3/27/2008

CSE 3302 P
Programming Languages

Functional Programming Language
(Introduction and Scheme)

Chengkai Li
Fall 2007

Lecture 17 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ :

©Chengkai Li, 2008

A

Disclaimer A

e Many of the slides are based on “Introduction
to Functional Programming” by Graham
Hutton, lecture notes from Oscar Nierstrasz,
and lecture notes of Kenneth C. Louden.

Lecture 17 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ 2

©Chengkai Li, 2008

Resources 'y

* Textbook: Chapter 11

* Tutorial:
— The Scheme Programming Language http://www.scheme.com/tspl3/
(Chapter 1-2)
— Yet Another Haskell Tutorial http://www.cs.utah.edu/~hal/htut
(Chapter 1-4, 7)

* Implementation:
* DrScheme http://www.drscheme.org/

¢ Hugs http://www.haskell.org/hugs/ (download WinHugs)

* (Optional) Further reading:
— Reference manual:
Haskell 98 Report http://haskell.org/haskellwiki/Definition
— A Gentle Introduction to Haskell 98 http://www.haskell.org/tutorial/

Lecture 17 - Functional
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington 3
©Chengkai Li, 2008

History

Lambda Calculus

(Church, 1932-33) formal model of computation
Lisp
(McCarthy, 1960) symbolic computations with lists
Scheme, 70s
APL

(Iverson, 1962) algebraic programming with arrays

let and where clauses
equational reasoning; birth of “pure”
functional programming ...

ISWIM
(Landin, 1966)

(Edinburl\'llgh 1979) originally meta language for theorem
Caml 1985, Ocaml proving

SASL, KRC, Miranda

(Tumer, 1976-85) lazy evaluation

Haskell “Grand Unification” of functional languages
(Hudak, Wadler, et al., 1988) | ...

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington a4
Programming, Spring 2008 ©Chengkai Li, 2008

Functional ProgrammingA

¢ Functional programming is a style of programming:

Imperative Programming:

— Program = Data + Algorithms

00 Programming:

— Program = Object. message (object)
Functional Programming:

— Program = Functions Functions

¢ Computation is done by application of functions

%sclure 17 - Functional

CSE3302 Programming Languages, UT-Arlington
rogramming, Spring 2008

©Chengkai Li, 2008

Functional Programming Languag A
Al

¢ A functional language supports and advocates for the style of FP:

¢ Important Features:

«* Everything is function (input->function->output)

“* Novariables or assignments (only constant values, arguments, and

returned values. Thus no notion of state, memory location)
“* No loops (only recursive functions)

“ No side-effect (Referential Transparency): the value of a function
depends only on the values of its parameters. Evaluating a function with
the same parameters gets the same results. There is no state.
Evaluation order or execution path don’t matter. (random() and
getchar() are not referentially transparent.)

«* Functions are first-class values: functions are values, can be parameters
and return values, can be composed.

h“"”e 17 — Functional CSE3302 Programming Languages, UT-Arlington
rogramming, Spring 2008 ©Chengkaili, 2008

3/27/2008

We can use functional programming .
in imperative languages v Why does it matter, anyway 28

° Imperative Style The advantages of functional programming languages:
int sumto(int n) * Simple semantics, concise, flexible
{int i, sum =0 * “No” side effect
for(i = 1; 1 <= n; i++) sum += i; o Less bugs
return sum;
} It does have drawbacks:

* Execution efficiency

. * More abstract and mathematical, thus more difficult to learn and use.
e Functional style:

int sumto(int n) Even if we don’t use FP languages:

{ if (n <= 0) return O; « Features of recursion and higher-order functions have gotten into most
else return sumto(n-1) + n; programming languages.
Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 7 Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 8
Programming, Spring 2008 ©Chengkal i, 2008 Programming, Spring 2008 ©Chengkal i, 2008

Functional Programming
Languages in Use & B

Popular in prototyping, mathematical proof systems, Al and logic applications,
research and education.

Scheme: scheme
Document Style Semantics and Specification Language (SGML stylesheets)

GIMP

Guile (GNU’s official scripting language)

Emacs
Haskell

Linspire (commerical Debian-based Linux distribution)

Xmonad (X Window Manager)

XSLT (Extensible Stylesheet Language Transformations)

Lecture 17 - Functional

CSE3302 Programming Languages, UT-Arlington 9 Lecture 17 ~ Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkaili, 2008

Scheme: Lisp dialect

* Syntax (slightly simplified):

A Expressions e

42 —a number
expression — atom | list “hello" —a string
atom — number | string | identifier | character | boolean #HT —the Boolean value "true"
list — '(* expression-sequence')' #\a —the character 'a'
expression-sequence — expression expression-sequence | expression (2.1 2.23.1) —alist of numbers
hello —a identifier
(+223) —a list (identifier "+" and two numbers)

* Everythingis an expression: programs, data, ...
¢ (+ 2 3) (/ 6 2)) —alist(identifier "*" and two lists)
Thus programs are executed by evaluating expressions.

* Only 2 basic kinds of expressions:
— atoms: unstructured
— lists: the only structure (a slight simplification).

Lecture 17 - Functional

CSE3302 Programming Languages, UT-Arlington 1 Lecture 17 ~ Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkaili, 2008

3/27/2008

Evaluation of Expressions %

Programs are executed by evaluating expressions. Thus
semantics are defined by evaluation rules of expressions.

Evaluation Rules:

e number | string: evaluate to itself

* Identifier: looked up in the environment, i.e., dynamically
maintained symbol table

e List: recursively evaluate the elements (more details in
following slides)

Lecture 17 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ B

©Chengkai Li, 2008

Eager Evaluation A

e Alistis evaluated by recursively evaluating each element:
* unspecified order
« first element must evaluate to a function.

This function is then applied to the evaluated values of
the rest of the list. (prefix form).

E.g.

3+4%5 (+3 (x 45)

(a == b)&&(a = 0) (and (= a b) (not (= a 0)))
gcd(10,35) (ged 10 35)

* Most expressions use applicative order evaluation (eager evaluation):
subexpressions are first evaluated, then the expression is evaluated.

(correspondingly in imperative language: arguments are evaluated at a
call site before they are passed to the called function.)

Lecture 17 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ u“

©Chengkai Li, 2008

Lazy Evaluation: Special Forms g8
« iffunction (if a b c):
— a is always evaluated
— Either b or ¢ (but not both) is evaluated and returned as result.
— cis optional. (if ais false and C is missing, the value of the expression is

undefined.)
eg, (if (=a0) 0 (/1 a))
« cond:
(cond (el v1) (e2 v2) ... (else vn))

— The (ei vi) areconsidered in order

— el isevaluated. Ifitis true, Vi isthen evaluated, and the value is the result
of the cond expression.

— Ifno el is evaluated to true, vn is then evaluated, and the value is the result
of the cond expression.

— Ifno ei is evaluated to true, and vn is missing, the value of the expression is
undefined.

(cond ((=a0) 0) ((Fa1l)1l) (lse (/1 a)))

Lecture 17 - Functional

Lazy Evaluation: Special Forms g8

« define function:
declare identifiers for constants and function, and thus put them into

symbol table.
(define a b): define a name
(define (a pl p2 ..) bl b2 .): define a function a

with parameters p1 p2

the first expression after define is never evaluated.
eg,
— define x (+ 2 3)

— (define (gcd u v)
(if (= v 0) u (gcd v (remainder u v))))

i Le 17 - F | .
Programming, Spring 2008 CSE3302 Frogr;@g::k:rlig'u;ﬁ;, UT-Arlington 15 Pig;‘::“mi"g’“slﬁ:;;ms CSE3302 Frogr(;@g::k:rlig'u;ﬁ;, UT-Arlington 16
Lazy Evaluation: Special Forms g8 Other Special Forms v

* Quote, or " for short, has as its whole purpose to not evaluate its
argument:
(quote (2 3 4)) or "(2 3 4) returnsjust (2 3 4).

(we need a list of numbers as a data structure)

« eval function: get evaluation back
(eval “(+ 2 3)) returns 5

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 17
Programming, Spring 2008 ©Chengkai Li, 2008

» let function:

create a binding list (a list of name-value assocations), then
evaluate an expression (based on the values of the names)

(let ((n1 el) (n2 e2) .) vli v2 .)

e.g-, (let ((@a 2) (b 3)) (+ a b))

¢ Is this assignment?

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 18
Programming, Spring 2008 ©Chengkai Li, 2008

3/27/2008

Lists e
List
— Only data structure
— Used to construct other data structures.
— Thus we must have functions to manipulate lists.
e CONS: constructa list
(1 2 3)=(cons 1 (cons 2 (cons 3 "))
(1 23)=(ons 1 "2 3))
e car: the first element (head), which is an expression
(car "(1 2 3))=1
e cdr:the tail, which is a list
(cdr "(1 2 3))=(2 3)

Lecture 17 - Functional

Data structures A

(define L "((1 2) 3 (4 (5 6))))
(car (car L))

(cdr (car L))

(car (car (cdr (cdr L))))

Note: car(car = caar
cdr(car = cdar
car(car(cdr(cdr = caaddr

Lecture 17 - Functional

Programming, Spring 2008 CSE3302 nglérg:‘v::sk\:‘rllg'u;.g;;, UT-Arlington 19 Programming, Spring 2008 CSE3302 ngrérg:‘v::sk\:‘rllg'u;.g;;, UT-Arlington 20
. Other list manipulation operations:
Box diagrams e e

a List = (head expression, tail list)
e L=((12)3(4(56))) looks as follows in memory

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 21
Programming, Spring 2008 ©Chengkai Li, 2008

based on car, cdr, cons

* (define (append L M)
(if (null? L)
M
(cons (car L) (append (cdr L) M))

)

+ (define (reverse L)
Gf (null? L)
M
(append (reverse (cdr L)) (list (car L)))
D)
D]

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 22
Programming, Spring 2008 ©Chengkai Li, 2008

Lambda expressions A
/function values P

* Afunction can be created dynamically using a lambda expression, which
returns a value that is a function:
(lambda (x) (* x x))

¢ The syntax of a lambda expression:
(lambda list-of-parameters expl exp2..)

* Indeed, the "function" form of define is just syntactic sugar for a
lambda:
(define (f xX) (* x X))
is equivalent to:
(define ¥ (lambda (xX) (* x x)))

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 23
Programming, Spring 2008 ©Chengkai Li, 2008

Function values as data 8%

A

e The result of a lambda can be manipulated as
ordinary data:

> ((lambda (X) (* x X)) 5)
25

> (define (add-x x) (lambda(y)(+ X y)))
> (define add-2 (add-x 2))

> (add-2 15)
Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 24
Programming, Spring 2008 ©Chengkai Li, 2008

3/27/2008

Higher-order functions A

¢ higher-order function:
a function that returns a function as its value
or takes a function as a parameter
or both
e Eg.:
¢ add-x

* compose (next slide)

Lecture 17 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ »

©Chengkai Li, 2008

Higher-order functions A

(define (compose f g)
(lambda () (F (g x))))

(define (map f L)
(if (ull? L) L
(cons (f (car L))(map f (cdr L)))))

(define (filter p L)
(cond
((null? L) L)
((p (car L)) (cons (car L)
(Filter p (cdr L))))
(else (filter p (cdr L)))))

Lecture 17— Functional CSE3302 Programming Languages, UT-Arlington 26
Programming, Spring 2008 ©Chengkai Li, 2008

I et expressions as Iambdasﬂ

* A let expression is really just a lambda applied immediately:

(Tet ((x 2) (v 3)) ¢+ xV¥))

is the same as
((lambda (x y) (+ x y)) 2 3)

e This is why the following let expression is an error if we
want x = 2 throughout:

(et (x 2) (v (+ x 1))) (+ x ¥))

* Nested let (lexical scoping)

(et ((x 2)) (Met ((y (+ x 1))) (+ x ¥)))

Lecture 17 - Functional CSE3302 Programming Languages, UT-Arlington 27
Programming, Spring 2008 ©Chengkai Li, 2008

