Logic Programming

- Program
 - Axioms (facts): true statements
- Input to Program
 - query (goal): statement true (theorems) or false?
- Logic programming systems = deductive databases
datalog

Example

- Axioms (facts):
 0 is a natural number.
 For all x, if x is a natural number, then so is the successor of x.
- Query (goal).
 - 2 is natural number? (can be proved by facts)
 - -1 is a natural number? (cannot be proved)

Another example

- Facts:
 The factorial of 0 is 1.
 If m is the factorial of n - 1, then n * m is the factorial of n.
- Query:
 The factorial of 2 is 3?
 (How do we ask “What is the factorial of 2?”)

First-Order Predicate Calculus

- Logic used in logic programming:
 First-order predicate calculus
 First-order predicate logic
 Predicate logic
 First-order logic
 ∀x (x ≠ x+1)
- Second-order logic
 ∀S ∃ x (x ∈ S ∨ x ≠ S)
First-Order Predicate Calculus: Example

- natural(0).
 ∀ X, natural(X) → natural(successor(X))

- ∀ X and Y, parent(X,Y) → ancestor(X,Y).
 ∀ A, B, and C, ancestor(A,B) and ancestor(B,C) → ancestor(A,C).
 ∀ X and Y, mother(X,Y) → parent(X,Y).
 father(Bill,Jim).
 mother(Jill,Jim).
 father(Rob,Jim).

- factorial(0,1).
 ∀ N and M, factorial(N-1,M) → factorial(N,N*M).

First-Order Predicate Calculus: statements

Symbols in statements:
- Constants (a.k.a. atoms) numbers (e.g., 0) or names (e.g., Bill).
- Predicates
 Names for Boolean functions (true/false). Can have arguments (e.g., parent(X,Y)).
- Functions
 non-Boolean functions (successor(X)).
- Variables
 e.g., X.
- Connectives (operations)
 and, or, not
 implication (→): a→b (b or not a)
 equivalence (⇔): a⇔b (a←b and b←a)

First-Order Predicate Calculus: statements (cont’d)

- Quantifiers
 universal quantifier “for all” ∀
 existential quantifier “there exists” ∃
 bound variable (a variable introduced by a quantifier)
 free variable
- Punctuation symbols
 parentheses (for changing associativity and precedence.)
 comma
 period
- Arguments to predicates and functions can only be terms:
 contain constants, variables, and functions.
 Cannot have predicates, qualifiers, or connectives.

Horn Clause

- First-order logic too complicated for an effective logic programming system.
- Horn Clause: a fragment of first-order logic
 b ← a1 and a2 and a3 ... and an.

 head
 body
 no “or” and no quantifier

- Variables in head: universally quantified
 Variables in body only: existentially quantified
- Need “or” in head? Multiple clauses

Horn Clauses: Example

- First-Order Logic:
 natural(0).
 ∀ X, natural(X) → natural(successor(X)).

- Horn Clause:
 natural(0).
 natural(successor(X)) ← natural(X).

- First-Order Logic:
 factorial(0,1).
 ∀ N and M, factorial(N-1,M) → factorial(N,N*M).

- Horn Clause:
 factorial(0,1).
 factorial(N,N*M) ← factorial(N-1,M).
Horn Clauses: Example

- **Horn Clause:**

 \[\text{ancestor}(X,Y) \leftarrow \text{parent}(X,Y).\]

- **Example:**

 \[\text{ancestor}(A,C) \leftarrow \text{ancestor}(A,B) \text{ and } \text{ancestor}(B,C).\]

- **Example:**

 \[\text{father}(B,C) \leftarrow \text{father}(B,D) \text{ and } \text{father}(D,C).\]

Prolog syntax

- **For:**

 \[\text{ancestor}(X,Y) \leftarrow \text{parent}(X,Y).\]

 \[\text{father}(B,C) \leftarrow \text{father}(B,D) \text{ and } \text{father}(D,C).\]

Problem Solving

- **Program = Data + Algorithms**
- **Program = Object.Message(Object)**
- **Program = Functions**
- **Function = Logic + Control**
- **Algorithm = Logic + Control**

Resolution

- **Resolution:** Using a clause, replace its head in the second clause by its body, if they “match”.

\[a \leftarrow a_1, \ldots, a_n,\]

\[b \leftarrow b_1, \ldots, b_n,\]

if \[b_i \text{ matches } a;\]

\[b \leftarrow b_1, a_1, \ldots, a_n, b_i, \ldots, b_n.\]
Problem solving in logic programming systems

- Program:
 - Statements/Facts (clauses).
- Goals:
 - Headless clauses, with a list of subgoals.
- Problem solving by resolution:
 - Matching subgoals with the heads in the facts, and replacing the subgoals by the corresponding bodies.
 - Cancelling matching statements.
 - Recursively do this, till we eliminate all goals. (Thus original goals proved.)

Example

- Fact:
 \[\text{mammal(human)}. \]
- Goal:
 \[\leftarrow \text{mammal(human)}. \]
- Proving:
 \[\text{mammal(human)} \leftarrow \text{mammal(human)}. \]

Example

- Fact:
 \[\begin{align*}
 \text{legs(X,2)} & \leftarrow \text{mammal(X)}, \text{arms(X,2)}. \\
 \text{legs(X,4)} & \leftarrow \text{mammal(X)}, \text{arms(X,0)}. \\
 \text{mammal(horse)}. \\
 \text{arms(horse,0)}.
\end{align*} \]
- Goal:
 \[\leftarrow \text{legs(horse,4)}. \]
- Proving:
 \[\text{?} \]

Unification

- Unification: Pattern matching to make statements identical (when there are variables).
- Set variables equal to patterns: instantiated.
- In previous example: legs(X,4) and legs(horse,4) are unified. (X is instantiated with horse.)

Unification: Example

- Euclid’s algorithm for greatest common divisor
- Facts:
 \[\begin{align*}
 \text{gcd(U,0,U)}. \\
 \text{gcd(U,V,W)} & \leftarrow \text{not zero(V)}, \text{gcd(V, U mod V, W)}. \\
\end{align*} \]
- Goals:
 \[\leftarrow \text{gcd(15,10,X)}. \]

Things unspecified

- The order to resolve subgoals.
- The order to use clauses to resolve subgoals.
- Possible to implement systems that don’t depend on the order, but too inefficient.
- Thus programmers must know the orders used by the language implementations. (Search Strategies)
Example

* Facts:
 ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).
 ancestor(X, Y) :- parent(X, Y).
 parent(X, Y) :- mother(X, Y).
 parent(X, Y) :- father(X, Y).
 father(bill, jill).
 mother(jill, sam).
 father(bob, sam).

* Queries:
 ?- ancestor(bill, sam).
 ?- ancestor(X, bob).