compute the weighted L_1 distance between d-dimensional vectors, and the desired retrieval accuracy (i.e. how often we are willing to miss some of the true k nearest neighbors).

For BoostMap and FastMap, we evaluated the optimal d and p that would allow 1-nearest-neighbor retrieval to be correct 95% or 100% of the time, while minimizing retrieval time. Table 1 shows the optimal values of p and d, and the associated computational savings over standard nearest-neighbor retrieval, in which we evaluate the exact distance between the query and each database object. In both datasets, the bulk of retrieval time is spent computing exact distances in the original space. The time spent in computing distances in the Euclidean space is negligible, even for a 256-dimensional embedding. For the hand database, BoostMap leads to significantly faster retrieval, because we need to compute far fewer exact distances in the refine step, while achieving the same error rate as FastMap.

7 Discussion and Future Work

With respect to existing embedding methods, the main advantage of BoostMap is that it is formulated as a classifiercombination problem, that can take advantage of powerful machine learning techniques to assemble a high-accuracy embedding from many simple, 1D embeddings. The main disadvantage of our method, at least in the current implementation, is the running time of the training algorithm. However, in many applications, trading training time for embedding accuracy would be a desirable tradeoff. At the same time, we are interested in exploring ways to improve training time.

A possible extension of BoostMap is to use it to approximate not the actual distance between objects, but a hidden state space distance. For example, in our hand image dataset, what we are really interested in is not retrieving images that are similar with respect to the chamfer distance, but images that actually have the same hand pose. We can modify the training labels Y provided to the training algorithm, so that instead of describing proximity with respect to the chamfer distance, they describe proximity with respect to to actual hand pose. The resulting similarity rankings may be worse approximations of the chamfer distance rankings, but they may be better approximations of the actual posebased rankings. A similar idea has been applied in [19], although in the context of a different approximate nearest neighbor framework.

In [1] we provide a more extensive discussion of Boost-Map, and we explore some extensions that can improve embedding accuracy and efficiency.

References

- V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Learning Euclidean embeddings for indexing and classification. Technical Report 14, Computer Science Department, Boston University, 2004.
- [2] V. Athitsos and S. Sclaroff. Estimating hand pose from a cluttered image. In CVPR, volume 1, pages 432–439, 2003.
- [3] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, and H.C. Wolf. Parametric correspondence and chamfer matching: Two new techniques for image matching. In *IJCAI*, pages 659–663, 1977.
- [4] S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In *ICCV*, volume 1, pages 454–461, 2001.
- [5] J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space. *Israel Journal of Mathematics*, 52:46–52, 1985.
- [6] Y. Chang, C. Hu, and M. Turk. Manifold of facial expression. In *IEEE International Workshop on Analysis and Modeling* of Faces and Gestures, pages 28–35, 2003.

- [7] S.S. Cheung and A. Zakhor. Fast similarity search on video signatures. In *ICIP*, 2003.
- [8] T.J. Darrell, I.A. Essa, and A.P. Pentland. Task-specific gesture analysis in real-time using interpolated views. *PAMI*, 18(12), 1996.
- [9] A.A. Efros, A.C. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In *ICCV*, pages 726–733, 2003.
- [10] C. Faloutsos and K.I. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In ACM SIGMOD, pages 163–174, 1995.
- [11] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. *IEEE Computer*, 28(9), 1995.
- [12] G.R. Hjaltason and H. Samet. Properties of embedding methods for similarity searching in metric spaces. *PAMI*, 25(5):530–549, 2003.
- [13] G. Hristescu and M. Farach-Colton. Cluster-preserving embedding of proteins. Technical Report 99-50, Computer Science Department, Rutgers University, 1999.
- [14] P. Indyk. *High-dimensional Computational Geometry*. PhD thesis, Stanford University, 2000.
- [15] V. Kobla and D.S. Doerman. Extraction of features for indexing MPEG-compressed video. In *IEEE Workshop on Multimedia Signal Processing*, pages 337–342, 1997.
- [16] E.G.M. Petrakis, C. Faloutsos, and K.I Lin. ImageMap: An image indexing method based on spatial similarity. *IEEE Transactions on Knowledge and Data Engineering*, 14(5):979–987, 2002.
- [17] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. *Science*, 290:2323–2326, 2000.
- [18] R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. *Machine Learning*, 37(3):297–336, 1999.
- [19] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing. In *ICCV*, pages 750–757, 2003.
- [20] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290:2319–2323, 2000.
- [21] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, volume 1, pages 511– 518, 2001.
- [22] X. Wang, J.T.L. Wang, K.I. Lin, D. Shasha, B.A. Shapiro, and K. Zhang. An index structure for data mining and clustering. *Knowledge and Information Systems*, 2(2):161–184, 2000.
- [23] D.A. White and R. Jain. Similarity indexing: Algorithms and performance. In *Storage and Retrieval for Image and Video Databases (SPIE)*, pages 62–73, 1996.
- [24] F.W. Young and R.M. Hamer. Multidimensional Scaling: History, Theory and Applications. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1987.