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Abstract

This paper introduces BoostMap, a method that can signif-
icantly reduce retrieval time in image and video database
systems that employ computationally expensive distance
measures, metric or non-metric. Database and query ob-
jects are embedded into a Euclidean space, in which sim-
ilarities can be rapidly measured using a weighted Man-
hattan distance. Embedding construction is formulated as
a machine learning task, where AdaBoost is used to com-
bine many simple, 1D embeddings into a multidimensional
embedding that preserves a significant amount of the prox-
imity structure in the original space. Performance is evalu-
ated in a hand pose estimation system, and a dynamic ges-
ture recognition system, where the proposed method is used
to retrieve approximate nearest neighbors under expensive
image and video similarity measures. In both systems, in
quantitative experiments, BoostMap significantly increases
efficiency, with minimal losses in accuracy. Moreover, the
experiments indicate that BoostMap compares favorably
with existing embedding methods that have been employed
in computer vision and database applications, i.e., FastMap
and Bourgain embeddings.

1 Introduction

Content-based image and video retrieval is important for
interactive applications, where users want to identify con-
tent of interest in large databases [11]. Identifying near-
est neighbors in a large collection of objects can also be
used as a tool for clustering or nearest neighbor-based ob-
ject recognition [2, 4, 19]. Depending on the number of
objects and the computational complexity of evaluating the
distance between pairs of objects, identifying the k near-
est neighbors can be too inefficient for practical applica-
tions. Measuring distances can be expensive because of
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high-dimensional feature vectors, or because the distance
measure takes super-linear time with respect to the number
of dimensions [3, 4].

This paper presents BoostMap, an efficient method for
obtaining rankings of all database objects in approximate
order of similarity to the query object. The algorithm is
domain-independent and can be applied to arbitrary dis-
tance measures, metric or non-metric. The query object still
needs to be compared to all database objects, but compar-
isons are done after the query and database objects have
been embedded to a Euclidean space, where distances can
be measured rapidly using a weighted Manhattan (L 1) dis-
tance. In many applications ([4], for example) where eval-
uating exact distances is the computational bottleneck, sub-
stituting the original distances with L1 distances can lead to
orders-of-magnitude improvements in efficiency.

With respect to existing embedding methods for efficient
approximate similarity rankings, this paper makes the fol-
lowing contributions:

• Embedding construction explicitly optimizes a quan-
titative measure of how well the embedding preserves
similarity rankings. Existing methods (like Bourgain
embeddings [13] and FastMap [10]) typically use ran-
dom choices and heuristics, and do not attempt to op-
timize some measure of embedding quality.

• A novel formulation is introduced, that treats embed-
dings as classifiers and embedding construction as a
machine learning problem. This formulation allows
the use of AdaBoost, a powerful machine learning
method, for embedding construction.

• The advantages of our method vs. existing embedding
methods are demonstrated in two computer vision ap-
plications, namely hand pose estimation and dynamic
gesture recognition, in quantitative experiments.

Embeddings are seen as classifiers, which estimate for
any three objects a, b, c if a is closer to b or to c. Starting



with a large family of simple, one-dimensional (1D) em-
beddings, we use AdaBoost [18] to combine those embed-
dings into a single, high-dimensional embedding that can
give highly accurate similarity rankings.

Database objects are embedded offline. Given a query
object q, its embedding F (q) is computed efficiently on-
line, by measuring distances between q and a small sub-
set of database objects. In the case of nearest-neighbor
queries, the most similar matches obtained using the em-
bedding can be reranked using the original distance mea-
sure, to improve accuracy, in a filter-and-refine framework
[12]. Overall, the original computationally expensive dis-
tance measure is applied only between the query and a small
number of database objects.

2 Related Work

Various methods have been employed for similarity index-
ing in image and video databases, including hashing and
tree structures [23]. However, the performance of such
methods degrades in high dimensions; this problem is an
instance of the general problem called “curse of dimension-
ality.” Furthermore, tree-based methods typically rely on
Euclidean or metric properties, and cannot be applied to ar-
bitrary non-metric spaces. Approximate nearest neighbor
methods [14, 19] scale better with the number of dimen-
sions, but such methods have only been proposed for some
specific metrics, and they are not applicable to arbitrary dis-
tance measures.

In domains where the distance measure is computation-
ally expensive, significant computational savings can be
obtained by constructing a distance-approximating embed-
ding, which maps objects into another space with a more
efficient distance measure. A number of methods have been
proposed for embedding arbitrary metric spaces into a Eu-
clidean or pseudo-Euclidean space [5, 10, 13, 17, 20, 22,
24]. Some of these methods, in particular MDS [24], Bour-
gain embeddings [13], LLE [17] and Isomap [20] are not
applicable for online similarity retrieval, because they still
need to evaluate exact distances between the query and most
or all database objects. Online queries can be handled by
Lipschitz embeddings [12], FastMap [10], MetricMap [22]
and SparseMap [13], which can readily compute the embed-
ding of the query, measuring only a small number of exact
distances in the process. These four methods can be applied
in spaces with arbitrary distance measures, and are the most
related to our approach.

Image and video database systems have made use of Lip-
schitz embeddings [2, 6, 7] and FastMap [15, 16], to map
objects into a low-dimensional Euclidean space that is more
manageable for tasks like online retrieval, data visualiza-
tion, or classifier training. The goal of our method is to
improve embedding accuracy in such applications.

3 Problem Definition

Let X be a set of objects, and DX(x1, x2) be a distance
measure between objects x1, x2 ∈ X . DX can be metric or
non-metric. Let (q, x1, x2) be a triple of objects in X . We
define the proximity order PX(q, x1, x2) to be a function
that outputs whether q is closer to x1 or to x2:

PX(q, x1, x2) =







1 if DX(q, x1) < DX(q, x2) .

0 if DX(q, x1) = DX(q, x2) .

−1 if DX(q, x1) > DX(q, x2) .

(1)
A Euclidean embedding F : X →

�
d is a function

that maps objects from X into the d-dimensional Euclidean
space

�
d , where distances are typically measured using an

Lp or weighted Lp measure, denoted as D � d. In this pa-
per, we are interested in constructing an embedding F that,
given a query object q, can provide good approximate simi-
larity rankings of database objects, i.e. rankings of database
objects in order of decreasing similarity (increasing dis-
tance) to the query. To specify the quantity that our method
tries to optimize, we introduce in this section a quantita-
tive measure of how well an embedding preserves similarity
rankings.

In particular, any embedding F : X →
�

d defines a
proximity classifier F̄ , that estimates the proximity order
function PX using P � d, i.e. the proximity order function of

�
d with distance D � d:

F̄ (q, x1, x2) = P� d(F (q), F (x1), F (x2)) . (2)

F̄ outputs one of three possible values: -1, 0, or 1. Al-
ternatively, we can define a continuous-output classifier
F̃ (q, x1, x2), that simply outputs the difference between the
distances from F (q) to F (x2) and to F (x1):

F̃ (q, x1, x2) = D � d(F (q), F (x2)) − D � d(F (q), F (x1)) .

(3)
F̄ can be seen as a discretization of F̃ , such that F̄ outputs
1, 0 or -1 if F̃ outputs respectively a value that is greater
than, equal to, or less than zero.

We define the classification error G(F̄ , q, x1, x2) of ap-
plying F̄ on a particular triple (q, x1, x2) as:

G(F̄ , q, x1, x2) =
|PX(q, x1, x2) − F̄ (q, x1, x2)|

2
. (4)

Finally, the overall classification error G(F̄ ) is defined to
be the expected value of G(F̄ , q, x1, x2), over all triples of
objects in X :

G(F̄ ) =

∑

(q,x1,x2)∈X3 G(F̄ , q, x1, x2)

|X |3
. (5)

If G(F̄ ) = 0 then we say that F satisfies the property of
proximity preservation [12]. In that case, if x is the k-
nearest neighbor of q in X , F (x) is the k-nearest neighbor
of F (q) in F (X), for any value of k.
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Figure 1: An embedding Fr of five 2D points into the real
line, using r as the reference object. The target of each 2D
point on the line is labeled with the same letter as the 2D point.
The classifier F̄r (Eq. 2) classifies correctly 46 out of the 60
triples we can form from these five objects (assuming no object
occurs twice in a triple). Examples of misclassified triples are:
(b, a, c), (c, b, d), (d, b, r). For example, b is closer to a than it is
to c, but Fr(b) is closer to Fr(c) than it is to Fr(a).

Overall, the classification error G(F̄ ) is a quantitative
measure of how closely the approximate similarity rankings
obtained in F (X) will resemble the exact similarity rank-
ings obtained in X . Using the definitions in this section, our
problem definition is very simple: we want to construct an
embedding F : X →

�
d in a way that minimizes G(F̄ ).

We will address this problem as a problem of combining
classifiers. In Sec. 4 we will identify a family of simple,
1D embeddings. Each such embedding F ′ is expected to
preserve at least a small amount of the proximity structure
of X , meaning that G(F̄ ′) is expected to be less than 0.5,
which would be the error rate of a random classifier. Then,
in Sec. 5 we will apply AdaBoost to combine many 1D
embeddings into a high-dimensional embedding F with low
error rate G(F̄ ).

4 Some Simple 1D Embeddings

A 1D Euclidean embedding of space X is simply a function
F : X →

�
. Given an object r ∈ X , a simple 1D Euclidean

embedding Fr can be defined as follows:

Fr(x) = DX(x, r) . (6)

The object r that is used to define Fr is typically called a
reference object or a vantage object [12].

If DX obeys the triangle inequality, Fr intuitively maps
nearby points in X to nearby points on the real line

�
. In

many cases DX may violate the triangle inequality for some
triples of objects (an example is the chamfer distance [3]),
but Fr may still map nearby points in X to nearby points in

�
, at least most of the time [2]. On the other hand, distant

objects may also map to nearby points (Figure 1).
Another family of simple, 1D embeddings is proposed in

[10] and used as building blocks for FastMap. The idea is
to choose two objects x1, x2 ∈ X , called pivot objects, and
then, given an arbitrary x ∈ X , to define the embedding

Figure 2: Computing Fx1,x2
(x), as defined in Eq. 7: we con-

struct a triangle ABC so that the sides AB, AC, BC have lengths
DX(x, x1), DX(x, x2) and DX(x1, x2) respectively. We draw
from A a line perpendicular to BC, that intersects BC at point D.
The length of line segment BD is equal to Fx1,x2

(x).

Fx1,x2
of x to be the projection of x onto the “line” x1x2.

As illustrated in Figure 2, the projection can be defined by
treating the distances between x, x1, and x2 as specifying
the sides of a triangle in

� 2 , and applying the Pythagorean
theorem:

Fx1,x2
(x) =

DX(x, x1)
2 + DX(x1, x2)

2 − DX(x, x2)
2

2DX(x1, x2)
.

(7)
If X is Euclidean, then Fx1,x2

will map nearby points in
X to nearby points in

�
. In practice, even if X is non-

Euclidean, Fx1,x2
often still preserves some of the proxim-

ity structure of X .
If the space X contains |X | objects, then each object can

be used as a reference object, and each pair of objects can
be used as a pair of pivot objects. Therefore, the number
of possible 1D embeddings we can define on X using the
definitions of this section is quadratic in the number of ob-
jects |X |. Sec. 5 describes how to selectively combine these
embeddings into a single, high-dimensional embedding.

5 Constructing Embeddings via Ad-
aBoost

Now we have identified a large family of 1D embeddings,
defined using either a reference object, or a pair of pivot ob-
jects. Each 1D embedding F ′ corresponds to a continuous-
output binary classifier F̃ ′. These classifiers estimate, for
triples (q, x1, x2) of objects in X , if q is closer to x1 or
x2. If F ′ is a 1D embedding, we expect F̃ ′ to behave as a
weak classifier [18], meaning that it will have a high error
rate, but it should still do better than a random classifier.
We want to combine many 1D embeddings into a multi-
dimensional embedding that behaves as a strong classifier,
i.e. that has relatively high accuracy. To choose which 1D
embeddings to use, and how to combine them, we use the
AdaBoost framework [18].
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5.1 Overview of the Training Algorithm

The training algorithm for BoostMap is an adaptation of
AdaBoost to the problem of embedding construction. The
inputs to the training algorithm are the following:

• A training set T = ((q1, a1, b1), ..., (qt, at, bt)) of t

triples of objects from X .

• A set of labels Y = (y1, ..., yt), where yi ∈ {−1, 1}
is the class label of (qi, ai, bi). If DX(qi, ai) <

DX(qi, bi) then yi = 1, else yi = −1. The training
set includes no triples where qi is equally far from ai

and bi.

• A set C ⊂ X of candidate objects. Elements of C can
be used to define 1D embeddings.

• A matrix of distances from each c ∈ C to each qi, ai

and bi included in one of the training triples in T .

The training algorithm combines many classifiers F̃ ′

j as-
sociated with 1D embeddings F ′

j , into a classifier H =
∑d

j=1 αjF̃
′

j . The classifiers F̃ ′

j and weights αj are chosen
so as to minimize the classification error of H . Once we
get the classifier H , its components F̃ ′

j are used to define
a high-dimensional embedding F = (F ′

1, ..., F
′

d), and the
weights αj are used to define a weighted L1 distance, that
we will denote as D � d, on

�
d . We are then ready to use

F and D � d to embed objects into
�

d and compute approx-
imate similarity rankings.

Training is done in a sequence of rounds. At each round,
the algorithm either modifies the weight of an already cho-
sen classifier, or selects a new classifier. Before we describe
the algorithm in detail, here is an intuitive, high-level de-
scription of what takes place at each round:

1. Go through the classifiers F̃ ′

j that have already been
chosen, and try to identify a weight αj that, if mod-
ified, decreases the training error. If such an αj is
found, modify it accordingly.

2. If no weights were modified, consider a set of of clas-
sifiers that have not been chosen yet. Identify, among
those classifiers, the classifier F̃ ′ which is the best at
correcting the mistakes of the classifiers that have al-
ready been chosen.

3. Add that classifier F̃ ′ to the set of chosen classifiers,
and compute its weight. The weight that is chosen is
the one that maximizes the corrective effect of F̃ ′ on
the output of the previously chosen classifiers.

Intuitively, weak classifiers are chosen and weighted so
that they complement each other. Even when individual
classifiers are highly inaccurate, the combined classifier can

have very high accuracy, as evidenced in several applica-
tions of AdaBoost (for example in [21]).

Trying to modify the weight of an already chosen clas-
sifier before adding in a new classifier is a heuristic that
reduces the number of classifiers that we need in order to
achieve a given classification accuracy. Since each classifier
corresponds to a dimension in the embedding, this heuris-
tic leads to lower-dimensional embeddings, which reduce
database storage requirements and retrieval time.

5.2 The Training Algorithm in Detail

This subsection, together with the original AdaBoost refer-
ence [18], provides enough information to allow implemen-
tation of BoostMap, and it can be skipped if the reader is
more interested in a high-level description of our method.

The training algorithm performs a sequence of training
rounds. At the j-th round, it maintains a weight w i,j for
each of the t triples (qi, ai, bi) of the training set, so that
∑t

i=1 wi,j = 1. For the first round, each wi,1 is set to 1
t
.

At the j-th round, we try to modify the weight of an al-
ready chosen classifier or add a new classifier, in a way that
improves the overall training error. A key measure, that is
used to evaluate the effect of choosing classifier F̃ ′ with
weight α, is the function Zj :

Zj(F̃
′, α) =

t
∑

i=1

(wi,j exp(−αyiF̃
′(qi, ai, bi))) . (8)

The full details of the significance of Zj can be found in
[18]. Here it suffices to say that Zj(F̃

′, α) is a measure of
the benefit we obtain by adding F̃ ′ with weight α to the
list of chosen classifiers. The benefit increases as Zj(F̃

′, α)

decreases. If Zj(F̃
′, α) > 1, then adding F̃ ′ with weight α

is actually expected to increase classification error.
A frequent operation during training is identifying the

pair (F̃ ′, α) that minimizes Zj(F̃
′, α). For that operation

we will use the shorthand Zmin, defined as follows:

Zmin(B, j) = argmin(F̃ ′,α)∈B× � Zj(F̃
′, α) . (9)

In the above equation, B is a set of classifiers.
At training round j, the training algorithm goes through

the following steps:

1. Let Bj be the set of classifiers chosen so far. Set
(F̃ ′, α) = Zmin(Bj , j). If Zj(F̃

′, α) < .9999 then
modify the current weight of F̃ ′, by adding α to it, and
proceed to the next round. We use .9999 as a thresh-
old, instead of 1, to avoid minor modifications with
insignificant numerical impact.

2. Construct a set of 1D embeddings � j1 = {Fr | r ∈ C}
where Fr is defined in Eq. 6, and C is the set of can-
didate objects that is one of the inputs to the training
algorithm (Sec. 5.1).
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3. For a fixed number m, choose randomly a set C j =
{(x1,1, x1,2), ..., (xm,1, xm,2)} of m pairs of elements
of C, and construct a set of embeddings � j2 =
{Fx1,x2

| (x1, x2) ∈ Cj}, where Fx1,x2
is as defined

in Eq. 7.

4. Define � j = � j1 ∪ � j2 . We set ˜� J = {F̃ | F ∈ � j }.

5. Set (F̃ ′, α) = Zmin(˜� j , j).

6. Add F̃ ′ to the set of chosen classifiers, with weight α.

7. Set training weights wi,j+1 as follows:

wi,j+1 =
wi,j exp(−αyiF̃

′(qi, ai, bi))

Zj(F̃ ′, α)
. (10)

Intuitively, the more αF̃ ′(qi, ai, bi) disagrees with class
label yi, the more wi,j+1 increases with respect to wi,j .
This way triples that get misclassified by many of the al-
ready chosen classifiers will carry a lot of weight and will
influence the choice of classifiers in the next rounds.

The algorithm can terminate when we have chosen a de-
sired number of classifiers, or when, at a given round j, no
combination of F̃ ′ and α makes Zj(F̃ , α) < 1.

5.3 Training Output: Embedding and Dis-
tance

The output of the training stage is a continuous-output clas-
sifier H =

∑d

j=1 αj F̃
′

j , where each F̃ ′

j is associated with
a 1D embedding F ′

j . The final output of BoostMap is an
embedding F : X →

�
d and a weighted Manhattan (L1)

distance D � d :
�

d ×
�

d →
�

:

F (x) = (F ′

1(x), ..., F ′

d(x)) . (11)

D � d((u1, ..., ud), (v1, ..., vd)) =

d
∑

j=1

(αj |uj − vj |) . (12)

It is important to note (and easy to check) that, the way
we define F and D � d, if we apply Equation 3 to obtain a
classifier F̃ from F , then F̃ = H , i.e. F̃ is equal to the out-
put of AdaBoost. This means that the output of AdaBoost,
which is a classifier, is mathematically equivalent to the em-
bedding F : given a triple (q, a, b), both the embedding and
the classifier give the exact same answer as to whether q is
closer to a or to b. If AdaBoost has been successful in learn-
ing a good classifier, the embedding F inherits the proper-
ties of that classifier, with respect to preserving the proxim-
ity order of triples.

Also, we should note that this equivalence between clas-
sifier and embedding relies on the way we define D � d. For
example, if D � d were defined without using weights αj , or
if D � d were defined as an L2 norm, the equivalence would
not hold.

Figure 3: Top: 14 of the 26 hand shapes used to generate the
hand database. Middle: four of the 4128 3D orientations of a hand
shape. Bottom: for two test images we see, from left to right: the
original hand image, the extracted edge image that was used as
a query, and a correct match (noise-free computer-generated edge
image) retrieved from the database.

5.4 Complexity

If C is the set of candidate objects, and n is the number
of database objects, we need to compute |C|n distances
DX to learn the embedding and compute the embeddings
of all database objects. At each training round, we evaluate
classifiers defined using |C| reference objects and m pivot
pairs. Therefore, the computational time per training round
is O((|C| + m)t), where t is the number of training triples.
In our experiments we always set m = |C|.

Computing the d-dimensional embedding of a query ob-
ject takes O(d) time and requires O(d) evaluations of DX .
Overall, query processing time is not worse than that of
FastMap [10], SparseMap [13], and MetricMap [22].

6 Experiments

We used two datasets to compare BoostMap to FastMap
[10] and Bourgain embeddings [5, 13]: a database of hand
images, and an ASL (American Sign Language) database,
containing video sequences of ASL signs. In both datasets
the test queries were not part of the database, and not used
in the training.

The hand database contains 107,328 hand images, gen-
erated using computer graphics. 26 hand shapes were used
to generate those images. Each shape was rendered under
4128 different 3D orientations (Figure 3). As queries we
used 703 real images of hands. Given a query, we consider
a database image to be correct if it shows the same hand
shape as the query, in a 3D orientation within 30 degrees of
the 3D orientation of the query [2]. The queries were man-
ually annotated with their shape and 3D orientation. For
each query there are about 25-35 correct matches among
the 107,328 database images. Similarity between hand im-
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Figure 4: Four sample frames from the video sequences in the
ASL database.

ages is evaluated using the symmetric chamfer distance [3],
applied to edge images. Evaluating the exact chamfer dis-
tance between a query and the entire database takes about
260 seconds.

The ASL database contains 880 gray-scale video se-
quences. Each video sequence depicts a sign, as signed by
one of three native ASL signers (Figure 4). As queries we
used 180 video sequences of ASL signs, signed by a single
signer who was not included in the database. Given a query,
we consider a database sequence to be a correct match if
it is labeled with the same sign as the query. For each
query, there are exactly 20 correct matches in the database.
Similarity between video sequences is measured as follows:
first, we use the similarity measure proposed in [9], which
is based on optical flow, as a measure of similarity between
single frames. Then, we use Dynamic Time Warping [8] to
compute the optimal time alignment and the overall match-
ing cost between the two sequences. Evaluating the exact
distance between the query and the entire database takes
about six minutes.

In all experiments, the training set for BoostMap was
200,000 triples. For the hand database, the size of C (from
Sec. 5.2) was 1000 elements, and the elements of C were
chosen randomly at each step from among 3282 objects,
i.e. C was different at each training round (a slight devi-
ation from the description in Sec. 5), to speed up train-
ing time. For the ASL database, the size of C was 587
elements. The objects used to define FastMap and Bour-
gain embeddings were also chosen from the same 3282 and
587 objects respectively. Also, in all experiments, we set
m = |C|, where m is the number of embeddings based on
pivot pairs that we consider at each training round. Learn-
ing a 256-dimensional BoostMap embedding of the hand
database took about two days, using a 1.2GHz Athlon pro-
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Figure 5: Median rank of exact nearest neighbor (ENN), ver-
sus number of dimensions, in approximate similarity rankings ob-
tained using three different methods, for 703 queries to the hand
database.
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Figure 6: Median rank of highest ranking correct match (HRCM),
versus number of dimensions, in approximate similarity rankings
obtained using three different methods, for 703 queries to the hand
database. For comparison, the median HRCM rank for the exact
distance was 21.

cessor.

To evaluate the accuracy of the approximate similarity
ranking for a query, we used two measures: exact near-
est neighbor rank (ENN rank) and highest ranking correct
match rank (HRCM rank). The ENN rank is computed as
follows: let b be the database object that is the nearest neigh-
bor to the query q under the exact distance DX . Then, the
ENN rank for that query in a given embedding is the rank
of b in the similarity ranking that we get using the embed-
ding. The HRCM rank for a query in an embedding is the
best rank among all correct matches for that query, based
on the similarity ranking we get with that embedding. In
a perfect recognition system, the HRCM rank would be 1
for all queries. Figures 5, 6, 7, and 8 show the median
ENN ranks and median HRCM ranks for each dataset, for
different dimensions of BoostMap, FastMap and Bourgain
embeddings. For the hand database, BoostMap gives sig-
nificantly better results than the other two methods, for 16
or more dimensions. In the ASL database, BoostMap does
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Figure 7: Median rank of exact nearest neighbor (ENN), ver-
sus number of dimensions, in approximate similarity rankings ob-
tained using three different methods, for 180 queries to the ASL
database.
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Figure 8: Median rank of highest ranking correct match (HRCM),
versus number of dimensions, in approximate similarity rankings
obtained using three different methods, for 180 queries to the ASL
database. For comparison, the median HRCM rank for the exact
distance was 3.

either as well as FastMap, or better than FastMap, in all di-
mensions. In both datasets, Bourgain embeddings overall
do worse than BoostMap and FastMap.

With respect to Bourgain embeddings, we should men-
tion that they are not quite appropriate for online queries,
because they require evaluating too many distances in order
to produce the embedding of a query. SparseMap [13] was
formulated as a heuristic approximation of Bourgain em-
beddings, that is appropriate for online queries. We have
not implemented SparseMap but, based on its formulation,
it would be a surprising result if SparseMap achieved higher
accuracy than Bourgain embeddings.

6.1 Filter-and-refine Experiments

In applications where we are interested in retrieving the k

nearest neighbors or k correct matches, BoostMap can be
used in a filter-and-refine framework [12], as follows:

• Filter step: given a query object q, select the p most
similar objects from the database using the embedding.

ENN retrieval accuracy and efficiency for hand database
Method BoostMap FastMap Exact DX

ENN-accuracy 95% 100% 95% 100% 100%
Best d 256 256 13 10 N/A
Best p 406 3850 3838 17498 N/A
DX # per query 823 4267 3864 17518 107328
seconds per query 2.3 10.6 9.4 42.4 260

ENN retrieval accuracy and efficiency for ASL database
Method BoostMap FastMap Exact DX

ENN-accuracy 95% 100% 95% 100% 100%
Best d 64 64 64 32 N/A
Best p 129 255 141 334 N/A
DX # per query 249 375 269 398 880
seconds per query 103 155 111 164 363

Table 1: Comparison of BoostMap, FastMap and using brute-
force search, for the purpose of retrieving the exact nearest neigh-
bors successfully for 95% or 100% of the queries, using filter-and-
refine retrieval. The letter d is the dimensionality of the embed-
ding. The letter p stands for the number of top matches that we
keep from the filter step (i.e. using the embeddings). DX # per
query is the total number of DX computations needed per query,
in order to embed the query and rank the top p candidates. The ex-
act DX column shows the results for brute-force search, in which
we not use a filter step, and we simply evaluate DX distances be-
tween the query and all database images.

• Refine step: sort those p candidates by evaluating the
exact distance DX between q and each candidate.

As p increases, we are more likely to get the true k near-
est neighbors in the top p candidates found at the filter step,
but we also need to evaluate more distances at the refine
step. The best choice of p and d, where d is the dimen-
sionality of the embedding, will depend on domain-specific
parameters like k, the time it takes to compute the distance
DX , the time it takes to compute the weighted L1 distance
between d-dimensional vectors, and the desired retrieval ac-
curacy (i.e. how often we are willing to miss some of the
true k nearest neighbors).

For BoostMap and FastMap, we evaluated the optimal d

and p that would allow 1-nearest-neighbor retrieval to be
correct 95% or 100% of the time, while minimizing re-
trieval time. Table 1 shows the optimal values of p and
d, and the associated computational savings over standard
nearest-neighbor retrieval, in which we evaluate the exact
distance between the query and each database object. In
both datasets, the bulk of retrieval time is spent computing
exact distances in the original space. The time spent in com-
puting distances in the Euclidean space is negligible, even
for a 256-dimensional embedding. For the hand database,
BoostMap leads to significantly faster retrieval, because we
need to compute far fewer exact distances in the refine step,
while achieving the same error rate as FastMap.
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7 Discussion and Future Work

With respect to existing embedding methods, the main ad-
vantage of BoostMap is that it is formulated as a classifier-
combination problem, that can take advantage of powerful
machine learning techniques to assemble a high-accuracy
embedding from many simple, 1D embeddings. The main
disadvantage of our method, at least in the current imple-
mentation, is the running time of the training algorithm.
However, in many applications, trading training time for
embedding accuracy would be a desirable tradeoff. At the
same time, we are interested in exploring ways to improve
training time.

A possible extension of BoostMap is to use it to approx-
imate not the actual distance between objects, but a hid-
den state space distance. For example, in our hand image
dataset, what we are really interested in is not retrieving im-
ages that are similar with respect to the chamfer distance,
but images that actually have the same hand pose. We can
modify the training labels Y provided to the training algo-
rithm, so that instead of describing proximity with respect to
the chamfer distance, they describe proximity with respect
to actual hand pose. The resulting similarity rankings may
be worse approximations of the chamfer distance rankings,
but they may be better approximations of the actual pose-
based rankings. A similar idea has been applied in [19],
although in the context of a different approximate nearest
neighbor framework.

In [1] we provide a more extensive discussion of Boost-
Map, and we explore some extensions that can improve em-
bedding accuracy and efficiency.
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