4/8/2008

CSE 3302 B
Programming Languages

Functional Programming Language:
Haskell (cont’d)

oy

Defining Functions

Chengkai Li
Spring 2008
Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 2
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008
Cond|t|ona| Expressions 4 Conditional expressions can be nested: s

As in most programming languages, functions can be defined using
conditional expressions.

abs takes an integer n and returns n if it is non-negative and -n

otherwise.
Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Note:

¥ In Haskell, conditional expressions must always have an else branch, which
avoids any possible ambiguity problems with nested conditionals.

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 4
Programming, Spring 2008 ©Chengkai Li, 2008

Guarded Equations e

As an alternative to conditionals, functions can also be defined using guarded
equations.

As previously, but using guarded equations.

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Guarded equations can be used to make definitions involving multiple ‘ﬂ(
conditions easier to read:

Note:

$ The catch all condition otherwise is defined in the prelude by otherwise =
True.

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 6
Programming, Spring 2008 (©Chengkai Li, 2008

4/8/2008

Pattern Matching vy

Many functions have a particularly clear definition using pattern matching on
their arguments.

ST

Functions can often be defined in many different ways using pattern matching.
For example

can be defined more compactly by

[not maps False to True, and True to False.] % The underscore symbol _ is the wildcard pattern that matches any
argument value.
Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 7 Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 8
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

List Patterns v

In Haskell, every non-empty list is constructed by repeated use of an operator
: called “cons” that adds a new element to the start of a list.

Means 1:(2:(3:[])).

Note: ++ is another list concatenation operator that concatenates two lists

Result is [1,4,5,3].

ST

The cons operator can also be used in patterns, in which case it destructs a
non-empty list.

head and tail map any non-empty list to its first and remaining

elements.
Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 9 Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington 10
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

List Comprehensions

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 1
Programming, Spring 2008 ©Chengkai Li, 2008

List Comprehension e

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 12
Programming, Spring 2008 (©Chengkai Li, 2008

4/8/2008

Lists Comprehensions v

List comprehension can be used to construct new lists from old lists.

In mathematical form {f(x) | xes A p()}

The list [1,4,9,16,25] of all numbers x2 such that x is an element of
the list [1..5].

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

Chengkai Li, 2008

Generators
Ay

3 The expression x < [1..5] is called a generator, as it states how to generate
values for x.

$ Comprehensions can have multiple generators, separated by commas. For
example:

Lecture 19 — Functional
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington
Chengkai Li, 2008

Order Matters 4

Changing the order of the generators changes the order of the elements in
the final list:

& Multiple generators are like nested loops, with later generators as more
deeply nested loops whose variables change value more frequently.

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

Dependant Generators %

Later generators can depend on the variables that are introduced by earlier
generators.

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are elements of the list [1..3]
and x<y.

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

Using a dependant generator we can define the library function that ‘5
concatenates a list of lists: T

For example:

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

Guards e

List comprehensions can use guards to restrict the values produced by earlier
generators.

The list [2,4,6,8,10] of all numbers x such that x is an
element of the list [1..10] and x is even.

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

4/8/2008

Using a guard we can define a function that maps a positive integer to its list of
factors:

For example:

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 19
Programming, Spring 2008 ©Chengkai Li, 2008

For example:

Lecture 19 —Functional CSE3302 Programming Languages, UT-Arlington 20
Programming, Spring 2008 ©Chengkai Li, 2008

For example:

Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington 21
Programming, Spring 2008 ©Chengkai Li, 2008

Recursive Functions

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 22
Programming, Spring 2008 ©Chengkai Li, 2008

factorial maps 0 to 1, and any other integer to the product of
itself with the factorial of its predecessor.

-

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 23
Programming, Spring 2008 ©Chengkai Li, 2008

For example:

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 24
Programming, Spring 2008 (©Chengkai Li, 2008

4/8/2008

Recursion on Lists For example:

Recursion is not restricted to numbers, but can also be used to define functions =
on lists.

product maps the empty list to 1, and any non-empty list
to its head multiplied by the product of its tail. -

Lecture 19 —Functiona CSE3302 Programming Languages, UT-Arlington 25 Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 2
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

Quicksort

The quicksort algorithm for sorting a list of integers can be specified by the
following two rules:
3 The empty list is already sorted;
Non-empty lists can be sorted by sorting the tail values < the head, sorting
the tail values > the head, and then appending the resulting lists on either
side of the head value.

 This is probably the simplest implementation of quicksort in any
programming language!

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 27 Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington 28
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

Introduction

A function is called higher-order if it takes a function as an argument or returns a
function as a result.

Higher-Order Functions

twice is higher-order because it
takes a function as its first argument.

Lecture 19 - Functional CSE3302 Programming Languages, UT-Arlington 29 Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington 30
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

4/8/2008

The Map Function

The higher-order library function called map applies a function to every element
of a list.

For example:

Lecture 19 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ 3

©Chengkai Li, 2008

The map function can be defined in a particularly simple manner using a list
comprehension:

Alternatively, the map function can also be defined using recursion:

Lecture 19 - Functional

(CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ® o ¢ 32

Chengkai Li, 2008

The Filter Function

The higher-order library function filter selects every element from a list that
satisfies a predicate.

For example:

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

Filter can be defined using a list comprehension:

Alternatively, it can be defined using recursion:

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 i e ® 3

©Chengkai Li, 2008

The Foldr Function

A number of functions on lists can be defined using the following simple pattern
of recursion:

f maps the empty list to a value v, and any non-empty list to a
function @ applied to its head and f of its tail.

Lecture 19
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

For example:

Lecture 19 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 & e ® 3

©Chengkai Li, 2008

4/8/2008

The higher-order library function foldr (“fold right”) encapsulates this simple
pattern of recursion, with the function @ and the value v as arguments.

For example:

Lecture 19 — Functional CSE3302 Programming Languages, UT-Arlington 37
Programming, Spring 2008 ©Chengkai Li, 2008

Lecture 19 — Functional
Programming, Spring 2008 ©Chengkai Li, 2008

CSE3302 Programming Languages, UT-Arlington

38

