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Abstract

An appearance-based framework for 3D hand shape classification and simultane-
ous camera viewpoint estimation is presented. Given an input image of a segmented
hand, the most similar matches from a large database of synthetic hand images arere-
trieved. The ground truth labels of those matches, containing hand shape and camera
viewpoint information, are returned by the system as estimates for the input image.
Database retrieval isdone hierarchically, by first quickly rejecting the vast majority of
all database views, and then ranking the remaining candidates in order of similarity
to the input. Four different similarity measures are employed, based on edge location,
edge orientation, finger location and geometric moments.



1 Introduction

Techniques that allow computers to understand the shape of a human hand in images and
video sequences can be used in a wide range of applications. Some examples are human-
machine interfaces, automatic recognition of signed languages and gestural communica-
tion, non-intrusive motion capture systems, video compression of gesture content, and
video indexing.

Different levels of accuracy are needed by different applications. In certain domains
it suffices to recognize a few different shapes, observed always from the same viewpoint.
Appearance-based methods are well-suited to that task [24, 14, 6]. On the other hand,
3D hand pose estimation can be useful or necessary in various applications related to sign
language recognition, virtual reality, biometrics, and motion capture. Currently, systems
requiring accurate 3D hand parameters tend to use magnetic tracking devices and other
non vision-based methods [15, 16, 20]. Computer vision systems that estimate 3D hand
pose do it only in the context of tracking [18, 7, 27, 21] . In that context, the pose can be
estimated at the current frame as long as the system knows the pose in the previous frame.
The limitation of tracking methods is that they do not address the issue of estimating 3D
pose when information about the previousframe isnot available. Because of that limitation,
current 3D hand trackers need to be manually initialized and they cannot recover when they
lose the track. Developing methods to estimate 3D hand pose from a single frame can lead
to hand trackers that are fully automatic and can recover from mistakes, and that is one of
the goals of our approach.

A real-time system that tracks 3D hand pose is presented in [21]. That system uses a
database of synthetic views and an appearance-based method to retrieve the closest matches
to the observed input. To achieve theretrieval time and accuracy that are required for areal-
time system, that method only considers database views that correspond to poses near the
estimated hand parameters of the previous frame.

In [19], the system aims to recover hand pose from a single image using a machine
learning approach, the specialized mappings architecture (SMA). The relationship between
hand images and hand poses is one-to-many, meaning that a given hand image could come
from different hand poses. In the SMA framework thisissue is addressed by learning tens
of different functions, that map feature vectors to hand poses. Intuitively, each learned
function is a “speciaist” that works well if the underlying pose is in a specific region of
the output space (i.e. the 3D pose space). Given an input image, we obtain the estimates of
all functions. Using computer graphics a synthetic hand image is generated based on each
estimate, and the similarity between that image and the input image can be used to choose
the best estimate.

One weakness of that system is that it requires its input space to be relatively low-
dimensional (with fewer than 20 dimensions). It is still an open question whether such a
low-dimensional representation of hand images exists, that carries enough information to
identify 3D hand pose. In order to satisfy the low-dimensionality requirement, the input
space of the specialized functions is the seven Hu moments of the input image. It can be



seen in the experimental results for that system that representing the input image using Hu
moments discards a lot of discriminative information that could help find the correct pose.

In this paper we describe a method for estimating 3D hand shape and orientation by
retrieving appearance-based matches from a large database of synthetic views. The hand
shape in the input image is assumed to be close to one of 26 predefined shapes (Figure
2). The database views are computer-generated renderings of the 26 hand shape prototypes
from viewpoints that are sampled uniformly along the surface of the viewing sphere. The
advantage of using appearance-based matching for 3D parameter estimation is that the
estimationisdoneindirectly, by looking up the ground truth label s of the retrieved synthetic
views. Thisway we avoid the ill-posed problem of recovering depth information directly
from the input image.

Our framework has two main advantages over previous appearance-based methods for
hand shape recognition[17, 23, 5, 26]: it can handleimages from arbitrary viewpoints, and,
in addition to classifying hand shape, it provides estimates for the camera orientation. In
[1] we presented an early implementation of our framework, in which the chamfer distance
([3]) between edge images was used to estimate similarity between the input image and
the database views. In this paper we present additional similarity measures (Section 3), we
introduce a method to combine different measures, and we describe a hierarchical retrieval
algorithmthat first quickly rejectsthe vast majority of the database views and then ranksthe
remaining views in order of similarity to the input (Section 5). Compared to the approach
described in [1], experimentswith our current system demonstrate higher accuracy and vast
improvementsin retrieval time.

2 Proposed Framework

We model the hand as an articulated object, consisting of 16 links: the palm and 15 links
corresponding to finger parts. Each finger has three links (Figure 1). There are 15 joints,
each connecting a pair of links. The five joints connecting fingers to the palm alow rota-
tion with two degrees of freedom (DOFs), whereas the 10 joints between finger links allow
rotation with one DOF. Therefore, atotal of 20 DOFs describes completely all degrees of
freedom in the joint angles. For the 20-dimensional vector containing those 20 DOFs we
use synonymously the terms “internal hand parameters,” *“hand shape” and “hand configu-
ration.”

The appearance of a hand shape also depends on the camera parameters. To keep our
model simple, we assume that hand appearance depends only on the camera viewing direc-
tion (two DOFs), and on the camera orientation (up vector, or image plane orientation) that
defines the direction from the center of the image to the top of the image (one DOF). We
use the terms “ camera parameters,” “externa parameters,” and “viewing parameters’ syn-
onymously to denote the three-dimensional vector describing viewing direction and camera
orientation. Figure 4 illustrates the definition of camera parameters.

Given a hand configuration vector C' = (¢, ..., ¢0) and a viewing parameter vector



Figure 1: The hand as an articulated object. The palm and each finger are shown in a different
color. Thethree different links of each finger are shown using different intensities of the same color.

Figure 2: The 26 basic shapes used to generate training views in our database.



Figure 3: Four different database views of the same basic shape.

V' = (v, vq, v3), We define the hand pose vector P to be the 23-dimensional concatenation
of CandV: P = (cy, ..., Cag, U1, U2, U3).

Using these definitions, the generic framework that we propose for hand pose estima-
tion isthe following:

1. Preprocessing step: create a database containing a uniform sampling of all possible
views of the hand shapes that we want to recognize. Label each view with the hand
pose parameters that generated it.

2. For each novel image, retrieve the database views that are the most similar. Use the
parameters of the N most similar views as initial estimates for the image.

3. Refine each of the retrieved parameter estimates to optimally match the input.

Our framework allows for systems that return multiple estimates. Multiple estimates
can be useful when, either because of deficiencies of the similarity measure, or because of
adverse viewing conditions, the retrieval method fails to rank one of the correct matches
as the best overall match. If a system returns multiple estimates, we consider the retrieval
successful if at least one of those estimates is close to the true parameters of the observed
hand. A low value of N may be adequate in domains like 3D hand tracking and sign
language recognition, where additional contextual information can be used to discriminate
among the returned estimates.

In [1] we speculate on the possibility of using thisframework to estimate arbitrary hand
shapes, by including alot of hand shape prototypesin the database, so that for any possible
observed shape there is a*“close enough” shape in the database. In this paper we tackle an
easier version of the problem, by assuming that the observed hand shape is close to one of
26 shape prototypes. We also ignore step 3 of the framework, i.e. the refinement process.



Figure 4: The viewing direction is the line connecting the camera's center of projection
to the center of the hand. The camera up vector defines the rotation of the camera, which
specifies the upward direction on the image plane. The camera“up” vector is constrained
to be on the plane that is perpendicular to the viewing direction.

3 Similarity Measures

To retrieve the most similar database views for an input image we combine four differ-
ent similarity measures. Edge location similarity, edge orientation similarity, finger-based
matching, and matching based on central and Hu moments. This section describes the
individual measures. Section 5 discusses how those measures are combined.

3.1 Chamfer Distance

We define the distance D between a point p and a set of points X to be the Euclidean
distance between p and the point in X that isthe closest to p:

D(p, X) = min [|p — zf| ()
The directed chamfer distance between two sets of points X and Y isdefined in [3]. In
our system we use the undirected chamfer distance D.,, defined as follows:
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We use D, to measure the distance between the edge image of the input and the edge
image of a database view. Edge images are represented as sets of edge pixels. Before we
apply D. we normalize the scale of both edge images, so that the longest sides of their
bounding boxes are equal. The advantage of D, over the directed chamfer distance is that
D., inaddition to penalizing for pointsin X that have no close matchinY’, it also penalizes
for pointsin Y that have no close matchin X. In general, the chamfer distanceisrelatively
robust to small translations, rotations and deformations of the test image with respect to the
corresponding model image.

For the synthetic views, edge extraction can be done in a noise-free way. Each pixel is
labeled with the link that it belongsto. A border between different links is considered to
be an edge, unless it is identified with a joint connecting neigbboring links. In our input
images such borders that correspond to joints do not giverise to particularly strong edges.

Real images used for testing are preprocessed by segmenting the hand using skin detec-
tion [13], and by normalizing the scale of the segmented hand. Edges are extracted using a
Canny detector, implemented in Intel's OpenCV programming library [12].

3.2 EdgeOrientation Histograms

Given agray-scale image I, and its corresponding edge image E, we define the orientation
R of an edge pixel p to be R(p) = arctan -2, where I, I, are the image gradients along
the x and y directions. Orientation values are between 0 and 180 degrees. We store those
orientation values in an edge orientation histogram with 96 bins, normalized so that the
sum of al bin valuesis 1. We denote the i-th bin of histogram H as B(H, ). In general,
if £ isthe number of bins, and b is the index of one of the bins, we define the cumulative

histogram C'(H, b) by the formula

bti
B(C(H,b),i) =Y B(H,j mod k) ©)

j=b
As a similarity measure between edge orientation histograms we use the maximum

cumulative histogram intersection. The histogram intersection S;, of histograms H and .J
isdefined in [22] as

Sp(H,J) = min(B(H,i), B(J,i)) (4)

We define the maximum cumulative histogram intersection Sy, (H, J) as

_ li

Using cumulative histogramsin histogram intersection makes the measure less sensitive
to small orientation changes in an image. For example, consider the case where we have
three histograms H, J, K, such that B(H,0) = 1,B(J,1) = 1, B(K,48) = 1 and all
the other bins of H, J and K are zero. Then, histogram intersection applied directly to
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those histograms would find that H is equally dissimilar to J and to K, since S} (H, J) =
Sy (H,K) = 0. Intuitively we would like the similarity measure to find that 4 and .J
are very similar, whereas H and K are very different. After al, if an image has an edge
orientation histogram equal to H, rotating that image by a mere two degrees may cause
its histogram to be equal to .J, whereas only arotation close to 90 degrees would make its
histogram equal to K. If we apply histogram intersection to the cumulative versions of H,
J and K we get the desired result, that H isvery similar to J and very different from K.
In particular, S} (C'(H,0),C(J,0)) = k— 1 whereas S} (C(H,0),C(K,0) = k — 48. Note
that the maximum similarity value that can be returned by S; isk, i.e. the number of bins,
which is 96 in our system.

The reason we don't simply define S, (H, J) to be S} (C(H,0),C(J,0)) isthat edge
orientation histograms are circular; orientation values corresponding to bin O are as close
to values corresponding to bin 1 as to those corresponding to bin £ — 1. One example
that illustrates the advantages of using S, is the following: consider a case where three
histograms, H, J, and K, are such that B(H,0) = 1,B(J,k — 1) = 1,B(K,1) = 1,
and &l other bins of H, J and K are 0. In that case, S} (C'(H,0),C(J,0)) = 1, and
S, (C(H,0),C(K,0)) = k — 1. Note that, intuitively, H should be equally similar to
both .J and K, since equal amounts of image plane rotation can change H into either .J or
K. S} clearly does not behave as desired in this case, but .S;, does the right thing, since
Sp(H,J) = Sp(H,K) = 1.

3.3 Finger Matching

Given the binary image of a hand, most significant protrusions that we observe are caused
by fingers (Figures 2, 3, 9). We can easily detect such protrusions and use them to define a
similarity measure between hand images. In Section 4 we describe how protruding fingers
are detected. Here we define a similarity measure between hand images that is based on
protruding fingers.

Werepresent aprotrusion F' astheorderedtriple (Pr, Ar, Br) Where Pr isthefingertip
point, and A, Br are the endpoints of the boundary contour of the protrusion. We define
the base point )~ of F* asthe middle point of the straight line segment between Ay and By
(Figure 5). Our finger detector identifies protrusions whose width is less than a threshold
T,, and whose elongation exceeds a threshold 7.

The length of a contour segment is defined to be the number of pixels aong that seg-
ment. The length L(F') of protrusion F' is defined as the minimum of the lengths of the
segments A Pr and PrBp. The width W (F) of F isthe symmetric Hausdorff distance
([9]) between the contour segments AxPr and PrBr. If X = ApPr andY = PrBp, then

W(F) = max(max D(z, Y), max D(y, X)) (6)
using the point-to-set distance D defined in Equation 1. The elongation E of a protrusion

Fisdefined as B(F) = 7.



Figure 5: An example output of the finger detector. For the index finger, P isthe fingertip, A and
B are the boundary endpoints of the finger and () is the base point. The contour segments AP and
P B are shown in green.

In defining a distance measure between hand images that uses the results of finger
detection, we need to have in mind that a slight change in hand shape or camera viewpoint
can cause the elongation of a finger to drop below the detection threshold 7. Because of
that, we generate two sets of fingers for agiven hand image I: a set of definite fingers SZ,
detected by setting 7, = 1.8, and a set of potential fingers SI;’ , detected with 7, = 1.1.
Protrusions whose elongation exceeds 1.8 are ailmost always fingers, so labeling them as
fingerswe get very few false positives. At the sametime, if afinger has elongation over 1.8
in asynthetic or real image of agiven hand shape from agiven viewpoint, it is a pretty safe
bet that in other images of the same shape from a similar viewpoint that finger will have an
elongation of at least 1.1. Therefore, labeling protrusions whose elongation is over 1.1 as
fingerswe get very few false negatives. A finger-based similarity/distance measure between
two images should penalize for definite fingers in one image that have no corresponding
(i.esimilar in location and orientation) potential fingersin the other image.

Another consideration in defining a finger-based similarity measure is that a slight
change in hand shape or viewpoint can cause two protruding fingers to be detected as a
single protrusion. Therefore, the similarity measure should not require one-to-one match-
ing between fingers; it should give high similarity (low distance) values as long as for each
definite finger in one image there is a similar potential finger in the other image, even if a
finger in one image is matched to more than one fingers in the other image.



We define the distance between fingers F' and G to be

I1F = G| = max(|| P — Pe||, [|Qr — Qel]) (7)

The finger-based distance D, between an input image / and a database view V' is de-
fined as
D¢(1,V) = max(max{D(F, S;/)}, max{D(G, S;)}) (8)
Fes} Gesy
using the point-to-set distance D defined in Equation 1 and the finger distance defined in
Equation 7.

Intuitively, D penalizes for any “definite” finger in either image for which there is no
nearby “potential” finger in the other image. 1t does not penalize for any “potential” finger
in one image that has no close match in the other image. Before we apply D on two hand
images, we center them and normalize their scale, as described in the subsection on the
chamfer distance.

It may turn out that a more sophisticated finger-based similarity measure can give more
accurate results than the ones reported in Section 6 using D;. For example, it may be bene-
ficial to explicitly take into account differencesin length, width, elongation and orientation
in the distance between fingers defined in Equation 7. In addition, we could modify Dy
to require that if two fingers are far enough from each other in one image they should be
matched to different fingers in the other image.

3.4 Moment-Based Matching

From a hand image I we compute seven central moments and seven Hu moments ([8]),
and store them in a 14-dimensional moment vector. We perform Principal Component
Analysis ([4]) on the moment vectors of all database views, and we identify the top nine
eigenvectors. We define the moment-based distance D,,, between an input image / and a
database view V' to be the Mahalanobis distance ([4]) between their moment vectors, after
they have been projected to the eigenspace spanned by the top nine eigenvectors.

4 Detection of Protruding Fingers

Looking at images of segmented hands we notice that most significant contour protrusions
correspond to fingers. Based on this observation, we have implemented a simpl e detector of
protruding fingers, whose results are used in the finger-based similarity measure described
in Section 3.3. The detector essentially identifies protrusions whose width and length are
within a specified range. This section describes in detail how the detector works. Read-
ers interested in the general framework of our system may prefer to skip this section; we
include it to facilitate duplication of our results by other implementations.
The main stepsin identifying protruding fingers are the following:

1. Find the bounding contour of the hand.
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Figure 6: Illustrations of some of the steps our finger detector goes through. 1a8) The input image.
1b) The bounding contour isindicated in white. 1c) Inflection points areindicated as blue crosses on
the contour. 2a) Points of negative maximal curvature are indicated as blue crosses on the contour.
2b) The contour of detected fingersisindicated in blue. The fingertips are indicated in orange.

2. Find inflection points, where the curvature of the contour changes sign.

3. Find points of negative maximal curvature. Each of those points must have the high-
est curvature in the contour segment between two consecutive inflection points, and
its curvature must be negative.

4. For each point of negative maximal curvature, consider it atip of a protrusion, and
measure the width, length and elongation (length/width ratio) of that protrusion.

5. Label asfingers al protrusions that are large enough and whose elongation exceeds
a specified threshold.

Figure 6 illustrates some of the steps described above.

The input to the finger detector is the segmented image of the hand. The image gets
rescaled, so that the bounding square of the hand is 192x192 pixels. Then, the boundary
contour is located, and represented as a sequence of £ pixels (P, P, ..., Pr_1) such that P,
isaneighbor of P, ; and P, {, and P, isaneighbor of P, ;. Each pixel P, is represented
by itsimage coordinates (x;, y;). The contour is smoothed, by replacing each pixel P, with
the pixel in the midpoint between P; 3 and P, 3.
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In the smoothed contour we identify pointsof inflection, in which the curvature changes
sign (Figure 6). The goal of this step isto split the contour into segments in which the cur-
vature tendsto maintain its sign (either positive or negative). Those segments are separated
by the inflection points. We define the orientation O(P) of the contour at a point P to be
the angle between the = axis and the slope of the contour at P. Angles here are measured
in radians. We define the curvature of a contour point to be the second derivative of that
point. Given asequence of contour points Py, P, ..., P, — 1, we define the derivative D(P,)
at point P; to be

D(P) = Yi+10 — Yi-10 9)
Ti+10 — Ti-10

Given a starting point A, to find the next inflection point, we start walking along the
contour, until we find a point B at which the contour orientation differs by more than
0.3 radians from the orientation at A. The sign of the difference O(B) — O(A) will be
the curvature sign for the current contour segment. The reason we use 0.3 radians as a
threshold is that we want the contour segment to have an overall change of orientation of
at least 0.3 radians, we don't want to split segments that are more or less straight but along
which the curvature fluctuates slightly above and slightly below zero.

After we determine the curvature sign for the current segment, we keep moving along
the contour, one pixel at a time, storing at variable C, a each step, the point that we
encountered after A whose orientation differs the most from the orientation of A. We keep
doing that until we reach apoint D suchthat |O(D) — O(A)| < |O(C) — O(A)| — 0.3. At
that point the system identifies the pixel stored in C' as an inflection point. Basicaly, the
segment C'D of the contour has an overall change of orientation of at least 0.3 radians and
the sign of its curvature is the opposite of the sign of the curvature along the segment AC,
and we know that C' was the point where the curvature changed sign.

If we still haven't found an appropriate point D and the overall change in orientation
along the contour between A and the current point £ exceeds = radians, we designate the
current point E to be the endpoint of the current segment, and we treat it as an inflection
point. We do thisbecause if the contour keeps curving the same way along the next contour
points, the orientation of those points will start approaching that of A. Doing thistrick we
end up designating some points as inflection points when mathematically speaking they
are not inflection points, but the rest of the algorithm ensures that this does not cause any
problems in detecting protruding fingers.

After we have found an inflection point, or at least a contour segment endpoint, we
start again, from that inflection point, to find the next inflection point, and we repeat the
process until we have scanned the entire contour. We have found that the location of thefirst
inflection point identified by this process is sensitive to the location of the initial starting
point. To account for that, we start at a random point and we do not record the first two
inflection points that we find. The third inflection point 7" that we encounter isthe first one
that gets recorded, and the process continues until we make a complete circle and reach
that point 7" again.
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By identifying inflection points we split the contour into segments along which the
curvature sign can be considered stable. The next step isto find, at each segment, the point
at which the magnitude of the curvature is maximal. Those maximal curvature points are
potential fingertips when their curvature is negative. To decide if a potential fingertip P is
area fingertip or not, we need to determine if there is a contour segment that starts before
P, ends after P, and defines a protrusion that is elongated enough.

A triple of points APB defines a protrusion that starts at A, has P as its point of
maximal negative curvature (“tip”) and ends at B. For any such protrusion we can define its
length, width and elongation as discussed in Section 3.3. The length of a contour segment
is defined to be the number of pixels along that segment. The length of protrusion AP B
is defined as the minumum of the lengths of the segments AP and PB. The width of the
protrusion is defined to be the Hausdorff distance (Equation 6) between the points along
AP and the pointsalong P B. The elongation of the protrusion is defined as the ratio of its
length over its width.

Given aprotrusiontip P, we want to find the points A’ and B’ for which the elongation
of A'PB'ismaximized. We identify those pointsin asimple way, by simply examining all
possible protrusions AP B such that the length of AP and the length of PB are less than
athreshold 7; (96 pixelsin our implementation) and the length of AP B isover 15 pixels.
We can measure the width, length and elongation of all such protrusionsin time quadratic
to 7; using dynamic programming. After we find the points A’ and B’ that maximize the
elongation of A’'PB’, we consider the protrusion A’PB’ to be a finger if its elongation
exceeds a given threshold (see Section 3.3 for the elongation thresholds our system uses).

The algorithm we described for finding the endpoints A’ and B’ of afinger is pretty sim-
ple, and it often happens that the endpoints that are found are beyond the actual endpoints
of the finger. A simple trick that we use that corrects this behavior most of the timesisto
start trimming the contour segment at its endpoints, until we find two endpoints for which
the line connecting them goes from each endpoint inwards, i.e. towards the interior of the
hand (as opposed to going towards the image background). Figure 7 illustrates endpoint
trimming.

Finally, after we have trimmed all detected fingers, we check to see if any detected
fingers overlap too much with each other. We consider that two fingers overlap too much
if their contour segments have more than 15 pixelsin common. If two fingers overlap, we
reject the least elongated of them.

Figure 8 shows sample outputs of the finger detector. In general, depending on the
elongation threshold, there is a large fraction of false positive or false negative detections.
As described in Section 3.3, our finger-based distance defined in Equation 7 compensates
for the inaccuracy of the detector by detecting fingers twice, once with a large elonga-
tion threshold, that leads to very few false positives, and once with a smaller elongation
threshold, that leads to very few false negatives.

We didn't spend a lot of time designing our protruding finger detector, and we would
not be surprised to find out that other approaches can be simpler, more efficient, and more
accurate. If we come upon such methods, it will be a ssimple process to replace our finger
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Figure 7: The need for trimming finger endpoints. Suppose that the system has identified the
protrusion whose contour segment isindicated by black. The fingertip of the protrusion is indicated
by thelight blue cross, and the endpoints of the protrusion are the endpoints of the blue line segment.
The system can tell that it must trim the protrusion at the endpoints, because the blue line segment,
which connects the current endpoints, goes from each endpoint into a background region, before
it actually crosses the contour again and enters a foreground region. If we trim the endpoints of
the contour as described in the text, the new endpoints of the protrusion will be the endpoints of
the green line segment. The green line segment goes from each endpoint into a foreground region
(actudlly, it isentirely inside the foreground region).

detector with them in our system. We described our method here only in order to facilitate
duplication of our experiments.

5 Hierarchical Retrieval Using Combinationsof M easures

In general, we have found that combining different measures we get more accurate results
than by using a single measure. The combination of a set of £ measuresis done as follows:
given an input image I, using each of the measures we can rank the database images in
order of similarity to / (the most similar view has rank 1). We denote the rank of thei-th
synthetic view V; under measure j as r;;. We define anew combined measure M (1, V;) as

k
M(I,V;) = (wjlogry) (10)

i=1

where w; is a preselected weight associated with the j-th measure. Then, we can rank
the synthetic views again, in ascending order of the value that the combined measure M
assigned to them. The reason we use in M the ranks of a view, as opposed to using the
original k£ measure scores of the view, is that the scores under different measures have
different ranges and distributions, and it is not obvious how they should be combined.
The rank numbers al belong to the same space and can be easily combined. We sum the
logarithms of the ranks, as opposed to the ranks themselves, because thisway M behaves
more robustly in the frequent cases where a single measure gives a really bad rank to a
correct database match.
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Figure 8: Sample outputs of the finger detector. The elongation threshold was set to 1.1 for rows
laand 2a, and it was set to 2 for rows 1b and 2b. The contours of detected fingers are shown in
blue, and fingertips are marked with orange crosses.

Weights can be tuned to reflect the accuracy and/or redundancy of the individual mea-
sures. Our system picks weights automatically by searching over different combinations
and choosing the combination that maximizes accuracy over a small training set of real
hand images (28 images in our current implementation).

The similarity measures described in section 3 have different strengths and weaknesses.
The chamfer distance is the most accurate, but also the most computationally expensive.
Moment and finger-based matching, on the other hand, are less accurate, but they can be
done amost in real time, if we precompute and save the corresponding features of the
database views.

In order for the system to function at more or lessinteractive speeds, we need aretrieval
method that can reject most of the database views very fast, and that applies expensive
matching procedures only to a small fraction of likely candidates. Our database retrieval
algorithm achieves that using a hierarchical, two-step matching process. First, it ranks the
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synthetic views by combining finger and moment-based matching, and it rejects the worst-
ranking views. This initial screening can be done very fast; it takes under a second in
our system. Then, we rank the remaining candidates by combining all four measures. In
practice, we have found that retrieval accuracy isonly dlightly affected if we reject 99% of
the views in the screening step. In general, the percentage of viewsthat gets rejected in the
first step can be tuned to balance between retrieval speed and accuracy.

6 Experiments

Our database contains renderings of 26 hand shape prototypes (Figure 2). The renderings
are done using acommercially available hand rendering programming library ([25]). Each
shape is rendered from 86 viewpoints, that constitute an approximately uniform sampling
of the surface of the viewing sphere. For each viewpoint we generate 48 database views,
using different values for image plane orientation, uniformly spaced between 0 and 360
degrees. Generating multiple rotations of the same image is necessary, since the similarity
measures that we use are rotation-variant. Overall, the database contains 4128 views per
shape prototype, and 107328 views in total.

We have tested our system with 276 real images displaying the right hands of four
different persons. In those images, the hand is segmented using skin detection ([13]).
Eight examples of segmented test images are shown in Figure 9. We manually established
pseudo-ground truth for each test image, by labeling it with the corresponding shape proto-
type and using the rendering software to find the viewing parameters under which the shape
prototype looked the most similar to the test image. Thisway of estimating viewpoint pa-
rameters is not very exact; we found that estimates by different people varied by 10-30
degrees. Model views can't be aligned perfectly with atest image, because each individual
hand has somewhat different finger and palm widths and lengths, and al so because the hand
shapesin the real images are only approximations of the 26 shape prototypes.

Given the inaccuracy of manual estimates, we consider a database view V' to be a cor-
rect match for atest image I if the shape prototype with which we label 1 isthe one used
in generating V', and the manually estimated viewing parameters of / are within 30 degrees
of those of V. For any two viewing parameter vectors » and v (see Section 2) there exists
a rotation around the center of the viewing sphere that maps « to v. We use the angle of
that rotation as the distance between » and v. On average, there are 30.8 correct matches
for each test image in the database.

Our measure of the accuracy of the retrieval for atest image is the rank of the highest-
ranking correct match that was retrieved for that image. 1 is the highest possible rank. A
perfect similarity measure, under this definition of accuracy, would aways assign rank 1 to
one of the correct matchesfor every test image; it would never assign rank 1 to an incorrect
match. Table 1 shows the distribution of the highest ranking correct matches for our test
set. We should note that, although the accuracy using the chamfer measure is comparable
to the accuracy using the two-step retrieval algorithm, the two-step algorithm is about 100
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0—225 225—-45 45-675 67.5-90

Figure 9: Examples of test images with different frontal angles. The frontal angles of the images
in each column belong to the range indicated at the top of that column. Angles here are measured
in degrees.

Rank | Chamfer | Edge | Fingers | Moments | 2-step
range hist.

1 22.8 00 |76 25 21.7
1-2 31.9 0.0 11.2 6.5 315
1-4 40.9 0.0 18.1 8.6 417
1-8 49.6 0.3 26.8 134 525
1-16 | 58.3 2.2 34.0 20.3 60.1
1-32 | 68.8 4.7 | 438 30.1 68.8
1-64 | 775 6.5 50.7 38.0 76.4
1-128 | 85.9 11.2 | 56.2 47.5 83.7
1-256 | 92.0 236 | 68.5 58.0 87.3
257- | 8.0 76.4 | 315 42.0 12.7

Table 1: Retrieval accuracy: for each rank range and each measure we indicate the percentage of
test images for which the rank of the highest ranking correct match was in the given range. 2-step
stands for the two-step retrieval algorithm described in Section 5.

times faster than ssmply applying the chamfer distance to each database view.

The viewing parameters for the test images were more or less evenly distributed along
the surface of the viewing sphere. We call a hand view "frontal” if the camera viewing
direction is aimost perpendicular to the palm of the hand, and we call it a”side view” if
the viewing direction is parallel to the palm. The "frontal angle” of a view is the angle
(between 0 and 90 degrees) between the viewing direction and a line perpendicular to the
palm. Figure 9 shows some examples of test images with different frontal angles. Table
2 shows the median rank of the highest-ranking correct matches for test images observed
from different frontal angle ranges. As expected, retrieval accuracy isworsefor side views,
where fewer features are visible. It isfair to mention that, in some of the side views, even
humansfind it hard to determine what the shapeis (see Figure 9).

The weights used to combine the finger and moment-based measures (Equation 10) in
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Frontal angle | 0-22.5 | 22.5-45| 45-67.5| 67.5-90
#of images | 54 72 86 64
Median 1 3 9 47

Table 2: Accuracy of the two-step retrieval algorithm over different frontal angles. For each range
of frontal angles we indicate the number of test images whose frontal angles are in that range and
the median of the highest ranking correct matches for those images.

the screening step of theretrieval were 0.6 and 0.4. The weights used in the second step of
the retrieval were 0.4 for the chamfer and the finger-based measure, and 0.1 for the edge
orientation measure and the moment-based measure. These weightswere established using
asmall training set of 28 real images, none of which was included in the test set.

Retrieval timeswere between 3 and 4 seconds on a PC with a1.2GHz Athlon processor.
The memory requirements of the system were under 100MB.

7 FutureWork

Our long term goal isa system that can provide reliable estimatesfor arbitrary hand shapes,
seen from arbitrary viewpoints, at speeds that allow for interactive applications. In order
to do that, we need to include more shape prototypes in the database, and implement the
refinement step of the framework presented in Section 2. At the same time we need to
work on improving retrieval accuracy. We plan to investigate ways of extracting more
information from the input image, using more elaborate bottom-up processing. We are
currently looking into methods of detecting fingers and fingertips in the interior of the
hand.

As the size of the database grows larger, the issue of retrieval efficiency will become
critical. It may take under a second to apply finger and moment-based matching to a
database of 100,000 images, but the time may become prohibitive if we use a significantly
larger set of hand shape prototypes and the number of views growsinto the millions or tens
of millions. We need to investigate ways of building index tables, that can automatically
focus the search on smaller parts of the database. We are currently developing an indexing
scheme that can direct the database search using the locations of detected fingers. Index
tables may prove to be feasible even for measures like the chamfer distance or the related
Hausdorff distance. [11] describes how to embed the Hausdorff distance into an L., metric
and [10] discusses efficient methods for answering approximate nearest neighbor queries
in L., Spaces.

Another system aspect that we have neglected so far is hand segmentation. In our
test images the hand was segmented using skin detection ([13]), but those images were
captured using a background that made segmentation relatively easy. It is important to
evaluate the performance of our similarity measures under realistic segmentation scenarios
and especialy in the presence of segmentation errors. As astart, we plan to use our system
asthe basisfor areal-time desktop human computer interface, where the hand is segmented
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using skin color and motion.

8 Conclusions

We have presented a general framework for 3D hand pose classification from a single
image, observed from an arbitrary viewpoint, using appearance-based matching with a
database of synthetic views. Using the ground truth labeling of the retrieved images the
system can also estimate camera viewing parameters. We use a hierarchical retrieval algo-
rithm, which combines the efficiency of computationally cheap similarity measures with
the increased accuracy of more expensive measures, and runs at close to interactive speed.
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