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Abstract— This paper describes BoostMap, a method for effi-
cient nearest neighbor retrieval under computationally expensive
distance measures. Database and query objects are embedded
into a vector space, in which distances can be measured efficiently.
Each embedding is treated as a classifier that predicts for any
three objects X, A, B whether X is closer to A or to B. It
is shown that a linear combination of such embedding-based
classifiers naturally corresponds to an embedding and a distance
measure. Based on this property, the BoostMap method reduces
the problem of embedding construction to the classical boosting
problem of combining many weak classifiers into an optimized
strong classifier. The classification accuracy of the resulting strong
classifier is a direct measure of the amount of nearest neighbor
structure preserved by the embedding. An important property
of BoostMap is that the embedding optimization criterion is
equally valid in both metric and non-metric spaces. Performance
is evaluated in databases of hand images, handwritten digits, and
time series. In all cases, BoostMap significantly improves retrieval
efficiency with small losses in accuracy compared to brute-force
search. Moreover, BoostMap significantly outperforms existing
nearest neighbor retrieval methods, such as Lipschitz embed-
dings, FastMap, and VP-trees.

Index Terms— Indexing methods, embedding methods, similar-
ity matching, multimedia databases, nearest neighbor retrieval,
nearest neighbor classification, non-Euclidean spaces.

I. INTRODUCTION

Nearest neighbor retrieval is the task of identifying the
database objects that are the most similar to a given query
object. The most straightforward algorithm for nearest neigh-
bor retrieval is brute-force search: we simply measure all
distances between the query and the database objects. Clearly,
as database size increases, brute-force search can become
computationally demanding, or even impractical. This problem
is exacerbated in domains with computationally expensive
distance measures. Such measures occur frequently in pattern
recognition. Examples include the Kullback-Leibler distance
for matching probability distributions [1], dynamic time warp-
ing for matching time series [2], [3], or the edit distance [4]
for matching strings and biological sequences. We introduce
an embedding method, called BoostMap, for efficient nearest
neighbor retrieval in such domains. BoostMap maps database
and query objects into a real vector space, where distances can
be computed orders-of-magnitude faster than in the original
space. These fast embedding-based distances can be used to
speed up nearest neighbor retrieval.

Our method makes two key contributions to the current state
of the art. The first contribution is defining a new quantitative
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criterion of embedding quality, that directly measures how
well the embedding preserves the nearest neighbor structure
of the original space. The key idea is that any embedding F
naturally defines a binary classifier F̃ that predicts, for any
three objects X, A, B whether X is closer to A or to B, by
simply checking if F (X) is closer to F (A) or to F (B). If F
never makes any mistakes, then F perfectly preserves nearest
neighbor structure. We show that the error rate of F on a
specific set of triples (X, A, B) is a direct measure of the
amount of nearest neighbor structure preserved by F . This
is in contrast to the global measures of stress and distortion
typically used for evaluating embedding quality [5], which
take into account all pairwise distances between objects, and
thus mainly depend on pairs of objects that are not nearest
neighbors of each other.

The second contribution is an algorithm for constructing and
optimizing embeddings according to the proposed measure of
embedding quality. We show that any linear combination of
embedding-based binary classifiers F̃ naturally corresponds to
an embedding and a distance measure. Consequently, the prob-
lem of constructing a multidimensional embedding is reduced
to the classical boosting problem of combining many weak
classifiers into an optimized strong classifier. The BoostMap
method is based on this reduction and performs embedding
optimization using AdaBoost [6]. An important property of
BoostMap is that the embedding optimization criterion is
equally valid in both metric and non-metric spaces.

The experiments evaluate the usefulness of BoostMap for
efficient nearest neighbor retrieval and classification in rela-
tively large databases with non-metric distance measures like
the chamfer distance [7], shape context matching [8] and
dynamic time warping [2], [3]. Using BoostMap leads to
significant improvements in retrieval efficiency, with small
losses in accuracy compared to brute-force search. Further-
more, BoostMap significantly outperforms existing methods
for efficient nearest neighbor retrieval and classification in
non-Euclidean spaces, such as Lipschitz embeddings [5],
FastMap [9], and VP-trees [10].

II. RELATED WORK

Various methods have been employed for speeding up
nearest neighbor retrieval. The reader can refer to [5], [11]–
[13] for comprehensive reviews of existing nearest neighbor
methods. A large amount of work focuses on efficient nearest
neighbor retrieval in multidimensional vector spaces [14]–
[22]. Particular mention should be made to Locality Sensitive
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Hashing (LSH) [23], an approximate nearest neighbor method
that has been shown theoretically to scale well with the number
of dimensions and has produced good results in practice [24]–
[26]. However, those methods can only be applied in vector
spaces. The focus of this paper is on nearest neighbor retrieval
in non-vector spaces induced by computationally expensive
distance measures.

A more general class of spaces is the class of metric spaces,
i.e., spaces with a metric distance measure. Examples of metric
distance measures are the edit distance for strings [4], the
Hausdorff distance for edge images [27], or bipartite matching
for sets [28]. A number of nearest neighbor methods have
been designed that are applicable to arbitrary metric spaces;
the reader is referred to [12] for a comprehensive survey
of such methods. VP-trees [10] hierarchically partition the
database into a tree structure by partitioning, at each node,
the set of objects based on whether they are closer than a
threshold to a specific object, called a pivot object. A similar
structure, called metric trees, has been proposed independently
in [29]. MVP-trees [30] are an extension of VP-trees, where
multiple pivot points are used at each node. M-trees [31]
are a variant of metric trees explicitly designed for dynamic
databases. Slim-trees [32] improve on M-trees by minimizing
the overlap between nodes. An approximate variant of M-
trees is proposed in [33], and achieves additional speed-ups by
sacrificing the guarantee of always retrieving the true nearest
neighbors. A general problem with the above-mentioned tree-
based indexing methods is that their performance tends to
approach brute-force search as the intrinsic dimensionality
of the space increases. The reason is that, as dimensionality
increases, distances to pivot objects are less likely to warrant
pruning of large portions of the database.

Two alternative indexing methods for general metric spaces
are AESA [34] and LAESA [35]. Those methods compute the
exact distance between the query and a small set of database
objects and then use the triangle inequality to establish lower
bounds on the distance between the query and the database
objects. However, by relying on the triangle inequality, those
methods cannot handle non-metric distance measures such as
the ones used in our experiments.

In domains with a computationally expensive distance mea-
sure, significant speed-ups can be obtained by embedding ob-
jects into another space with a more efficient distance measure.
Several methods have been proposed for embedding arbitrary
spaces into a Euclidean or pseudo-Euclidean space [9], [36]–
[41]. Some of these methods, in particular Multidimensional
Scaling (MDS) [41], Bourgain embeddings [5], [36], [42],
Locally Linear Embedding (LLE) [38] and Isomap [39], need
to evaluate exact distances between the query and most or
all database objects, and thus are not designed for efficient
nearest neighbor retrieval. Methods that can be used for
efficient retrieval include Lipschitz embeddings [5], FastMap
[9], MetricMap [40], and SparseMap [37].

BoostMap, the method described in this paper, was intro-
duced in [43] and is an embedding method for efficient nearest
neighbor retrieval. A key difference between BoostMap and
existing embedding methods is that BoostMap optimizes a
direct measure of the amount of nearest neighbor structure

preserved by the embedding. Another distinguishing feature
of BoostMap is that it addresses the problem of embedding
optimization from a machine learning perspective, in contrast
to the geometric perspective taken by existing methods [5], [9],
[37], [40]. As a result, the embedding optimization criterion
in BoostMap does not rely on any geometric properties, and
is equally valid in Euclidean, metric, and non-metric spaces.
In contrast, FastMap [9] and MetricMap [40] are based on
Euclidean properties, and the design of Bourgain embeddings
[36], [37] and SparseMap [37] (which is an approximation of
Bourgain embeddings) is based on metric properties.

Non-metric distance measures are frequently used in pattern
recognition. Examples of non-metric distance measures are the
chamfer distance [7], shape context matching [8], dynamic
time warping [3], or the Kullback-Leibler (KL) distance [1].
Methods that are designed for general metric spaces can
still be applied when the distance measure is non-metric.
However, methods that are exact for metric spaces become
inexact in non-metric spaces, and no theoretical guarantees of
performance can be made. BoostMap can guarantee correct
retrieval results in metric spaces, as do Lipschitz embeddings
and SparseMap [5], [37].

In several domains where BoostMap is applicable, methods
have been proposed for speeding up similarity queries under
the specific distance measures used in those domains. Various
techniques have been proposed for time series databases using
non-metric distance functions [3], [44], [45]. These techniques
use the filter-and-refine approach [5], and use efficient distance
approximations in the filter step.

One of the distance measures tested in the experiments is
shape context matching [8]. Shape context matching is based
on the shape context feature, which describes the distribution
of points around a given location. Several methods have been
proposed for speeding up similarity matching and classifica-
tion using shape context. In [46], efficient retrieval is attained
by pruning based on comparisons of a small subset of shape
context features, and also using vector quantization. In [25]
the Earth Mover’s Distance between shape context features
is efficiently approximated using an embedding, and then
Locality Sensitive Hashing is applied. In [47] a discriminative
classifier is learned based on correspondences of shape context
features between the test object and a small number of training
objects.

It is natural that a method designed for a specific distance
measure, like the above-mentioned methods for time series
matching and shape context matching, can sometimes lead
to better performance than a general method applicable to
arbitrary distance measures. At the same time, our method,
which is general, does outperform some methods designed for
specific distances [47], [48] in our experiments, and thus may
be a viable alternative in applications where such methods
are being used to improve efficiency. Furthermore, a method
applicable to arbitrary measures has the advantage of being
readily applicable in arbitrary settings and novel applications.

For nearest neighbor classification applications, there are
also methods that explicitly speed up classification, and are
not concerned with retrieving the true nearest neighbors. Con-
densing methods [49]–[51] speed up classification by trying to
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identify training objects whose removal from the database does
not hurt classification accuracy. By removing those objects
from the database, the query needs to be compared to fewer
objects in order to be classified. Approaches that speed up
classification without reducing the database size are described
in [52], [53]. In those approaches, tree-based index structures
are constructed separately for each class. When it becomes
clear, during search, that a specific class cannot achieve
a majority of k-nearest neighbor votes, then that class is
dropped from consideration. This way, the winning class can
be identified without having to retrieve the actual k-nearest
neighbors.

III. BACKGROUND

Let X be a space of objects, and D be a distance measure
in X. If D is computationally expensive, a way to speed
up retrieval is to embed objects into another space with a
more efficient distance measure. Typically we construct an
embedding F : X → Rd, where distances in Rd are measured
using a weighted Minkowski (Lp) metric, like the Euclidean
(L2) distance or the Manhattan (L1) distance. We use ∆ to
denote the distance measure used in Rd. We use the notation
∆F (X1, X2) as shorthand for ∆(F (X1), F (X2)).

Evaluating Lp distances in Rd takes time linear to the length
d of the vectors. There are many spaces where we need to use
distance measures that take time superlinear to the length of
the objects. Such distance measures are common in spaces
where objects are represented as sets or sequences of features
or tokens, and where measuring the distance between two
objects involves establishing optimal correspondences between
the features/tokens of the two objects. Some examples of such
spaces are:

• the space of binary edge images with the chamfer distance
[7]. Each edge image in this space is represented as a set
of edge pixels. Computing the chamfer distance involves
computing the distance from each edge pixel in one image
to its nearest edge pixel in the other image, and takes
O(d log d) time for images with d edge pixels.

• the space of strings with the edit distance [4]. This
distance is computed using dynamic programming, and
takes time O(d1d2), where d1 and d2 are the lengths of
the two strings. A related distance measure is dynamic
time warping [2], [3], for comparing time series. Variants
of the edit distance are also used for matching proteins
and DNA sequences.

A. Some Simple Embeddings
Given any space X with a distance measure D, we can

extend D to define the distance between elements of X and
subsets of X. Let X ∈ X and P ⊂ X. Then,

D(X, P) = min
P∈P

D(X, P ) . (1)

Given a subset P ⊂ X, a simple 1D embedding F P : X → R

can be defined as follows:

F P(X) = D(X, P) . (2)

The set P that is used to define F P is called a reference set.
In many cases P can consist of a single object P , which is
typically called a reference object or a vantage object [5]. In
that case, we denote the embedding as F P :

F P (X) = D(X, P ) . (3)

We call F P a reference object embedding.
Another family of simple, 1D embeddings is proposed in

[9]. The idea there is to choose two objects X1, X2 ∈ X,
called pivot objects, and then, given an arbitrary X ∈ X, to
define the embedding F X1,X2 of X to be the projection of X
onto the “line” X1X2:

F X1,X2(X) =
D(X, X1)

2 + D(X1, X2)
2 − D(X, X2)

2

2D(X1, X2)
.

(4)
The reader can find in [9] an intuitive geometric interpretation
of this equation, based on the Pythagorean theorem. We call
F X1,X2 a line projection embedding.

A multidimensional embedding can be constructed by con-
catenating such 1D embeddings: if F1, . . . , Fd are 1D em-
beddings, we can define a d-dimensional embedding F as
F (X) = (F1(X), . . . , Fd(X)). In existing work, 1D embed-
dings defined using reference sets (Eq. 2) are used to form
Lipschitz embeddings [5], and line projection embeddings (Eq.
4) are used to construct FastMap embeddings [9].

B. Embedding Application: Filter-and-refine Retrieval
Let F be an embedding from a space X with distance

measure D to Rd with distance measure ∆, and let U ⊂ X

be a database of objects. We can use F to speed up k-nearest
neighbor retrieval by applying the filter-and-refine framework
[5], in which retrieval is done as follows:

• Offline preprocessing step: compute and store vector
F (U) for every database object U ∈ U.

• Embedding step: given a query object Q, compute F (Q).
• Filter step: rank all database objects in order of the

distance of their embeddings from F (Q).
• Refine step: for some integer p that is a parameter of the

algorithm, rerank the p highest-ranked database objects
by evaluating their exact distances D to Q.

• Output: return the k highest-ranked database objects.
The filter step provides a preliminary ranking of database

objects by comparing d-dimensional vectors using the distance
measure ∆. The refine step applies D only to the top p
candidates. Assuming that ∆ is significantly more efficient
than D, filter-and-refine retrieval is much more efficient than
brute-force retrieval.

IV. OVERVIEW OF THE BOOSTMAP METHOD

An embedding F is proximity-preserving when it perfectly
preserves proximity relations between triples of objects, i.e.,
when it holds for all X, A, B ∈ X that

D(X, A) ≤ D(X, B) ⇔ ∆F (X, A) ≤ ∆F (X, B) . (5)

If Eq. 5 does not hold for some triple (X, A, B), we say
that F fails on that triple. In BoostMap, the goal is to
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construct an embedding that is as close to being proximity-
preserving as possible. For the purpose of speeding up nearest
neighbor retrieval it is sufficient to limit our attention to triples
(X, A, B) of a specific type, as discussed in Section V-C.

Deciding for a triple (X, A, B) whether X is closer to A
or to B is a binary classification problem (we ignore the
typically rare case where X is equally far from A and B).
Any embedding F defines a binary classifier F̃ that decides
whether X is closer to A or to B by simply checking if F (X)
is closer to F (A) or to F (B). Our goal is to construct an
embedding F whose associated classifier F̃ is as accurate as
possible. In Section V we show that the task of optimizing
a multidimensional embedding that is a concatenation of 1D
embeddings is equivalent to the task of designing a good linear
combination of classifiers. The latter task is a natural fit for
boosting methods proposed in the machine learning literature.
In the BoostMap method we optimize embedding quality using
AdaBoost [6], as described in Section VI.

V. ASSOCIATING EMBEDDINGS WITH CLASSIFIERS

A. Using Embeddings to Define Classifiers
As in previous sections, X is a space of objects and D is

a distance measure defined on X. If (X, A, B) is a triple of
objects in X, one of the following three cases must be true:

• X is closer to A than to B.
• X is equally far from A and B.
• X is closer to B than to A.

In order to denote, for each triple (X, A, B), which of those
three possibilities is true, we define the proximity order P of
triple (X, A, B) as follows:

P (X, A, B) =







1 if D(X, A) < D(X, B) .
0 if D(X, A) = D(X, B) .

−1 if D(X, A) > D(X, B) .
(6)

In spaces where distances can take any value within some
range of real numbers, it is typically unusual for an object
to have the exact same distance to two database objects.
Consequently, we consider the task of estimating P (X, A, B)
to be a binary classification task.

Let F be an embedding that maps (X, D) to (Rd, ∆). We
can guess whether X is closer to A or to B by checking if
F (X) is closer to F (A) or to F (B). More formally, for every
embedding F we define a classifier F̃ as follows:

F̃ (X, A, B) = ∆F (X, B) − ∆F (X, A) . (7)

If we define sign(x) to be 1 for x > 0, 0 for x = 0, and −1 for
x < 0, then sign(F̃ (X, A, B)) is an estimate of P (X, A, B).

B. Using Classifiers to Define Embeddings
At this point we have established that every embedding F :

(X, D) → (Rd, ∆) corresponds to a binary classifier F̃ of
triples of objects. It is shown in [54] that the converse does
not hold: there exist classifiers H of triples such that H 6= F̃
for all embeddings F . At the same time, there is always an
embedding F such that H = F̃ , if H is of the following form:

H(X, A, B) =

J
∑

j=1

αj F̃j(X, A, B) , (8)

where J is any positive integer and each Fj is an embedding
mapping X and D to some real vector space Rdj and some
distance measure ∆j .

Proposition 1: If classifier H is of the form of Eq. 8, then
we can define an embedding F and distance measure ∆ such
that F : (X, D) → (Rd, ∆) and H = F̃ , for some integer d.
Proof: Given that H(X, A, B) =

∑J

j=1(αj F̃j(X, A, B)), we
define F and ∆ as follows:

F (X) = (F1(X), . . . , FJ (X)) .

∆(F (X1), F (X2)) =

J
∑

j=1

(αj∆
j(Fj(X1), Fj(X2))) .

Embedding F maps X into a d-dimensional vector space,
where d =

∑J

j=1 dj , and ∆ is the sum of individual distances
∆j that correspond to embeddings Fj .

Given these definitions, the proof that H = F̃ can be
obtained in a few simple steps, by starting from the definition
of F̃ in Equation 7:

F̃ (X, A, B) = ∆F (X, B) − ∆F (X, A)

=

J
∑

j=1

(αj∆
j
Fj

(X, B)) −

J
∑

j=1

(αj∆
j
Fj

(X, A))

=

J
∑

j=1

(αj(∆
j
Fj

(X, B) − ∆j
Fj

(X, A)))

=
J

∑

j=1

(αj F̃j(X, A, B)) = H(X, A, B) .

�

We have shown that if classifier H is a weighted linear
combination of classifiers corresponding to embeddings, then
H itself is equivalent to a specific embedding F and a
specific distance measure ∆. By the word “equivalent” we
mean that, for any (X, A, B), H misclassifies (X, A, B) if
and only if F fails on that triple. This equivalence allows
us to map the problem of embedding optimization to the
problem of optimizing a weighted linear combination of binary
classifiers, which is exactly the problem that boosting methods
are designed to solve.

C. Classification Error As a Measure of Embedding Quality
Suppose that we have a database U ⊆ X, and in our

application we are only interested in retrieving up to kmax

nearest neighbors for each query object X ∈ X. An example of
such an application is k-nearest neighbor classification, where
for every test object we want to retrieve k database objects,
so kmax = k in that case. We denote the set of the kmax

nearest neighbors of X in U as NN (X, U, kmax). In order
to achieve perfect retrieval accuracy of up to kmax nearest
neighbors using an embedding F , it suffices that classifier F̃
be perfect on a set of triples Tkmax

defined as follows:

Tkmax
= {(X, A, B)|X ∈ X, A ∈ NN (X, U, kmax), B ∈ U} .

(9)
In the above equation, B can be any database object.
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In the ideal case where F̃ makes no mistakes on triples in
Tkmax

, the following holds: ∀X, A ∈ X, ∀k ∈ {1, . . . , kmax},
A is the k-nearest neighbor of X in U iff F (A) is the k-
nearest neighbor of F (X) in F (U). Therefore, using F we
can retrieve the correct kmax nearest neighbors for any query
object, without needing to measure any exact distances D. If
F̃ misclassifies triples that are not in Tkmax

, retrieval accuracy
is not affected. In the typical case where F̃ is not perfectly
accurate on Tkmax

, the error rate of F̃ on Tkmax
provides us

with a quantitative measure of how well F preserves the kmax-
nearest neighbor structure of X. Higher error rates indicate
that the proximity rankings obtained using F are less reliable.
Therefore, if we wish to optimize classifier F̃ , it is important
to optimize it for accuracy on the set Tkmax

, as opposed to,
for example, accuracy on the set of all possible triples (which
was done in [43]).

It is interesting to compare the measure of embedding
quality we have proposed, i.e., the classification error on the
set Tkmax

, with the measures of stress and distortion that are
often used to evaluate embedding quality [5]. The measure
proposed here is fundamentally a local measure. Assuming
that kmax � |U|, the vast majority of triples of objects
(X, A, B) are such that neither A nor B is one of the kmax-
nearest neighbors of X , and therefore we are not concerned
about classifying such triples correctly. In contrast, stress and
distortion are global measures that are affected by every pair of
objects, although the vast majority of pairs of objects (X, A)
are such that X and A are not kmax-nearest neighbors of each
other. Arguably a method that minimizes stress or distortion
spends most of its effort on pairs of objects that have no
bearing on how well the embedding preserves nearest neighbor
structure.

VI. BOOSTMAP: OPTIMIZING EMBEDDING
CONSTRUCTION USING BOOSTING

As stated in Section V-C, our goal is to construct an em-
bedding Fout : (X, D) → (Rd, ∆) in a way that minimizes the
classification error of classifier F̃out on a specific set of triples.
The building blocks we will use for embedding construction
are simple, 1D embeddings defined using database objects,
according to Eqs. 3 and 4. By applying Eq. 7 to each such 1D
embedding we obtain a large pool of binary classifiers. As long
as such embeddings preserve at least a small amount of the
structure of the original space, we expect the corresponding
binary classifiers to be more accurate than a random guess.
In other words, we expect the classifiers associated with 1D
embeddings to behave as weak classifiers [6].

Based on the above considerations, and using the cor-
respondence we have established between embeddings and
classifiers, we reduce the problem of embedding optimization
to the problem of optimizing a weighted linear combination of
binary weak classifiers. Naturally, this is exactly the problem
that boosting methods [6], [55] have been designed to solve.
In our embedding construction algorithm we have chosen to
use the AdaBoost method [6].

The AdaBoost algorithm is shown in Algorithm 1. The
inputs to AdaBoost are a set of objects oi, together with their

Algorithm 1: The AdaBoost algorithm. This description
is largely copied from [6].

input : (o1, y1), . . . , (oβ , yβ); oi ∈ G, yi ∈ {−1, 1}.
output: Strong classifier H : G → R.
Initialize wi,1 = 1

β
, for i = 1, . . . , β.

for training round j = 1, . . . , J: do
1. Train weak learner using training weights wi,j ,
and obtain weak classifier hj : G → R, and a
corresponding weight αj ∈ R.

2. Set training weights wi,j+1 for the next round as
follows:

wi,j+1 =
wi,j exp(−αjyihj(oi))

zj

. (10)

where zj is a normalization factor (chosen so that
∑β

i=1 wi,j+1 = 1).
end
Output the final classifier:

H(x) =
J

∑

j=1

αjhj(x). (11)

corresponding class labels yi, which are equal either to −1 or
to 1. In our problem, each oi corresponds to a triple of objects
of X. The goal in AdaBoost is to construct a strong classifier
that achieves much higher accuracy than the individual weak
classifiers.

The BoostMap algorithm is an adaptation of AdaBoost to
the problem of embedding construction. In order to apply
AdaBoost to our problem we need to perform some prepro-
cessing before invoking AdaBoost, we need to specify how
to implement the first step of the AdaBoost main loop, and
finally we need to convert the output classifier of AdaBoost
into an embedding. We now describe in detail how to perform
each of these steps.

A. Inputs and Preprocessing
The inputs to the BoostMap algorithm are the following:
• A database U of objects in some space X with distance

measure D.
• A positive integer kmax specifying the maximum number

of nearest neighbors we will be interested in retrieving
using the resulting embedding.

• A set C ⊂ U of candidate reference and pivot objects.
Elements of C will be used to define 1D embeddings.

• A set L ⊂ U of training objects. Elements of L will
be used to form training triples, i.e., the oi’s used by
AdaBoost.

• Matrices of distances: from each X1 ∈ C to each X2 ∈
C, from each X1 ∈ C to each X2 ∈ L, and from each
X1 ∈ L to each X2 ∈ L.

In addition, we need to specify parameters that control the
runtime of the training algorithm:
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• The size β of the set G of training triples.
• The number γ of weak classifiers to consider at each

training round.
• The number δ of classifiers selected after a quick scan at

each training round j. These selected classifiers are then
evaluated more thoroughly in order to choose hj and αj .

• A parameter Zmax that will be used for deciding when
to stop the training algorithm.

The role of these parameters will be fully explained in the
description of the training algorithm.

The goal of the training algorithm is to construct an embed-
ding Fout in a way that minimizes the classification error of
the corresponding classifier F̃out on Tkmax

, the set of triples
defined in Eq. 9. During the course of the algorithm we need
to keep in memory a matrix of distances from every object in
C to every object included in any of the training triples. To
reduce the memory requirements we choose training triples
not from the entire database, but from a smaller set L ⊂ U.

Given L, we define k′ ≡ dkmax|L|
|U| e. Then, we choose β

training triples oi = (Xi, Ai, Bi) randomly, subject to the
constraints that: 1). Ai is a k′-nearest neighbor of Xi in
L−{Xi}, and 2). Ai and Bi are not equally far from Xi. We
set class label yi of oi −1 or 1, according to the proximity
order P (Xi, Ai, Bi), as defined in Eq. 6. The formula we
use for setting k′ makes the training triple selection process
approximate sampling from Tkmax

, under the constraint that
each Xi, Ai and Bi must be an element of L. If Ai is one of
the k′-nearest neighbors of Xi in L, Ai is likely to be one of
the the kmax-nearest neighbors of Xi in U (unless |L| < |U|

kmax

,
in which case Ai is just likely to be one of the |U|

|L| nearest
neighbors of Xi).

Now we proceed to specify how to implement the training
algorithm, i.e., how to implement Step 1 of the main loop of
AdaBoost, as shown in Algorithm 1. We should note that, in
Algorithm 1, Step 2 of the main loop is fully specified.

B. Choosing the Next Weak Classifier and Weight
At training round j, given training weights wi,j , the weak

learner is called to provide us with a weak classifier hj and a
weight αj . In BoostMap the weak learner simply evaluates a
large number of weak classifiers, and finds the best classifier
and best weight for that classifier. Each weak classifier is a
classifier F̃i where Fi is a 1D embedding. In [56]–[58] we
have described alternative families of weak classifiers that can
be used within the context of this algorithm.

As described in [6], the function Zj(h, α) gives a measure
of how useful it would be to choose hj = h and αj = α at
training round j:

Zj(h, α) =

β
∑

i=1

(wi,j exp(−αyih(Xi, Ai, Bi))) . (12)

The full details of the significance of Zj can be found in [6].
Here it suffices to say that if Zj(F̃ , α) < 1 then choosing
hj = h and αj = α is overall beneficial, and is expected to
reduce the training error. Overall, lower values of Zj(F̃ , α)
are preferable to higher values.

Finding the optimal α for a given classifier h and computing
the Zj value attained using that optimal α are very common
operations in our algorithm, so we define specific notation:

Amin(h, j, l) = argminα∈[l,∞)Zj(h, α) . (13)
Zmin(h, j, l) = min

α∈[l,∞)
Zj(h, α) . (14)

In the above equations j specifies the training round, and
l specifies the smallest value we allow for α. Function
Amin(h, j, l) returns the α that minimizes Zj(h, α), subject
to the constraint that α ≥ l. We compute Amin following the
optimization method described in [6]. Argument l will be used
to ensure that no classifier has a negative weight. In Section
VI-C we will use classifier weights to define a weighted L1

distance measure ∆ in Rd, and non-negative weights ensure
that ∆ is a metric.

The number of classifiers to evaluate is specified by pa-
rameter γ of the algorithm. As an implementation choice,
half of these γ classifiers are reference-object embeddings and
half are line-projection embeddings. A very simple way of
implementing Step 1 from Algorithm 1 is to: 1). define γ
weak classifiers by picking randomly γ/2 reference objects
and γ/2 pairs of pivot objects from C, and 2). set hj and αj

to be the classifier h (among those γ weak classifiers) and
weight α that minimize Zj(h, α).

The implementation that we actually use in our experiments
differs from the above description in two ways. The first
difference is that, before selecting a new weak classifier, we
check whether removing or modifying the weight of an already
selected weak classifier would improve the strong classifier.
Removals and weight modifications that improve the strong
classifier are given preference because they do not increase
the complexity of the strong classifier.

The second difference is that, instead of evaluating every
weak classifier h using function Zmin, we first evaluate all
weak classifiers using an alternative measure, the training error
Λj(h):

Λj(h) =

β
∑

i=1

wi,j

yi − sign(h(Xi, Ai, Bi))

2
. (15)

Using function Λj we select the best δ classifiers (given
parameter δ), and then among those δ classifiers we choose the
best one using function Zmin. Function Zmin takes an order
of magnitude more time to compute than the training error,
because computing Zmin involves searching for the optimal
weight Amin, whereas computing the training error does not
involve such a search. The step of selecting a smaller set of
classifiers based on training error can be skipped if the running
time of the training algorithm is not a concern.

Our implementation of Step 1 of the AdaBoost algorithm is
shown in Algorithm 2. In that algorithm, we denote with Hj

the classifier assembled by AdaBoost after j training rounds,
so that Hj =

∑j

i=1 αihi. It is possible that some weak classi-
fier occurs multiple times in Hj , i.e., that there exist i, g < j
such that hi = hg . Without loss of generality we assume
that we also have an alternative representation of Hj−1 as
a weighted linear combination of unique weak classifiers. We
denote that representation as Hj−1 =

∑Kj−1

i=1 α′
i,j−1h

′
i,j−1.
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Note that, as specified in Step 26 of Algorithm 2, the
algorithm terminates when we select a new weak classifier hj

for which Zj(hj , αj) ≥ Zmax, meaning that we have failed
to find a weak classifier that would be more than marginally
beneficial to add to the strong classifier.

Algorithm 2: The steps of the BoostMap training al-
gorithm. Steps 3-23 implement Step 1 of the AdaBoost
algorithm, as shown in Algorithm 1.

Initialize training weights wi,1 ←
1

β
, for i = 1, . . . , β,1

Initialize H0 ← 0, j ← 1.2
z ← minc=1,...,Kj−1

Zj(h
′

c,j−1,−α′

c,j−1).3
if z < 1 then4

/* Remove an already selected weak
classifier, by adding its negation. */
g ← argminc=1,...,Kj−1

Zj(h
′

c,j−1,−α′

c,j−1).5
hj ← h′

g,j−1.6
αj = −α′

g,j−1.7
Goto Step 27.8

end9
z ← minc=1,...,Kj−1

Zmin(h′

c,j−1, j,−α′

c,j−1).10
if z < Zmax then11

/* Modify the weight of an already selected
weak classifier. The third argument of Zmin

ensures that the new weight α′

g,j of h′
g is

non-negative. */
g ← argminc=1,...,Kj−1

Zmin(h′

c,j−1, j,−α′

c,j−1).12
hj ← h′

g,j−1.13
αj ← Amin(h

′

g, j,−α′

g,j−1).14
Goto Step 27.15

end16
Fj1 ← {F

X1 , . . . , F Xγ/2}, where X1, . . . , Xγ/2 are random17
elements of the set C of candidate objects.
Fj2 ← {F

Xi,1,Xi,2 |i = 1, . . . , γ/2}, where18
X1,1, X1,2, ..., Xγ/2,1, Xγ/2,2 are random objects of C.
Fj ← Fj1 ∪ Fj2.19
F̃J ← {F̃ | F ∈ Fj}.20
Hj ← set of the δ classifiers h in F̃J with the smallest Λj(h).21
hj ← argminh∈Hj

Zmin(h, j, 0).22
αj ← Amin(hj , j, 0).23
if Zj(hj , αj) ≥ Zmax then24

return Hj−125
end26
zj ← Zj(hj , αj).27
Set weights wi,j+1 for training round j + 1 using Eq. 10.28
j ← j + 1.29
Goto Step 3.30

C. Defining an Embedding and a Distance Measure

The output of AdaBoost is a strong classifier H . Without
loss of generality, we can write H as H =

∑d

c=1 α′
cF̃c,

where each F̃c is associated with a unique 1D embedding
Fc. Classifier H has been trained to estimate, for triples of
objects (X, A, B), if X is closer to A or to B. However, our
final goal is to construct not a classifier, but an embedding.
To achieve that we use Proposition 1, to convert H into an
embedding Fout : X → Rd and a distance measure ∆:

Fout(x) = (F1(x), ..., Fd(x)) . (16)

∆((u1, ..., ud), (v1, ..., vd)) =

d
∑

c=1

(α′
c|uc − vc|) . (17)

∆ is a weighted Manhattan (L1) distance measure. ∆ is a
metric, because the training algorithm ensured that all αc’s
are non-negative, and thus we can apply to the resulting em-
bedding any additional indexing, clustering and visualization
tools that are available for L1 metric spaces.

VII. PROPERTIES OF BOOSTMAP EMBEDDINGS

In this section we take a closer look at some properties of
the proposed algorithm for constructing embeddings, and of
the resulting embeddings.

A. Contractiveness
An embedding F : (X, D) → (Rd, ∆) is contractive if for

any X1, X2 ∈ X it holds that ∆F (X1, X2) ≤ D(X1, X2). As
explained in [5], when an embedding is contractive, then filter-
and-refine retrieval can guarantee retrieval of the true nearest
neighbors.

The output embedding Fout : (X, D) → (Rd, ∆), con-
structed as described in Eqs. 16-17, can be made contractive by
dividing ∆(Fout(X1), Fout(X2)) with a normalization term,
provided that D is metric. First, we address the case where
Fout contains no line projection embeddings:

Proposition 2: Let X1, X2 ∈ X. Suppose that, in Eq. 17,
α′

i > 0 for all i, and suppose that D is metric. If all dimensions
of Fout are reference-object embeddings, then it holds that:

1
∑d

i=1 α′
i

∆(Fout(X1), Fout(X2)) ≤ D(X1, X2) . (18)

Proof: If each dimension of Fout is a reference-object embed-
ding, then Fout can be represented as Fout = (F P1 , . . . , F Pd),
where d is the dimensionality of Fout and Pi are reference
objects. We will denote Fout(X1) as (x1,1, . . . , x1,d) and
Fout(X2) as (x2,1, . . . , x2,d). First, based on the triangle
inequality, we can easily see that:

|x1,i−x2,i| = |D(X1, Pi)−D(X2, Pi)| ≤ D(X1, X2) . (19)

Using this observation, we can complete the proof:

1
∑d

i=1 α′
i

∆F (X1, X2) =
1

∑d

i=1 α′
i

d
∑

i=1

(α′
i|x1,i − x2,i|)

≤
1

∑d

i=1 α′
i

d
∑

i=1

(α′
iD(X1, X2))

=
1

∑d

i=1 α′
i

D(X1, X2)

d
∑

i=1

α′
i

= D(X1, X2) .

�

If Fi, the i-th dimension of Fout, is a line-projection
embedding, then it is shown in [5] that |Fi(X1) −
Fi(X2)| ≤ 3D(X1, X2). Therefore, if we divide ∆(X1, X2)
by 3

∑d

i=1 α′
i, then Fout is contractive even in the case where

some of its dimensions are line-projection embeddings.
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We should point out that the distance measures D used in
the experiments are non-metric, and thus the resulting em-
beddings are not contractive. No existing domain-independent
embedding method [9], [37], [40] is contractive in non-
metric spaces. Consequently, none of these methods, including
BoostMap, can guarantee perfect retrieval accuracy in non-
metric spaces.

B. Complexity
Before we start the training algorithm, we need to compute

three distance matrices: distances between objects in C, dis-
tances between objects in L, and distances from objects in C

to objects in L. If (as in our experiments) |C| = |L|, then the
number of distances that we need to precompute is quadratic
to |C|. During training, at each training round we evaluate γ
weak classifiers by measuring their performance on β training
triples, which takes O(βγ) time. In contrast, FastMap [9],
SparseMap [37], and MetricMap [40] do not require training at
all. However, we should emphasize that the cost of training is
a one-time preprocessing cost. In many applications this cost
is acceptable, as long as it results in better trade-offs between
retrieval accuracy and efficiency.

Computing the d-dimensional embedding Fout of an object
takes O(d) time and requires measuring between d and 2d
exact distances D: one distance for each reference object
embedding in Fout, and two distances for each line projection
embedding in Fout. For comparison, the number of distance
evaluations required by other methods to embed an object is:
2d for FastMap, d for SparseMap, and d + 1 for MetricMap.
It follows that, for BoostMap and these other methods, com-
puting the embeddings of all database objects takes O(d|U|)
time, inserting a new object to the database requires O(d) time
to compute its embedding, and computing the d-dimensional
embedding of a query object also takes O(d) time.

Comparing, during the filter step, the embedding of the
query to the embeddings of n database objects takes time
O(dn). As d increases, this becomes more expensive. How-
ever, in our experiments, the filter step always takes negligible
time; retrieval time is dominated by the few exact distance
computations we need to perform at the embedding step and
the refine step.

VIII. EXPERIMENTS

In this section we experimentally evaluate BoostMap by
comparing it to several alternative existing methods for ef-
ficient nearest neighbor retrieval. Experiments are performed
in four different domains: hand shape classification using a
database of hand images, offline handwritten digit recognition
using the MNIST database [59], online handwritten digit
recognition using the isolated digits benchmark (category 1a)
of the UNIPEN Train-R01/V07 database [60], and similarity-
based retrieval of time series using a benchmark time series
dataset [44].

A. Datasets
Here we provide details about each of the four datasets we

use in the experiments. More detailed descriptions of each
dataset can be found at the experiments section of [54].

Fig. 1. The 20 handshapes used in the ASL handshape dataset.

1) ASL Handshape Dataset: The ASL handshape dataset
consists of a database of 80, 640 synthetic images of hands,
generated using the Poser 5 software [61], and a query set of
710 real images of hands. All images display the hand in one
of 20 different 3D handshape configurations (Fig. 1), which
are all commonly used in American Sign Language (ASL).
For each of the 20 handshapes we synthetically generate a
total of 4, 032 database images that correspond to different
3D orientations of the hand.

The query images are obtained from video sequences of a
native ASL signer either performing individual handshapes in
isolation or signing in ASL. The hand locations were extracted
from those sequences using the method described in [62].
Accurate localization of the hand in such sequences remains a
very challenging task, and hand localization fails in more than
50% of the frames. In these experiments we only use frames
where the hand is localized correctly. The query images are
obtained from the original frames by extracting the subwindow
corresponding to the hand region. Database and query images
are normalized so that the minimum enclosing circle of the
hand region has radius 120.

The distance measure used to compare images is the cham-
fer distance [7], [63], which operates on edge images. The
synthetic images generated by Poser can be rendered directly
as edge images. For the query images we simply apply the
Canny edge detector [64]. On a AMD Athlon 2GHz processor,
we can compute on average 715 chamfer distances per second.
Nearest-neighbor classification via brute-force search takes
about 112 seconds per query, and yields an error rate of 67%.

2) Offline Handwritten Digit Dataset (MNIST): The
MNIST dataset of handwritten digits [59] contains 60, 000
database images, and 10, 000 query images. Each image is
a 28x28 image displaying an isolated digit between 0 and
9 (Fig. 2). The distance measure used is shape context
matching [8], which achieves a nearest-neighbor classifica-
tion error of 0.54%. As can be seen on the MNIST web
site (http://yann.lecun.com/exdb/mnist/), shape
context matching outperforms in accuracy a large number
of other methods on the MNIST dataset. Using our own
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Fig. 2. Example images from the MNIST dataset of handwritten digits.

optimized C++ implementation, and running on an AMD
Opteron 2.2GHz processor, we can compute on average 15
shape context distances per second. Using brute-force search
for nearest neighbor classification averages approximately 60
minutes per query.

3) Online Handwritten Digit Dataset (UNIPEN): We use
the isolated digits benchmark (category 1a) of the UNIPEN
Train-R01/V07 database [60], which consists of 15, 953 digit
examples. The digits have been randomly divided into 10, 630
database objects and 5, 323 query objects. Each digit is
preprocessed exactly as described in [48]. Each extracted
point is represented by three features: 2D normalized location
(x̃i, ỹi) and the tangent angle θi of the line segment between
(x̃i, ỹi) and (x̃i−1, ỹi−1). The distance measure D used for
classification is dynamic time warping [2]. On an AMD Athlon
2.0GHz processor, we can compute on average 890 DTW
distances per second. Therefore, nearest neighbor classification
using brute-force search takes about 12 seconds per query, and
yields an error rate of 1.90%.

4) Time-series dataset: We use the time series benchmark
dataset described in [44]. To generate that dataset, various real
datasets were used as seeds, and multiple copies of every real
sequence were constructed by incorporating small variations
in the original patterns as well as additions of random com-
pression and decompression in time. As described in [54],
we randomly split the data into 1, 000 queries and 31, 818
database objects. Distances in this dataset are measured using
constrained dynamic time warping, with a warping length
δ = 10% of the total length of the shortest sequence [44].
On average, on an AMD Opteron 2.2GHz processor, we can
compute 60 distances per second. Consequently, brute-force
retrieval of the nearest neighbors of a query takes on average
530 seconds.

B. Evaluation Methodology and Parameter Choices
In our experiments, retrieval time is dominated by the

number of exact distance computations that we perform. Other
operations, such as the filter step of filter-and-refine retrieval,
take negligible time (less than 0.1 seconds/query for all
computations that are not part of measuring an exact distance).
Consequently, we mainly report processing time using the
number of exact distances we need to measure per query.

In evaluating k-nearest neighbor retrieval accuracy, we
consider the retrieval result for a query to be correct if

and only if all k-nearest neighbors of the query have been
correctly identified. For example,if we measure accuracy on
50-nearest neighbor retrieval for a particular method and set
of parameters, 95% retrieval accuracy means that for 95% of
the queries we successfully identify all 50 nearest neighbors.

For filter-and-refine retrieval we must specify two param-
eters: d, which is the dimensionality of the embedding, and
p, which specifies the number of exact distances to measure
during the refine step. In all experiments, we use the d and
p values that maximize efficiency given a specific setting for
retrieval accuracy. As an example, if we want to measure the
efficiency of FastMap for 50-nearest neighbor retrieval with
95% accuracy, we first find, for each d, the smallest value
of p (denoted as pd) that is needed to obtain the desired
accuracy when a d-dimensional FastMap embedding is used
during the filter step. If values d and pd are specified, then
the number of exact distance computations per query is also
specified. This way, for each d, we compute the number of
exact distance computations per query needed in order to attain
the desired 95% accuracy. After computing that number for
each d, we simply select the d that minimizes the number of
exact distance computations, and we report results for that d
(and its associated pd).

With respect to the additional free parameters that are
needed by the BoostMap algorithm (see Sec. VI-A), here we
provide the default values, used in all experiments unless noted
otherwise:

• kmax = 50.
• |C| = |L| = 5000, except for the UNIPEN dataset, which

is the smallest among our four datasets. For UNIPEN
experiments, |C| = |L| = 3500, due to the relatively
small size of the database.

• β = 300, 000.
• γ = 2000.
• δ = 200.
• Zmax = .9999.

C. Methods Used for Comparison Purposes
We compare BoostMap to several alternative methods for

nearest neighbor retrieval:
• FastMap [9]. We construct FastMap embeddings by run-

ning the FastMap algorithm on a subset of the database,
containing 5000 objects (3500 objects for the UNIPEN
dataset). The subset used for each dataset is the set C

used for BoostMap.
• Random reference objects (RRO). We construct a

multi-dimensional Lipschitz embedding as a concatena-
tion of multiple 1D embeddings, where each 1D embed-
ding is obtained by choosing a random reference object
P from the database.

• Random line projections (RLP). We construct a multi-
dimensional embedding as a concatenation of multiple
1D embeddings, each of which is defined by choosing
two random database objects X1, X2 as pivot objects.

• VP-trees [10]. VP-trees rely on the triangle inequality to
achieve efficient retrieval while always finding the true
nearest neighbors. Since the distance measures in our
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experiments are non-metric, using a method similar to
[65] we modify the search algorithm so that it guar-
antees correct retrieval results if the triangle inequality
is satisfied up to a constant ζ. Larger values of ζ lead
to more accurate results and slower retrieval time. We
should note that in some experiments we use values of ζ
that are smaller than 1, in order to compare VP-trees
with other methods at ultra-efficient settings. VP-trees
were not designed to be used with such small ζ values
(which lead to unreasonably aggressive pruning), and this
is reflected in the corresponding results, where VP-trees
are much less accurate than the other methods when
ζ < 1.

• Brute-Force Search. For nearest neighbor classification
only, we provide results obtained using brute-force search
on random subsets of the database, vs. the number of
objects in those subsets.

D. Evaluation on Nearest Neighbor Retrieval
To measure retrieval accuracy, we first find the true k-

nearest neighbors of each query in each dataset, using brute-
force search. Then, we compare the results obtained by each
method with the correct results obtained from brute-force
search. In Figs. 3, 4, 5, and 6 we compare BoostMap to alterna-
tive methods on the task of k-nearest neighbor retrieval, on all
four datasets. BoostMap clearly outperforms all other methods
in three of the four datasets, namely the ASL handshape,
MNIST and UNIPEN datasets. The performance difference
between BoostMap and the other methods varies depending on
the setting, i.e., the desired accuracy and the number of nearest
neighbors to retrieve. In many settings BoostMap achieves
retrieval times that are from 50% to over 300% faster than the
times attained by the best alternative method. The time series
dataset is the only dataset where BoostMap is not the best-
performing method. In that dataset, using random reference
objects provides results that are roughly as good as those of
BoostMap for 90% and 95% retrieval accuracy, and results that
are better than those of BoostMap for 99% retrieval accuracy.

The results on the time series dataset illustrate one limitation
of the training algorithm: since we use AdaBoost as the under-
lying training method, the classifier that is constructed is not
a globally optimal classifier. AdaBoost is essentially a greedy
optimization method that finds locally optimal solutions. It
is possible in some cases to obtain a better classifier using
random choices. In [57] we describe improvements that allow
the BoostMap method to outperform random reference objects
on the time series dataset.

We have also performed experiments to evaluate the sensi-
tivity of performance to the settings of the various parameters
(namely β, |C|, kmax, γ, δ) used in the training algorithm. The
results are shown on Figs. 7 and 8. These experiments were
performed on the ASL handshape dataset and the UNIPEN
dataset. In each experiment we varied only one parameter,
while the other parameters were set as specified in Section
VIII-B, with the following exceptions:

• In the experiments where β does not vary, we set β =
100, 000, to speed up the training algorithm.

• In all cases, γ is not allowed to be smaller than 2|C|, and
δ is not allowed to be smaller than γ. Consequently, γ
and δ are set to 2000 and 200 respectively when possible,
and otherwise they are set to the highest legal value, given
the settings of the other parameters.

As one would expect, decreasing the number β of training
triples, while speeding up the offline training algorithm, leads
to worse online performance. Similarly, online performance
deteriorates by decreasing the size of C, the set of candidate
reference objects and pivot subjects. As a reminder, in all
experiments, the size of L (the set of objects from which
we form training triples) is set equal to |C|. Decreasing γ
leads to worse performance on the handshape dataset, but has
very small impact on the UNIPEN dataset, at least within
the ranges tested (50 to 2000). A similar result is obtained
for parameter δ: decreasing the value of δ leads to somewhat
worse performance on the handshape dataset, but makes very
little difference on the UNIPEN dataset.

Fig. 8 displays the effects of varying parameter kmax,
which is used in choosing training triples. Parameter kmax

represents the maximum number of nearest neighbors that
we are interested in retrieving. As we see in Fig. 8, actual
performance does not vary significantly as we shift the value
of kmax within a fairly large range: between 50 and 600
for the handshape dataset and between 3 and 600 for the
UNIPEN dataset. We also display results obtained by setting
kmax = |U|, where |U| is the size of the database. With that
setting, training triples are chosen entirely randomly from the
set of all possible triples formed by objects of L, as was
done in the first implementation of the BoostMap algorithm
[43]. The results show that, in general, using kmax � |U|
leads to better performance. The only exception is the result
for kmax = 16 for the handshape dataset, which produces
performance worse than than using kmax = |U|.

E. Evaluation on Nearest Neighbor Classification
Here we evaluate the performance of the proposed methods

on the task of efficient nearest neighbor classification. Eval-
uation is performed on all datasets except for the time series
dataset, which does not contain class label information. In each
dataset we compare BoostMap with the following methods:
RRO, RLP, FastMap, and VP-trees. We should note that, in
order for VP-trees to attain the efficiency of other methods
(i.e., fewer than 1000 exact distance computations per query),
we had to set parameter ζ to values smaller than 1, as discussed
in Section VIII-C. Consequently, the results obtained using
VP-trees in these experiments were much worse than those of
the other methods.

1) Classification Experiments on the ASL Handshape
Dataset: Classification on the ASL handshape dataset is
challenging. Unlike typical handshape recognition settings,
which assume a fixed 3D orientation for each handshape, in
this dataset the orientation is arbitrary. Our goal is to identify
for each query image which of the 20 handshapes it displays.
Given the vast difference in appearance between different 3D
orientations of the same shape, it is not surprising that k-
nearest neighbor classification using brute-force search has a
very high error rate of 67%. That rate is achieved using k = 1.
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Fig. 3. Comparing performance on the ASL handshape dataset, using the chamfer distance as the exact distance measure. Each graph shows the number of
exact distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99%
of the 710 query objects.
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Fig. 4. Comparing performance on the MNIST dataset, using shape context matching as the exact distance measure. Each graph shows the number of exact
distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the
10,000 query objects.
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Fig. 5. Comparing performance on the UNIPEN dataset, using DTW as the exact distance measure. Each graph shows the number of exact distance
computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 5,323
query objects.
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Fig. 6. Comparing performance on the time series database, using constrained DTW as the exact distance measure. Each graph shows the number of exact
distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the
1,000 query objects.
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Fig. 7. Comparing performance of BoostMap embeddings on the ASL handshape dataset and the UNIPEN dataset, when varying parameters of the training
algorithm. Each graph shows, for different parameter settings, the number of exact distance computations needed to achieve correct retrieval of all k nearest
neighbors (k ranging from 1 to 50) for 90% of the query objects. The parameters that vary are: β (the number of training triples), |C| (the number of candidate
reference and pivot objects), γ (the number of weak classifiers considered at each training round), and δ (the number of weak classifiers for which Equations
13 and 14 are evaluated at each training round). In each graph, the parameters that do not vary are set as described in the text.

5 10 15 20 25 30 35 40 45 50

256

512

1024

2048

4096

8192
varying kmax, ASL handshape dataset

k

# 
di

st
an

ce
s 

fo
r 9

0%
 a

cc
ur

ac
y

kmax = 16
kmax = 50
kmax = 200
kmax = 600
kmax = |U|

5 10 15 20 25 30 35 40 45 50

32

64

128

256

512

1024

2048
varying kmax, UNIPEN dataset

k

# 
di

st
an

ce
s 

fo
r 9

0%
 a

cc
ur

ac
y

kmax = 3
kmax = 50
kmax = 200
kmax = 600
kmax = |U|

Fig. 8. Comparing performance on the ASL handshape dataset and the UNIPEN dataset, when varying parameter kmax of the training algorithm. Each
graph shows, for five different values of kmax, the number of exact distance computations needed to achieve correct retrieval of all k nearest neighbors (k
ranging from 1 to 50) for 90% of the query objects. With |U| we denote the size of the database.
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Fig. 9. Comparing classification accuracy vs. efficiency trade-offs achieved by the BoostMap, RRO, RLP, and FastMap methods on the ASL handshape
dataset (left), the MNIST dataset (center), and the UNIPEN dataset (right). For the handshape dataset we also show results using VP-trees and using brute-force
search on random subsets of the database, of different size. Results for VP-trees and brute-force search are discussed in the text for the other two datasets.

Fig. 9 displays the error rate attained using several different
methods. Overall, BoostMap produces better results than the
other methods. At the cost of 100 exact distance computations,
BoostMap attains an error rate of 67%, which essentially
equals the error rate of brute-force search. Therefore, using
BoostMap we obtain a speed up factor of 800 over brute-force
search, with no losses in classification accuracy. In terms of
actual running time, using BoostMap we can classify about 3.5
queries per second, whereas it takes 112 seconds on average
to classify a query using brute-force search.

For a cost of 100 exact distance computations, RRO
achieves an error rate of 69%, whereas RLP and FastMap
achieve error rates of 70%. RRO and RLP achieve an error
rate of 67% at 400 distances and 500 distances respectively,
whereas for FastMap the error rate is 69% at 500 distances.
We also note that VP-trees and brute-force search perform
significantly worse than the other methods when allowing no
more than 500 distant computations per query on average.

Overall, it is fair to say that the accuracy we obtain on
the ASL handshape dataset is not at the level where it
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Method Distances per Speed-up Seconds per Error
query object factor query object rate

brute force 60,000 1 3,696 0.54%
VP-trees [10] 21,152 2.84 1303 0.63%

CNN [51] 1,060 56.6 65.3 2.40%
VP-trees 800 75 49.3 24.8%

brute force 800 75 49.3 2.15%
BoostMap 800 75 49.3 0.58%
brute force 50 1200 3.1 14.6%
Zhang [47] 50 1200 3.1 2.55%
BoostMap 50 1200 3.1 1.50%

Cascade [66] 50 1200 3.1 0.83%

TABLE I
SPEEDS AND ERROR RATES ACHIEVED BY DIFFERENT METHODS ON THE

MNIST DATASET. RESULTS USING BRUTE-FORCE SEARCH WERE

OBTAINED BY CHOOSING A RANDOM SUBSET OF THE DATABASE,
INCLUDING AS MANY OBJECTS AS THE NUMBER SHOWN IN THE

“DISTANCES PER QUERY OBJECT” COLUMN.

can be useful for actual applications. We should emphasize
that this low accuracy is not caused by BoostMap or the
other embedding methods, it is inherent in the choice of the
underlying distance measure, i.e., the chamfer distance, which
produces a high error rate even when using brute-force search.
Reliable handshape classification of hand images displaying
arbitrary 3D orientations is still an open problem.

2) Classification Experiments on the MNIST Dataset:
As a reminder, exact k-nearest neighbor classification using
shape context matching achieves an error rate of 0.54%, with
classification time per object equal to about 60 minutes. That
rate is achieved using k = 8. Fig. 9 displays the error rate
attained using filter-and-refine retrieval with the BoostMap,
RRO, RLP, and FastMap methods. BoostMap achieves an error
rate of 0.58% at a cost of 800 exact distance computations. At
the same cost of 800 exact distance computations, the RRO,
RLP and FastMap methods obtain error rates of 0.66%, 0.75%,
and 1.17% respectively.

In [47] a discriminative classifier is trained using shape
context features, and achieves an error rate of 2.55% on
the MNIST dataset. Overall, the cost of classifying a test
object using the method in [47] is the cost of evaluating 50
exact distances. At the same cost of 50 exact distances per
query, BoostMap achieves a classification error of 1.50%. We
should point out that in [66] we describe a method for further
improving the performance of BoostMap (0.83% error rate at
the cost of 50 distances per query), by combining multiple
BoostMap embeddings in a cascade structure.

Two additional methods that can be used for speeding up
nearest neighbor classification are the well-known condensed
nearest neighbor (CNN) method [51] and VP-trees [10]. Both
methods achieve significantly worse tradeoffs between accu-
racy and efficiency compared to our method. CNN requires
1060 exact distances, and yields an error rate of 2.40%. With
VP-trees the error rate is 0.63%, but an average of 21, 152
exact distances need to be measured per query. At 800 exact
distances per query, the error rate is a very high 24.8%.

Table I summarizes the results of all the different methods.
3) Classification Experiments on the UNIPEN Dataset:

Method Distances per Speed-up Seconds per Error
query object factor query object rate

brute force 10,630 1.0 11.94 1.90%
VP-trees [10] 1,899 5.6 2.13 1.90%

brute force 150 70.9 0.17 10.7%
CSDTW 150 70.9 0.17 2.90%

RRO 150 70.9 0.17 1.97%
RLP 150 70.9 0.17 2.08%

BoostMap 150 70.9 0.17 1.97%
brute force 32 332 0.036 38.4%

RRO 32 332 0.036 2.38%
RLP 32 332 0.036 3.92%

BoostMap 32 332 0.036 2.29%

TABLE II
SPEEDS AND ERROR RATES ACHIEVED BY DIFFERENT METHODS ON THE

UNIPEN DATASET. TO MAKE IT EASIER TO COMPARE DIFFERENT

METHODS, FOR SOME METHODS WE SHOW MULTIPLE RESULTS, WHICH

CORRESPOND TO DIFFERENT NUMBERS OF EXACT DISTANCE

EVALUATIONS PER QUERY.

Fig. 9 displays the error rate attained using filter-and-refine
retrieval with the BoostMap, RRO, RLP, and FastMap methods
on the UNIPEN dataset. Exact k-nearest neighbor classi-
fication using brute-force search achieves an error rate of
1.90% on this dataset. That rate is achieved using k = 1.
BoostMap achieves an error rate of 1.95% at a cost of 75
exact distance computations, and an error rate of 1.90 at a
cost of 300 distance computations. At a cost of 300 exact
distance computations, the RRO, RLE, and FastMap methods
obtains error rates of 1.99%, 1.97%, and 1.97 respectively. As
in the other datasets, VP-trees do not work very well, yielding
an error rate of 17%. Overall, BoostMap achieves a 35-fold
speed-up over brute-force search, while achieving the same
error rate, thus reducing classification time per query from 12
seconds to 0.34 seconds.

We should note that the CSDTW method [48], which has
been explicitly designed for classifying time series and in par-
ticular for online handwritten character recognition, achieves
an error rate of 2.90% on the UNIPEN dataset at a cost
equivalent to 150 exact computations of DTW distances. For
the same cost, BoostMap attains a significantly lower error
rate of 1.97%. Even at a cost of 32 distance computations per
query, BoostMap achieves an error rate of 2.26%, which is still
lower than that of CSDTW. The advantage of CSDTW over
our method is that it requires significantly less memory; in our
method, we store in memory the embeddings of all database
objects, and this requires about 1.4MB for a 32-dimensional
embedding.

Table II provides a summary of classification results ob-
tained using different methods, including VP-trees, different
embedding methods, and CSDTW.

IX. DISCUSSION

The foundation of the BoostMap method has been the
correspondence that we established in Sec. V between em-
beddings and classifiers: the association of every embedding
with a corresponding classifier, and the proof that any linear
combination of such embedding-based classifiers naturally
corresponds to an embedding and a distance measure. By
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treating embeddings as classifiers and embedding construction
as a problem of learning how to estimate the proximity order
of triples of objects, we obtain an algorithm that directly max-
imizes the amount of nearest neighbor structure preserved by
the embedding. We emphasize that the optimization criterion
that we use does not rely on any geometric assumptions and
is equally principled for Euclidean, metric, and non-metric
spaces. Furthermore, the local nature of our optimization
criterion is in contrast with the global nature of measures such
as stress and distortion, which focus on preservation of all
pairwise distances and are not direct indicators of how well
nearest neighbor structure is preserved.

In the filter-and-refine retrieval framework, embedding-
based similarity rankings are used to select a small number of
candidate nearest neighbors. Since our embedding construction
method directly maximizes the accuracy of these similarity
rankings, fewer candidates need to be evaluated during the
refine step. As evidenced in our experiments, BoostMap leads
to significantly better trade-offs between retrieval accuracy
and efficiency compared to alternative methods, many times
attaining 50% − 300% faster retrieval time than the best
alternative method. Furthermore, in all datasets BoostMap led
to significant computational savings over brute-force search,
savings that in many settings were between one and two orders
of magnitude.

Our training algorithm relies on sampling sets of candidate
objects and training objects from the database. This scheme
works as long as the sampled objects are representative of
the distribution of database objects, but may fail in cases
where the number of samples is only a small fraction of the
database size, and where the database has a large amount of
local structure. Handling such cases is an interesting topic for
future investigation. Another topic for investigation is whether
embedding quality can improve by using different variants of
boosting, such as LogitBoost [55], or FloatBoost [67], in place
of AdaBoost, during embedding construction.

X. CONCLUSION

The main topic of this paper has been embedding-based
nearest neighbor retrieval and classification in spaces with
computationally expensive distance measures. We have estab-
lished a correspondence between embeddings and classifiers
that allows us to reduce embedding construction to the prob-
lem of boosting many weak classifiers into a strong classifier.
The proposed embedding construction algorithm is domain-
independent, and directly maximizes the amount of nearest
neighbor structure preserved by the embedding. Furthermore,
embedding optimization does not rely on any Euclidean or
metric properties. The resulting embeddings outperform alter-
native methods on several datasets, and lead to speed-ups of
orders of magnitude over brute-force search.
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