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Abstract
A system for recovering 3D hand pose from monocu-
lar color sequences is proposed. The system employs a
non-linear supervised learning framework, the specialized
mappings architecture (SMA), to map image features to
likely 3D hand poses. The SMA’s fundamental components
are a set of specialized forward mapping functions, and a
single feedback matching function. The forward functions
are estimated directly from training data, which in our case
are examples of hand joint configurations and their corre-
sponding visual features. The joint angle data in the train-
ing set is obtained via a CyberGlove, a glove with 22 sen-
sors that monitor the angular motions of the palm and fin-
gers. In training, the visual features are generated using a
computer graphics module that renders the hand from ar-
bitrary viewpoints given the 22 joint angles. The viewpoint
is encoded by two real values, therefore 24 real values rep-
resent a hand pose. We test our system both on synthetic
sequences and on sequences taken with a color camera.
The system automatically detects and tracks both hands of
the user, calculates the appropriate features, and estimates
the 3D hand joint angles and viewpoint from those features.
Results are encouraging given the complexity of the task.

1 Introduction
The estimation of hand pose from visual cues is a key prob-
lem in the development of intuitive, non-intrusive human-
computer interfaces. The shape and motion of the hand
during a gesture can be used to recognize the gesture and
classify it as a member of a predefined class. The impor-
tance of hand pose estimation is evident in other areas as
well; e.g.,video coding, video indexing/retrieval, sign lan-
guage understanding, computer-aided motion analysis for
ergonomics, etc.

In this paper, we address the problem of recovering 3D
hand pose from a monocular color sequence. Our solution
to this problem makes use of concepts from stochastic vi-
sual segmentation, computer graphics, and non-linear su-
pervised learning. Our contribution is an automatic system
that tracks the hand and estimates its 3D configuration on
every frame, that does not impose any restrictions on the
hand shape, does not require manual initialization, and can
easily recover from estimation errors.

2 Related Work
Several existing systems include automated hand detec-
tion and tracking. Such systems typically make restric-
tive assumptions on the domain: only hands move, the
hands are the fastest moving objects in the scene [17,
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Figure 1:Hand pose estimation overview.

38, 40, 3, 21, 23], hands are skin colored, or they are
the only skin-colored objects in the scene [21, 34]. Of-
ten the background is assumed to be static, and known
[21, 8]. Some systems use such assumptions to obtain sev-
eral possible regions where the hands are, and use match-
ing with appearance-based models to choose among those
regions [38, 9]. Stochastic tools, such as Kalman filtering
[34, 38, 40], can be used to predict the hand position in
a future frame. Overall, hand detection and tracking al-
gorithms tend to perform well in restricted environments,
where assumptions about the number, location, appear-
ance and motion of hands are valid, and the background
is known. Reliable performance in more general domains,
is still beyond the current state of the art.

Previous systems’ representation of hand pose varies
widely. For certain applications, hand trajectories can
be sufficient for gesture classification [3, 23]. However,
in some domains, knowledge of more detailed hand con-
figuration must be used to disambiguate between differ-
ent gestures;e.g.,in signed languages. Pose can be es-
timated in 2D or 3D. Most 2D-based approaches try to
match the image of the hand with view-based models cor-
responding to a limited number of predefined hand poses
[9, 4, 38, 11, 17, 35, 34]. In [20] the condensation algo-
rithm is used to track the index and thumb of a hand. Such
methods are valid in restricted domains, in which users are
observed from a known viewpoint, performing a limited
variety of motions.

One limitation in view-based methods is that pose recog-



nition is not viewpoint invariant. Images of the same 3D
hand shape from different viewpoints, or even rotated ex-
amples of the same image would be considered different
poses. Some of those limits have been addressed by us-
ing multiple cameras [35], and stereo [8]; naturally, such
methods will not work in monocular sequences. Our ap-
proach will avoid this limitation through the use of prob-
abilistic modeling, Specialized Mappings (SMA), to map
image features to likely 3D hand poses.

A related approach to SMA is described in [39], where a
system is trained with views corresponding to many dif-
ferent hand orientations and viewpoints. Some training
views are labeled with the 3D pose category they cor-
respond to, but most of them are unlabeled. The cate-
gories of the unlabeled data are treated as missing values in
a D-EM (Discriminant Expectation-Maximization) frame-
work. The system can recognize 14 hand configurations,
observed from a variety of viewpoints. A difference be-
tween that approach and ours is that, in their system, the
configuration estimation is formulated as a classification
problem, in which a finite number of classes are defined.
Our SMA approach is based on regression rather than clas-
sification, allowing for theoretically continuous solutions
of the estimation problem.

Sometimes, such continuous solutions are preferable to
simply recognizing a limited number of classes. For ex-
ample, in a virtual reality application, we may want to ac-
curately reconstruct the hand of the user in the virtual en-
vironment and estimate the effects of that particular con-
figuration on the environment. Even in cases where the
ultimate goal is classification, accurate 3D information can
improve recognition by making it robust to viewpoint vari-
ations. An important decision in estimating 3D pose is the
representation and parameterization. Link-and-joint mod-
els are used by [25, 31], whereas a mesh model is used
by [10]. In those three systems, the hand configuration at
the beginning of a sequence must be knowna priori. In
addition, self-occlusions and fast motions make it hard to
maintain accuracy while tracking. Our proposed SMA ap-
proach avoids these drawbacks.

SMA is related to machine learning models [16, 12, 6,
28] that use the principle of divide-and-conquer to reduce
the complexity of the learning problem by splitting it into
several simpler ones. In general these algorithms try to
fit surfaces to the observed data by (1) splitting the input
space into several regions, and (2) approximating simpler
functions to fit the input-output relationship inside these
regions. The splitting process may create a new problem:
how to optimally partition the problem such that we ob-
tain several sub-problems that can be solved using the spe-
cific solver capabilities (i.e.,form of mapping functions).
In SMA’s, we address this problem by solving for the par-
titions and the mappings simultaneously.

In the work of [6], hard splits of the data were used,
i.e.,the parameters in one region only depend on the data
falling in that region. In [16], some of the drawbacks of
the hard-split approach were pointed out (e.g.,increase in
the variance of the estimator), and an architecture that uses
softsplits of the data, the Hierarchical Mixture of Experts,
was described. In this architecture, as in [12], at each level
of the tree, a gating network is used to control the influ-
ence (weight) of the expert units (mapping functions) to
model the data. However, in [12] arbitrary subsets of the
experts units can be chosen. Unlike these architectures,

in SMA’s the mapping selection is done using a feedback
matching process, currently in a winner-take-all fashion,
but soft splitting is done during training. In applications
where a feedback map can be computed easily and accu-
rately, this is an important advantage. Also, the shape of
the regions that determine ownership to given specialized
functions is general; therefore, we do not assume any fixed
functional form or discriminant function to define these re-
gions (gating networks).

With respect to work on learning based approaches for
estimating articulated body pose, Point Distribution Mod-
els have been applied to recovering upper-body pose from
silhouettes or skin-colored blobs [1, 24]. In [13], a Gaus-
sian probability model for short human motion sequences
was built. However, this method assumes that 2D track-
ing of joints in the image is given. In [2], the manifold
of human body configurations was modeled via a hidden
Markov model and learned via entropy minimization. In
[33] dynamic programming is used to calculate the best
global labeling of the joint probability density function of
the position and velocity of body features; it was also as-
sumed that it is possible to track these features for pairs of
frames. These last three approaches model the dynamics
of motion, a problem that in general requires much more
training data to build a reasonable approximation to the un-
derlying probability distribution.

3 Overview
An overview of our approach can be seen in Fig. 1. First is
first trained, given a numberJ of example hand joint con-
figurations are acquired using a CyberGlove (at approx. 15
Hz). The CyberGlove measures 22 angular DOF of the
hand. Computer graphics software can be used to render
a shaded view of any hand configuration captured by the
CyberGlove. Using this computer graphics rendering func-
tion, we can generate a uniform sampling (with sizeS) on
the whole view sphere, and render views (images) of ev-
ery hand configuration from all sampled viewpoints. We
can then use image processing to extract visual feature� i
vector from each of the images generated; in our case we
extract moment based-features, but other features are pos-
sible [13]. This process yields a setf ig = 	, where i is
each of the hand joint configurations from each viewpoint1,
andf�ig = �, where�i is a vector of visual features cor-
responding to each i.

These sets	 and� constitute samples from the input-
output relationship that we will attempt to learn using our
architecture. Given a new image of a hand, we will com-
pute its visual feature vectorx. We then compute the map-
ping fromx to the most likely 24 DOF hand configura-
tion. Note that this mapping is highly ambiguous. In fact
the relationship is many to many; therefore no single func-
tion can perform this task. Using the Specialized Mapping
Architecture (SMA), we split (partition) this mapping into
many mappings. Each of these hopefully simpler problems
is then solved using a different specialized function. The
SMA learning scheme solves for partitions and mappings
simultaneously.

The SMA tries to learn a multiple mapping so that, when
performing inference, given a vector of visual featuresx,
an output in the output space of hand configurations can be

1This vector is then composed of 22 internal pose parameters plus two
global orientation parameters.



provided. On the right column of Fig. 1, a diagram of the
inference process is shown. First video input is obtained,
and using a segmentation module, regions with high likeli-
hood of being skin colored are found. From these regions
we extract visual features (e.g.,moments). Then the given
vector of visual featuresx is presented to SMA, which gen-
erates several output estimates, one of which is chosen us-
ing a defined cost function. Most of the details, including
the processes of learning and inference by SMA are pre-
sented in the following sections.

Our approach can easily integrate different choices of
features. Furthermore, the same approach can be used to
estimate the pose of articulated objects other than hands.

4 Hand Shape Representation
The hand model that we use is implemented in the Virtu-
alHand programming library [36]. The parameters of the
model are 22 joint angles. For the index, middle, ring and
pinky finger, there is an angle for each of the distal, proxi-
mal and metacarpophalangeal joints. For the thumb, there
is an inner joint angle, an outer joint angle and two angles
for the trapeziometacarpal joint. There are also abduction
angles between the following pairs of successive fingers:
index/middle, middle/ring and ring/pinky. Finally, there
is an angle for the palm arch, an angle measuring wrist
flexion and an angle measuring wrist bending towards the
pinky finger.

The VirtualHand library provides tools that can render
an artificial hand from an arbitrary viewpoint, given values
for the 22 angles. Fig. 3 shows examples of hand render-
ings. Using a CyberGlove (manufactured by VirtualTech-
nologies) we collected about 2,400 examples of hand poses
(parameterized as vectors containing the 22 angles). We
rendered each pose from 86 different viewpoints. Those
viewpoints formed an approximately uniformly distributed
set on the surface of a sphere centered at the hand. The
synthetic images obtained this way were used for training
and testing as described in the experimental results. The
VirtualHand library was also used to reconstruct the esti-
mated 3D hand shape for testing data, based on the output
of our system.

5 Learning Algorithm
The estimation paradigm used in this work consist of map-
ping the observed low-level visual features to hand joint
configurations. The underlying approach for finding this
mapping is based on the Specialized Mappings Architec-
ture (SMA), a non-linear supervised learning architecture.

Given an input and output space<c and <t respec-
tively, SMA’s consist of several specializedforward map-
ping functions�k : <c ! <t and afeedback matching
function� : <t ! <c, which in this case is known (visual
features can be obtained given the joint configurations by
using computer graphics based rendering).

In order to estimate these mappings, we use a supervised
learning approach with training dataZ = fz igi=1::n, with
zi = (�i;  i) an input-output pair (visual features and hand
joint angles respectively).

Our architecture generates a series ofm functions�k in
which each of these functions is specialized to map cer-
tain inputs (their specialized domain) better than others.
The specialized domain can be for example a region of the
input space. However, this specialized domain of�k can
be more general than just a connected region in the input

(a)

(b)

Figure 2:SMA diagram illustrating (a) an estimated SMA model
withm specialized functions mapping subsets of the training data
(each subset is drawn with a different color) and (b) the inference
process in which a given observation is mapped by all the special-
ized functions, and then a feedback matching step is performed to
choose the best of them estimates.

space. We propose to determine these specialized domains
and functions simultaneously.

Fig. 2(a) illustrates the basic idea of this model. We
use different colors (gray-levels) to represent the domain
of each specialized function. At initialization random col-
ors are assigned to each point, the goal is to find an optimal
mapping and partition that is efficient in reducing some er-
ror function. Once the model has been learned our map-
ping may look like Fig. 2(a), in which each function� i is
in charge of mapping certain inputs only.

5.1 Probabilistic Model

Let the training sets of output-input observations be	 =
f 1;  2; :::;  ng, and� = f�1; �2; :::; �ng respectively.
We will usezi = ( i; �i) to define a given output-input
training pair,Z = fz1:::zng represents our observed train-
ing set.

Define the unobserved random variablesy i with i =
f1::ng andy = (y1; y2; :::; yn). In our model the variables
yi have domain the discrete setC = f1::mg of labels for
the specialized functions, and can be thought as the func-
tion number used to map data pointi, thereforem is the
number of specialized functions in the model.

Define the model parameters� = (�1; �2; :::�m; �),
where�i represents the parameters of the mapping func-
tion i. The vector� = (�1; �2; :::; �m), where�k represent
P (yi = kj�).

Using Bayes’ rule and assuming independence among
observations, we have the joint probability of the observed
and hidden variables conditioned on our model parameters:

P (Z ;yj�) = P (Zjy; �)P (yj�) =
Y

i

P (zijyi; �)P (yij�)

(1)



5.2 SMA Parameter Estimation and the EM Al-
gorithm

The optimization problem defined by Eq. 1 is computa-
tionally very expensive. Here, the probabilistic parameter
estimation problem is approached under the Expectation
Maximization (EM) algorithm framework [5]. We use the
notation followed by [22].

Note that Eq. 1 makes reference to a still undefined dis-
tribution P (zijyi; �). Several options had been proposed
[27]. Here we will use a Gaussian distribution with mean
defined by the error incurred in using the possibly non-
linear function�y as a mapping function, and a variance
�y:

P (zjy; �) = N ( ;�y(�; �);�y) (2)

Using this distribution, the E-step consists of finding
~P (y) = P (yjZ ; �). In our case, this factorizes as:

~P (y) =
Y

i

�yiP (zijyi; �)P
k2C �kP (zijyi = k; �)

(3)

=
Y

i

�yie
( i��yi (�i;�yi ))

>��1( i��yi (�i;�yi ))

P
k2C �ke

( i��k(�i;�k))>��1( i��k(�i;�k))
(4)

The M-step consists of finding �(t) =
argmax� E ~P (t) [logP (y;Zj�)]. Using our model, it
can be shown that:

�(t) = argmax
�

X

i

X

yi2C

~P (t)(yi)[logP (zijyi; �)+logP (yij�)]:

(5)
This gives the following update rules for�k and �k

(where Lagrange multipliers were used to incorporate the
constraint

P
k �k = 1).

�k =
1

n

X

i

P (yi = kjzi; �) (6)

�k =

P
i
~P (t)(yi = k)( i � �k(�i; �k))( i � �k(�i; �k))

>

P
i
~P (t)(yi = k)

(7)

The update for�k depends on the form of�k. Here we
have chosen a non-linear function of the form:

f�k(x; �k)gq = g2(

l2X

j=0

w
(2)
qj g1(

l1X

i=0

w
(1)
ji xi)); (8)

wherexi is thei� th component of the visual feature vec-
tor,w(1) andw(2) are weights and biases (part of�k), g1
andg2 are a sigmoidal and linear function respectively,l1
andl2 are the number of nodes in each layer, andq is just
the dimension index of the output vector. This is a 1-hidden
layer feed-forward network.

Unfortunately, using this function (as it would be by us-
ing most non-linear functions) forces us to use iterative op-
timization for the M-step.

5.3 Stochastic Learning
The update equations described above are useful to find
a local minimum given the initial values of the parame-
ters. In order to improve this process, and avoid some of
the local minima that inevitably arise, we use an annealing

schedule on the~Pi
(t)

probabilities during the M-step. In
this way, we redefine:

~Pi
(t)
(yi = j) =

elog(
~Pi

(t)
(yi=j))=T (t)

P
k2C e

log( ~Pi
(t)

(yi=k))=T (t)
(9)

In our experiments the temperature parameterT decays
exponentially. This step not only does help in avoiding
local minima, but it also creates two desirable effects. It

forces ~Pi
(t)
(yi = j) to be binary (either1 or 0) at low

temperatures, as a consequence each point will tend to be
mapped by only one specialized function at the end of opti-

mization. Moreover, it makes~Pi
(t)
(yi = k) (k = 1::m) be

fairly even at high temperatures, making the optimization
less dependent on initialization.

Note that there is no closed form solution for the M-step
as described above. In practice we have decided to perform
two or three iterations per M-step. Another source of ran-
domness added to the process so far described consists in
choosing data points randomly uniformly distributed when
performing the M-step. These two variants of the M-step
have been justified in the sense of a partial M-step [22].

5.4 Feedback Matching
Once the model parameters have been estimated each spe-
cialized function maps (with different levels of accuracy)
the whole input space. Therefore, the following question
arises: during reconstruction, given a point in input space,
how do we choose the mapping function�k that should be
used to map this point?

Fig. 2(b) illustrates the inference process. When gen-
erating an estimatêh of body pose given an inputx (the
gray point with a dark contour in the lower plane), SMA’s
generate a series of output hypothesesH = fhgk obtained
usinghk = �k(x), with k 2 C (illustrated by each of the
points pointed by the arrows). Given the setH, we define
the most accurate hypothesis to be that one that minimizes
the functionF (�(hj);x;Z), overj, in this paper we use:

i = argmin
j
(�(hj)� x)

>��1� (�(hj)� x); (10)

and makêh = hi, where�� is the covariance matrix of
the elements in the set� (i.e.,the input vectors in our train-
ing set) andi is the assigned label. In Fig. 2(b) we can
see that each of the points in the output space is mapped
back to the input space, once in this space, these points can
be compared (using a given cost functione.g.,Eq. 10) to
the initial input observation. The form of the cost function
could vary, using Eq. 10 is the same as assumming that
P (hjx) = N (h;x;��).

6 Hand Detection and Segmentation
Some of our test data consists of video sequences collected
with a color digital camera. In those sequences the back-
ground is static, there is only one person present, and the



person is facing towards the camera. Our system tracks
both hands of the user automatically, using a skin color
tracker.

In the first frame of the sequence, the tracker needs to
be initialized, by locating in the image the objects that we
want to track. That could be done by applying a skin detec-
tor system, like the one described in [15]. However, using
that detector, clothes are labeled as skin, sometimes, be-
cause of their color.

We can locate and segment the hands more accurately
using the fact that their color is very similar to the color
of the face. The position of the face can be found reliably
using a face detector system [29]. For each pixel in the
detected face we compute a measure of how skin-like the
pixel color is. That measure is based on histograms of skin
and non-skin color distributions, computed from a database
of thousands of images in which regions were labeled as
skin and non-skin. Those labeled images were frames from
commercially available DVD movies.

We select the top 50% of the pixels in the face, for which
the measure of skin similarity is the highest. For each of
those pixels we compute itsrg color (r = R

R+G+B ; g =
G

R+G+B ), and we find the meanrg color of all selected
pixels. Then, for each pixel in the image, we calculate the
distance of itsrg color from the meanrg color. We la-
bel as skin all pixels for which that distance is less than
a threshold. The threshold we use is 17, for RGB values
between 0 and 255. The objects we want to track are the
three largest connected components of the skin pixels. One
of them overlaps with the face, and the other two are con-
sidered to be the hands. We initialize the skin tracker with
the position of the face and hand regions, and the tracker
locates the face and hands in the rest of the frames in each
sequence.

The skin tracker models skin color distribution as a his-
togram in HSV space. It can handle distributions that
change from one frame to the next, because of varying il-
lumination or motion with respect to light sources. The
changes in skin color that occur in a new frame are mod-
eled as the results of translating, rotating and scaling the
current histogram. Furthermore, the evolution of the his-
togram is modeled as a second-order Markov process. The
tracker is initialized in the first frame, by being told which
regions to track, and it estimates the initial color distribu-
tion. In the next 8-30 frames, in addition to tracking and
adapting the skin color histogram, it also learns the param-
eters of the Markov process. After the learning stage, it
uses those parameters to predict the color distribution in
every new frame, while still updating the Markov model,
based on the actual histogram that is observed in the new
frame. The learning and tracking stage are explained in
detail in [32].

Our simple hand detection and tracking algorithm would
not work at any frame where the hands overlap with each
other or with the face. In our video sequences we took
care to avoid such situations. Our system could be made
more general by including modules to predict occlusion of
an object by another and to detect when those objects are
separated again. A similar approach has been successfully
applied in the domain of multiple person tracking with oc-
clusion handling [26].

7 Experimental Results

The described approach was tested in experiments with
training data consisting of approximately 30 sequences ob-
tained through the use of a Cyberglove. Input-output pairs
were generated using computer graphics by rendering from
86 viewpoints roughly uniformly distributed on the view
sphere. The output consisted of 24 joint angles of a human
hand linearly encoded by nine real values using Principal
Component Analysis (PCA).

The input consisted of seven real-valued Hu moments
[14] computed on synthetically generated silhouettes of the
hand. Hu moments are functions of central image mo-
ments. They are invariant to translation, scaling, and ro-
tation on the image plane. These invariances ease the ob-
servation process (e.g.,we do not need to be concern about
where and how large the hand appears on the image). How-
ever, rotation invariance makes hand rotation parallel to the
image plane unobservable. For the real experiments obser-
vation inputs were obtained tracking skin color distribu-
tions [32].

Approximately 300,000 images were generated synthet-
ically. Of these, 8,000 were used for training and the rest
for testing. We used cross-validation for early stopping
the training procedure and avoid overfitting. In the experi-
ments shown, the number of specialized functions was set
to 30. Each of these functions was a one hidden layer, feed-
forward network with 5 hidden neurons. The annealing
schedule was1=k wherek was the iteration number in the
EM algorithm. Other experiments were performed to test
the convergence and fitting properties of the model, due to
space limitations these results will not be presented in this
paper.

7.1 Quantitative Experiments

Fig. 3 shows example hand configuration estimates ob-
tained in representative test frames (not in the training
set). Synthetic images were used in this experiment, be-
cause ground-truth data was available for quantitative per-
formance evaluation. As can be seen in the figure, self-
occluding configurations are obviously harder, but still the
estimate is close to ground-truth given that no human in-
tervention nor pose initialization was required.

In order to provide quantitative measures of perfor-
mance, test data was used to generate viewpoint dependent
error measures. Fig. 4 shows the mean squared error and
its variance per viewpoint at the equator 4(a) and at dif-
ferent latitudes 4(b). Note in 4(a) that for views on the
equator the error is smaller for longitudes closer to� radi-
ans, this corresponds to a view of the palm (from different
latitudes). These performance differences are most likely
due to that at side-view angles there is an increased amount
of self-occlusion and also because the projections involve
fewer pixels, reducing the samples used to calculate image
moments. In 4(b) we can observe that reconstruction er-
rors increase at the poles of the view sphere, where there is
also little information projected to the image plane. While
the MSE result is encouraging, the variance suggests that
certain hand poses are not accurately recovered (we dis-
cover they mostly correspond to complex hand configura-
tions coming from the American Sign Language part of our
data).
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Figure 4:Quantitative experimental results. Mean square error
in the reconstruction is shown in (a) taken at the equator of the
view sphere, varying the longitude and (b) at different latitudes,
averaging over all the longitudes. Longitude� and latitude0 ra-
dians represents a view towards the palm of the hand.

7.2 Experiments with Real Sequences
In the next set of experiments, we tested the system against
real segmented visual data. The sequences were segmented
to yield blobs that corresponded to hands in each frame,
as described in Sec. 6. The resulting reconstruction for
several relatively complex gesture sequences is shown in
Fig. 5. Note that given blob images, recovering 3D hand
pose is a difficult task even for a human observer. This
difficulty is increased by performing inference from blob
moments, obviously with an inferior descriptive power.
Methods for addressing this issue will be covered further
in Sec.8.

7.3 3D Reconstruction Reliability
It should be noted that SMA’s can provide a measure of re-
construction reliability by using the log-probabilities com-
puted in Eq. 10. Ambiguous inputs can be discovered by
looking at the relative scores given by Eq. 10 (another op-
tion is to look at the entropy ofP (hjx) ). This is extremely
important because even though the forward maps are de-
signed to handle ambiguities, the inference process clearly
still suffers from ambiguities. Therefore, it can be impossi-
ble to recover some configurations with enough reliability.
As an example, in Fig. 5, the configurations 5-6 have low
reliability score, even though we obtain good estimates.
Some of the competing hypotheses include estimates that
are also consistent (in terms of the visual features used)
with the input presented, and some of these consistent hy-
pothesis are far from the true 3D reconstruction. Thus, it
was very likely to choose one of the bad estimates instead
of the good ones shown in configurations 5-6.

8 Discussion and Conclusions
In this paper we addressed the problem of recovering 3D
hand pose from a monocular color sequence. The main
contributions of our work are:

1. A single observed frame can be used for estimation2.
As a consequence, no manual initialization is required.
Furthermore, the sequence can start with the hand in any
position and orientation.

2. No limitation is imposed in the camera viewpoints al-
lowed.

3. The system does regression rather than classification,
thereby providing a continuum of pose estimates rather
than recognizing a finite number of classes.

4. A novel non-linear supervised learning framework is
adapted to the pose estimation problem. This framework
allows us, among other things, to avoid the pitfalls of
explicit tracking and to measure reliability of estimates
during inference.

5. Reconstruction can be accomplished at near frame rate.

The main advantage of using SMA’s in this domain
over other function estimation paradigms is that it allows
modeling of the ambiguous input-output relationships that
arise. For instance, different hand configurations can gen-
erate the same visual features, due to self-occlusion. Dif-
ferent visual features can be related to a single hand con-
figuration, due to inaccurate observations or variations in
hand morphology. SMA’s splits (partitions) the problem
into simpler mapping problems. This allows for modeling
different parts of the output space independently, as well
as computation of multiple possible configurations in am-
biguous situations. However, so far we choose one esti-
mate only. This is an interesting aspect not fully addressed
in this paper, Sec. 7.3 extends a little on this topic.

In our current implementation, temporal context is not
used for improving the output estimates during mapping,
but only for segmentation. The hand pose is re-estimated
at every frame given the segmented data. We expect that
using previous estimates in computing the current hand
shape will improve accuracy, and we plan to extend our
approach to allow this. However frame independence al-
lows a very attractive inference time ofO(M), with M
specialized functions.

Our algorithm could be used as a front end in several
gesture recognition applications that take the hand config-
uration as input. Current systems rely almost exclusively
on non-vision techniques to obtain such data, such as Cy-
berGloves [7, 18, 19, 30] and color markers [11]. An au-
tomated computer vision technique like ours imposes no
restrictions on users. It can also be used in domains where
we do not have control of the data collection, and there-
fore we cannot require the use of more sophisticated input
devices.

In future work, we plan to experiment with sets of fea-
tures that are richer and more descriptive than binary sil-
houettes;e.g.,orientation histograms, or other texture fea-
tures. Using stereo should further increase the accuracy
of the system, by providing more shape constraints than a
single 2D image does. Finally, more sophisticated models
of temporal dependencies, like linear Gaussian Models in
general [11, 34, 37], could be used in the feedback match-
ing to guide the choice of best reconstruction.

Even though we have a useful estimate of confidence,
given by Eq. 10, we are looking at alternatives for decreas-
ing the error variance. 3D Hand pose reconstruction from
a single image is a very difficult task, and at present no
fully-general solution to the problem exists. Our results
show that it is possible to approach this problem using a
combination of vision and statistical learning tools. We
consider this an important step considering the complexity
of the task and the low descriptive power of the features
currently employed.

2We insist that in applications where highly correlated frames can be
observed, it is imperative to use this temporal information. However, the
ability of our framework to estimate hand pose given only a single frame
affords automatic initialization, faster estimation, and could be used as a
bootstrap mechanism in more complex systems.
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Figure 3: Example reconstruction of several synthetic test sequences. Each set (2 rows each) consists of (a)input images,
(b)reconstruction. Because our approach can provide us with a reconstruction confidence, we used this to show high-medium-low
confidence estimates (one pair of rows each).

Figure 5: Reconstruction obtained from performing hand segmentation in a human subject. The two top pairs of rows show good
reconstruction while the bottom pair show examples of bad performance. Reconstruction is shown from a fixed viewpoint (latitude
0-longitude� rads.).


