
1/18/2008

1

CSE 3302
Programming Languages

History of

Chengkai Li
Spring 2008

Programming Languages

Lecture 2 - History, Spring 2008 1CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Languages you used or heard about
C
C++
C#
Java
Python
Perl
Ruby

Flex
SQL
Shell
XML
SGML
Assembly

Lua

PostScript

Pascal

APL

PL/I

Lecture 2 - History, Spring 2008 2CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Haskell
FORTRAN
BASIC
JavaScript
PHP

LISP
Groovy

Lua
Coldfusion
Delphi
Forth
JSP
J2ME

Ada
COBOL
RPG

Visual Basic

LOGO
ML

Prolog
Smalltalk

Can anybody sing this song?

• 99 Bottles of Beer
99 bottles of beer on the wall, 99 bottles of beer.
Take one down and pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer.
Take one down and pass it around, 97 bottles of beer on the wall.p ,

…

1 bottle of beer on the wall, 1 bottle of beer.
Take one down and pass it around, no more bottles of beer on the wall.

No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.

Lecture 2 - History, Spring 2008 3CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

C
static void fill_buffer(char *buf, int b) {

char line[BUFFERSIZE/2];
if (b>0) {

sprintf(buf, "%d bottle%s of beer on the wall, %d bottle%s of beer.\n" \
"Take one down and pass it around, ", b, PLURALS(b), b, PLURALS(b));

if (b==1)
strcat(buf, "no more bottles of beer on the wall.\n");(, \);

else {
sprintf(line, "%d bottle%s of beer on the wall.\n", b-1, PLURALS(b-1));
strcat(buf, line);

}
} else {

sprintf(buf, "No more bottles of beer on the wall, no more bottles of beer.\n" \
"Go to the store and buy some more, 99 bottles of beer on the wall.\n");

}
….

Lecture 2 - History, Spring 2008 4CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Prolog

report_bottles(0) :- write('no more bottles of beer'), !.

report_bottles(X) :- write(X), write(' bottle'),

(X = 1 -> true ; write('s')),

write(' of beer').

report_wall(0, FirstLine) :-

(FirstLine = true -> write('No ') ; write('no ')),

report_bottles('more'), write(' on the wall'), !.

report_wall(X, _) :- report_bottles(X), write(' on the wall').

…

Lecture 2 - History, Spring 2008 5CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Assembly

inc eax ; get the original value

push eax ; convert it to string

lea eax, [ebp - 04h]

push eax ; string will be stored here

call _integer_to_string

lea eax, [ebp - 04h]

push eax

call _show_line ; 'xx'

push _line_1_1

call _show_line ; ' bottles of beer on the wall, '

lea eax, [ebp - 04h]

push eax

…
Lecture 2 - History, Spring 2008 6CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008

1/18/2008

2

?
select

CASE (a.aa * 10 + b.bb)
WHEN 0 THEN 'No more bottle of beer on the wall, no more bottles of beer. ' +

'Go to the store and buy some more, 99 bottles of beer on the wall.'
WHEN 1 THEN '1 bottle of beer on the wall, 1 bottle of beer. ' +

'Take one down and pass it around, no more bottles of beer on the wall.'
WHEN 2 THEN '2 bottles of beer on the wall, 2 bottles of beer. ' +

'Take one down and pass it around, 1 bottle of beer on the wall.'
ELSE

cast((a.aa * 10 + b.bb) as varchar(2)) + ' bottles of beer on the wall, ' +
cast((a.aa * 10 + b.bb) as varchar(2)) + ' bottles of beer. ' +
'Take one down and pass it around, ' +
cast((a.aa * 10 + b.bb)-1 as varchar(2)) + ' bottles of beer on the wall.'

END
from

(select 0 as aa union select 1 union select 2 union select 3 union select 4
union select 5 union select 6 union select 7 union select 8 union select 9) a

cross join
(select 0 as bb union select 1 union select 2 union select 3 union select 4
union select 5 union select 6 union select 7 union select 8 union select 9) b

order by a.aa desc, b.bb desc

Lecture 2 - History, Spring 2008 7CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

?
bottles = [98:-1:3]; % bottles 98 to 3 (99, 2 & 1 are treated as special case)
lines = 3; % need the number of bottles at the beginning of 3 lines

num_array = ones(lines,1) * bottles; % bottles is a (1x96) array

format_plural1 = '%d bottles of beer on the wall,\n%d bottles of beer,\n';
format_plural2 = 'Take one down, pass it around,\n%d bottles of beer on the

wall.\n\n';
format_sing1 = '%d bottle of beer on the wall,\n%d bottle of beer,\n';
format_sing2 = 'Take one down, pass it around,\n%d bottle of beer on the wall.\n\n';
format_none2 = 'Take it down, pass it around,\nNo bottles of beer on the wall.\n';

fprintf([format_plural1 format_plural2], 99,99,num_array,2)
fprintf([format_plural1 format_sing2], 2,2,1)
fprintf([format_sing1 format_none2], 1,1)

Lecture 2 - History, Spring 2008 8CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Whitespace
Whitespace version of 99 bottles of beer (Bottles.ws) 2003-04-01
See http://compsoc.dur.ac.uk/whitespace/ for details+interpreter
Example by Andrew Kemp <ajwk@pell.uklinux.net>

(*All* space/tab/linefeed characters are significant!)

Lecture 2 - History, Spring 2008 9CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Cow

moOMoOMoOMoOMoOmoOMoOMoOMoOMoOMoOMoOMoOMoOMoOM
oOMMMmoOMMMMoOMoOMoOMoOMoOMoO

MoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOM
oOMMMmoOMMMommMoOMoOMoOMoOMoO

MoOMoOMoOMoOMoOMoOMoOMMMmoOMMMMoOMoOMMMmoOM
MMMoOMoOMoOMoOMoOMoOMoOMoOMoOMoO

MoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOM
oOMoOMoOMoOMoOMoOMoOMoOMoOMoO

MoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOMoOM
oOMMMmoOMMMMoOMMMmOomOomOomOo

mOomOoMMMMoOmoOmoOmoOmoOmoOmoOMMMmoOMMMMoOMo
OMMMmoOMMMMoOMMMmoOMMMMoOMMMmoO

MMMMoOMoOMMMmoOMMMMoOMMMmoOMMMMoOMoOMMMmoO
MMMMoOMMMmoOMMMMoOMoOMMMmoOMMMMoO

Lecture 2 - History, Spring 2008 10CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Piet (@!@#$%!^!)

Lecture 2 - History, Spring 2008 11CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

If you are interested

• http://www.99-bottles-of-beer.net/

Lecture 2 - History, Spring 2008 12CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

1/18/2008

3

Thousands out there

• http://en.wikipedia.org/wiki/Timeline_of_pro
gramming_languages

h // ill / / hi / l• http://www.oreilly.com/news/graphics/prog_l
ang_poster.pdf

Lecture 2 - History, Spring 2008 13CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

The most popular PLs?

• Popularity:
– Most widely used?

– Most lines of codes?

Most jobs?– Most jobs?

– Most courses/projects?

– Most search engine queries?

• http://www.welton.it/articles/language_popularity.html

• http://www.developer.com/lang/article.php/3390001

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

14

History

• Early History : The First Programmer
• The 1940s: The First Computers
• The 1950s: The First Programming Languages
• The 1960s: An Explosion in Programming Languages

Th 1970 Si li it Ab t ti St d• The 1970s: Simplicity, Abstraction, Study
• The 1980s: New Directions and OO
• The 1990s: Consolidation, Internet, Libraries, and

Scripting
• The Future

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

15

The First Programmer

• Before the birth of computers
• Jacquard loom (early 1800s)

– translated card patterns into cloth
designs.

– http://www youtube com/watch?v=Sn337– http://www.youtube.com/watch?v=Sn337
QHU0AY

http://www.smith.edu/hsc/silk/History/jacquard.html

www.nndb.com/people/799/000097508/
Lecture 2 - History, Spring 2008 16CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008

The First Programmer
• Charles Babbage’s analytical engine (1830s and 1840s)

– Devoted entirely to computation
– Programs: cards with data and operations
– Difference Engine: which inspired Analytical Engine (the design was

realized in 1991)
http://www.youtube.com/watch?v=KL_wy-CxBP8

Ad L l fi (d h f B)• Ada Lovelace – first programmer (daughter of Byron)

http://en.wikipedia.org/wiki/Charles_babbage http://en.wikipedia.org/wiki/Ada_Lovelace
Lecture 2 - History, Spring 2008 17CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008

The First Computers

• ENIAC (1943)

– First electronic computer

– U. Penn

• EDVAC (1945)

– John von Neumann

– von Neumann architecture

“Stored program”: data and
programs in the same space

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

18

http://en.wikipedia.org/wiki/ENIAC www.agers.cfwb.be/apsdt/figinfo26.htm

1/18/2008

4

The First Computers

• Z3 (1941)
– Konrad Zuse

– First digital computer

– Electromechanical, rather than electronic

• Plankalkul (Plan Calculus) : (1945)
– Eventually published in 1972

– First compiler implemented in 2000

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

19

http://en.wikipedia.org/wiki/Konrad_Zuse

irb.cs.tu-berlin.de/.../de/Konrad_Zuse_2.html

• Machine code: bit sequences

000000 00001 00010 00110 00000 100000
100011 00011 01000 00000 00001 000100
000010 00000 00000 00000 10000 000001

Machine Codes and
Assembly Language

000010 00000 00000 00000 10000 000001

• Assembly program: symbolic representation
of machine codes

LDA SUB
CMA
INC
ADD MIN
STA DIF

Lecture 2 - History, Spring 2008 20CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

The 1950s:
The First Programming Languages

• FORTRAN: the first higher-level programming
language

Languages following FORTRANLanguages following FORTRAN

• COBOL
• Algol60
• LISP
• APL

Lecture 2 - History, Spring 2008 21CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

FORTRAN

• The first language

1954-1957

John Backus, et. al. (IBM)

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

22

• Scientific and engineering applications (FORmula TRANslation).

• Goal: generate fast machine code. Its compiler is still among
the most efficient.

• Contributions: array, loops by indexed variables, if-statement

• Still widely used today (Fortran, II, III, IV, 66, 77, 90, 95, 2003,
2008).

FORTRAN

• John Backus: IBM group

1977 ACM Turing Award: “for profound, influential, and lasting
contributions to the design of practical high-level programming

t t bl th h hi k FORTRAN d f

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

23

systems, notably through his work on FORTRAN, and for
seminal publication of formal procedures for the specification
of programming languages.”

http://www.youtube.com/watch?v=xQtT2sRkOEw

www.columbia.edu/acis/history/backus.html

Major languages following FORTRAN

• COBOL

• Algol60

• LISP

• APL

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

24

• APL

1/18/2008

5

COBOL
• COmmon Business-Oriented Language

1959-1960

Grace Hopper, et. al. (US Department of Defense)

• Business applications: banks and corporationsBusiness applications: banks and corporations

• Still widely used

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

25

http://en.wikipedia.org/wiki/Grace_Murray_Hopper

COBOL

• Goal: allow nonprogrammers to read/understand programs

• Consequences:
– Very wordy, like English

• C++ vs. ADD 1 TO COBOL GIVING COBOL

• Can be difficult to write complex algorithmsCan be difficult to write complex algorithms

– Human readability improved, or only complicated?

• Contributions:
– Record structure

– Separate data structures from execution

– Output formatting by examples

• COBOL 2002: OO programming

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

26

Algol60
• ALGOrithmic Language, 1958-1960

a committee of European and American computer scientists (John Backus
and John McCarthy involved)

• Contributions:
– free-format (which modern language is not free-format?)

– Backus-Naur forms (BNF) for defining syntax

– type declarations for variables,

– block-structure, begin-end

– recursion,

– pass-by-value parameters

• Impacts:
– one of the most influential programming languages

– most imperative languages are derivatives of Algol: Pascal, C/C++, Ada, Java.

– standard way of describing algorithms in research papers for 30 years.

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

27

LISP
• LISt Processor

late 1950s

John McCarthy (MIT, at Stanford now)

1971 Turing Award for contributions in AI.

• AI applications, still dominating

• Contributions:
– first one to depart from imperative/procedural paradigm: functional

programming language

– Garbage collection

– Recursion, s-expression

• Limitations;
– Could not run efficiently on von Neumann architecture

– LISP-specific machines

• Variants: Common LISP, Scheme

• Following LISP: ML, Haskell
Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008
28

APL
• A Programming Language

late 1950s to early 60s

Kenneth E. Iverson (Harvard and IBM)

1979 Turing Award for contributions to mathematical notation and PL
theory.

• A language for programming mathematical computations

– arrays and matrices

• Functional style, influenced FP and modern function languages

• Drawbacks:

– No structuring

– Greek symbol, requires special terminal keyboard

– Extremely difficult to read
Lecture 2 - History, Spring 2008 29CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008

Summary of 1950s

• Huge success and big impacts:
– Pioneered imperative and functional programming

– Still used much today

Many derivatives– Many derivatives

• The 1960s is not equally fruitful

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

30

1/18/2008

6

The 1960s: An Explosion in
Programming Languages

• Hundreds of programming languages

• PL/I

• Algol 68

• SNOBOL• SNOBOL

• Simula67

• BASIC

Lecture 2 - History, Spring 2008 31CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

PL/I

• 1963-1964, IBM

• Goal:
– Universal language, “language to end all languages.”

• combine features of FORTRAN, COBOL and Algol60

• concurrencyconcurrency

• exception handling

– for IBM 360

• Can be considered to be a failure:
– translators were difficult to write, slow, huge and unreliable

– difficult to learn and use

– forward-looking, but simply ahead of its time

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

32

Simula67

• 1965-1967

Kristen Nygaard and Ole-Johan Dahl (Norwegian Computing
Center)

2001 Turing Award for OO and Simula

• Based on Simula I and Algol60

• Designed for simulations

• First OO language
– object, class, subclass (inheritance), virtual method, coroutine

• Ahead of its time. Inefficient.

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

33

Basic

• Beginner's All-purpose Symbolic Instruction Code

1964

John Kemeny and Thomas Kurtz (Dartmouth)

• Goal:
– Simple language for non-experts to use

• Popular for schools and homes
– Altair BASIC for personal computers, by Bill Gates, Paul Allen, and

Monte Davidoff. (1975)

• Dialect: Visual Basic

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

34

The 1970s: Simplicity,
Abstraction, Study

• Tremendous success

– few new concepts

– simplicity and consistency

• Algol-W

Niklaus Wirth (ETH Zurich) (1984 Turing Award) and C.A.R. Hoare (1980
Turing Award)

– response to the direction in 1960s

• Pascal, 1971, Niklaus Wirth

– popular for teaching PL

• C, 1972, Dennis Ritchie (Bell Labs), 1983 Turing Award

– Successful partially due to the popularity of UNIX

• CLU, Euclid, Mesa: Abstract Data Type (ADT)
Lecture 2 - History, Spring 2008 35CSE3302 Programming Languages, UT-Arlington

©Chengkai Li, 2008

The 80s: New Directions and OO

• Following the experiments of ADT in 70s
– Ada, Modula-2

• Object-Oriented Programming
– Smalltalk, C++, Eiffel, Object C, Object Pascal,

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

36

Oberon

• Functional Programming
– Scheme, ML, Haskell, Miranda, FP

• Logic Programming
– Prolog

1/18/2008

7

Ada

• Named after Ada Lovelace

1980

Department of Defense

– Hundreds of languages were used by DoD

– Required in DoD projects, 1987-1997.Required in DoD projects, 1987 1997.
• Contributions:

– ADT (package)
– concurrency (task)
– exception handling

• Universal language, PL/I of 80s, but didn’t fail
– carefully designed
– required use

Lecture 2 - History, Spring 2008 37CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Smalltalk

• 1980

Alan Kay (2003 Turing Award), Dan Ingalls, et. al. (Xerox PARC)

• Inspired by Simula67

• Contributions

– purest OO language

– graphical user interface, mouse (limited its use, as such
hardware was not generally available)

– Push C++ and OO into spotlight

• Still used much today

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

38

C++

• 1980

Bjarne Stroustrup (Bell Labs, now at TAMU)

• Extensions from Simula67 and C, “C with Classes”

C++0x – An Overview

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

39

Other Paradigms

• Functional Programming:
– Common Lisp, Scheme, ML, Haskell (pure functional

programming language)
– Logo: teach kids to program

http://www.youtube.com/watch?v=ohgPmdZgUmE

• Logic Programming:
– Prolog

Lecture 2 - History, Spring 2008 40CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

1990’s: Internet, Scripting

• OO widely adopted (C++ was going to
dominate)

• Then Java came

S i i l b l• Scripting languages, became general-purpose
languages:

Perl, Tcl, Python, PHP, …
http://www.youtube.com/watch?v=wVYsINZ5nAY

Lecture 2 - History, Spring 2008 41CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Java

• 1995, James Gosling et. al. (Sun)

• Was for embedded consumer-electronic applications (set-top
box), then for Internet/Web and network applications

• Based on C++

Diff• Differences

– Pros: richer libraries (API), portability (compile-once, run-
anywhere)

– Cons: slower than C++, no ISO/ANSI standard (controlled
by Sun).

– references vs. pointers

– garbage collection

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

42

1/18/2008

8

What’s next?

• C/C++/C#?

• Java?

• A new language?

Lecture 2 - History, Spring 2008 CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

43

