Name: \qquad ID\# \qquad
Date Submitted: \qquad Lab Section \# \qquad
CSE 2441 - Introduction to Digital Logic Spring Semester 2013

Lab Number 7 - An Introduction to Synchronous Circuits

 100 Points(To be performed the week of March 18, 2013)

AN INTRODUCTION TO SYNCHRONOUS CIRCUITS

(100 POINTS)

PURPOSE/OUTCOMES:

To study the functional characteristics of type D flip-flops and their use in basic shift registers and counters. After completing this laboratory, you'll have an understanding of how D flip-flops work and be able to analyze basic registers and counters.

BACKGROUND:

Flip-flops and latches are used as memory devices in sequential logic circuits. The D and JK flip-flop are the most commonly used flip-flops in synchronous sequential circuits. The figures below show pin-out diagrams for SN7474 and SN7476 implementations of D and JK filp-flops, respectively. Note that each package contains two flip-flops and that each flip-flop has data inputs, D or JK, clock inputs, clear and preset inputs, and complementary outputs.

This lab will focus on D flip-flops and basic registers and counters. JK flip-flops will be studied in later lab assignments.

PROCEDURE:

Complete each of the exercises detailed below, and record your results and answers in your laboratory notebook. Have the lab instructor check your work after each part.

Part 1 - Learn the functionality of an SN7474 D Flip-flop.

Experimentally derive the state table of an SN7474 D flip-flop. See the table format below. Use the following pin assignments when connecting the 7474 to the IDL-800.

$D($ pin 2) - SW7	CK (pin 3) - PULSE SWITCH A
$P R($ pin 4) - SW1	CLR (pin 1) - SW0
$Q($ in 5) - LED7	$Q^{\prime}($ pin 6) - LED 6
Power (pin 14) -+5 V	Ground (pin 7) - GND

\boldsymbol{D}	$\boldsymbol{C K}$	$\boldsymbol{P R}$	$\boldsymbol{C L R}$	\boldsymbol{Q}	$\boldsymbol{Q}^{\boldsymbol{*}}$
d	\uparrow	1	0	0	
d	\uparrow	1	0	1	
d	\uparrow	0	1	0	
d	\uparrow	0	1	1	
d	\uparrow	0	0	0	
d	\uparrow	0	0	1	
0	\uparrow	1	1	0	
0	\uparrow	1	1	1	
1	\uparrow	1	1	0	
1	\uparrow	1	1	1	

Note -- \uparrow designates a clock pulse, d a don't care, Q the present state, and Q^{*} the next state.

Part 2 - Implement a Basic Shift Register on the IDL 800 Using D Flip-flops (SN7474).
a. Construct the 4-bit, serial-in, serial/parallel-out shift register shown below. Connect the various circuit I/O pins to the IDL-800 switches/LEDs as follows. Don't forget to also connect power (+5 V) and ground.

$$
\begin{array}{cccc}
\text { IN - SW7 } & \text { SHIFT - PULSE SWITCH A } & \text { SET - SW1 } & \text { CLEAR - SW0 } \\
\text { QA - LED7 } & Q B-\text { LED } 6 & Q C \text { - LED } 5 & Q D \text { - LED4 }
\end{array}
$$

Part 2 (continued)

b. Experimentally analyze the behavior of the circuit as follows.
i. Place the SET and CLEAR inputs to logic 1
ii. Turn on the power
iii. Observe and record the values of the circuit outputs ($Q A, Q B, Q C$, and $Q D$)
iv. Place $S E T$ to logic 0 and CLEAR to logic 1
v. Observe and record the values of the circuit outputs ($Q A, Q B, Q C$, and $Q D$)
vi. Place $S E T$ to logic 1 and CLEAR to logic 0
vii. Observe and record the values of the circuit outputs ($Q A, Q B, Q C$, and $Q D$)
viii. Place the SET and CLEAR inputs to logic 1
ix. Place $I N$ to logic 1
x. Enter four consequetive SHIFT pulses, observing and recording the outputs after each pulse
xi. Place $I N$ to logic 0
xii. Enter four consequetive SHIFT pulses, observing and recording the outputs after each pulse

Part 3 - Implement a Four-Bit Ring Counter on the IDL-800.

a. Modify the basic register from Part 2 to realize the 4-bit ring counter shown below.

b. Use the CLEAR and SET inputs to place the counter in state 1000.
c. Enter four consecutive SHIFT pulses. Observe and record the state after each pulse.
d. Using the results from c, draw the state diagram of the ring counter.
e. How many states would be in a 6-bit ring counter? N-bit?

Part 4 - Implement a Four-Bit Twisted Ring Counter on the IDL 800.

a. Modify the ring counter to realize a 4-bit twisted-ring (Johnson) counter as shown below.

b. Connect the SHIFT input to the IDL-800 FUNCTION GENERATOR with amplitude at the Max setting. Place the FUNCTION GENERATOR in square-wave mode and the $1-\mathrm{HZ}$ to $10-\mathrm{HZ}$ frequency range. Place the freguency fine-tune knob in its minimum (CCW) position. These settings should produce a clock pulse with a frequency of about $1-\mathrm{HZ}$.
c. Place the shift-register in the all-0 state.
d. Observe and record the states of the counter in the form of a state diagram.
e. Slowly increase the frequency of the clock by turning the fine-tune knob clockwise. How does the state sequence change?
f. How many states would be in a 6-bit twisted-ring counter? N-bit?

