Grading

- Homework (HW): 25%. (HW1, HW2, HW3, HW4, HW5)
- Machine Problems (MP): 20%. (MP1, MP2)
- Essays (ES): 10%
- Midterm exam: 20%
- Final exam: 25%
- Bonus points: 5%
 - Based on class participation
 - Some additional bonus points (in MP2, HW5)

Letter Grades

- curve-based
- The cutoffs for letter grades are based on your performance.
- Bonus point: can only increase your grade
 - Example:
 - cutoff for A: 88.5
 - your raw score: 86
 - bonus points: 3
 - your grade: B -> A (86+3=88.5)

What's ahead

- HW4: due by April 21st
- HW5: due by May 2nd
- Essay: have you started yet? (due at May 1st)

Grades on WebCT

-foldl :: (a -> b -> a) -> a -> [b] -> a
-foldl f z [] = z
-foldl f z (x:xs) = foldl f (f z x) xs

-foldr :: (a -> b -> b) -> b -> [a] -> b
-foldr f z [] = z
-foldr f z (x:xs) = f (foldr f z xs)
Foldr: \(\otimes \) is right-associative
Foldl: \(\otimes \) is left-associative

\[\text{foldr} \ (-) \ 1 \ [2,3,4] \]
\[\text{foldl} \ (-) \ 1 \ [2,3,4] \]
(section 3.3.2 in the tutorial)

Lambda Expressions

A function can be constructed without giving it a name by using a lambda expression.

\[\lambda x \rightarrow x + 1 \]

The nameless function that takes a number \(x \) and returns the result \(x + 1 \).

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal meaning to functions defined using currying.

For example:

\[\text{add} \ x \ y = x + y \]

means

\[\text{add} = \ \lambda x \rightarrow (\lambda y \rightarrow x + y) \]

Another example

\[\text{compose} \ f \ g \ x = f \ (g \ x) \]

means

\[\text{compose} \ f \ g = \ \lambda x \rightarrow f \ (g \ x) \]

Exercises

1. Write a recursive function \(\text{sum} \ n \) that returns \(1 + 2 + ... + n \)
Exercises

2. Write a recursive function `genlist n` that returns `[1, 2, ..., n]`.

2. (cont.) Check to make sure `n>0`, otherwise return empty list.

3. Check if an element is a member of a list.

4. Implement `++`

4. (cont.) Merge two lists and return a list with elements sorted.

5. A triple `(x,y,z)` of positive integers is pythagorean if $x^2 + y^2 = z^2$. Using list comprehension to define a function `pyths::Int->[(Int, Int, Int)]` that returns the list of all pythagorean triples whose components are at most a given limit. For example:

```haskell
> pyths 10
[(3,4,5), (4,3,5), (6,8,10), (8,6,10)]
```
Exercises

5. (cont.) Make sure \(x \leq y \leq z \)

Exercises

6. Define list comprehension \([f \ x \mid x \leftarrow xs, p \ x]\) using \texttt{map} and \texttt{filter}.

Exercises

7. Define \texttt{map} \(f \) and \texttt{filter} \(p \) using \texttt{foldr}