CSE4334/5334 Data Mining 5 Similarity/Distance Measures

Chengkai Li

Department of Computer Science and Engineering University of Texas at Arlington
Fall 2018 (Slides courtesy of Pang-Ning Tan, Michael Steinbach and Vipin Kumar)

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Is higher when objects are more alike
- Often falls in the range $[0,1]$

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Similarity and Dissimilarity

Similarity and Dissimilarity of Simple Attributes

Dissimilarity between Objects

- Distance
- Set Difference

Similarity between Objects

- Binary Vectors
- Vectors

○ ...

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Type	Dissimilarity	Similarity
Nominal	$d= \begin{cases}0 & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}$	$s= \begin{cases}1 & \text { if } p=q \\ 0 & \text { if } p \neq q\end{cases}$
Ordinal	$d=\frac{\|p-q\|}{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s=1-\frac{\|p-q\|}{n-1}$
Interval or Ratio	$d=\|p-q\|$	$s=-d, s=\frac{1}{1+d}$ or

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$
\operatorname{dist}=\sqrt{\sum_{k=1}^{n}\left(p_{k}-q_{k}\right)^{2}}
$$

Where n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the $\mathrm{k}^{\text {th }}$ attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

Minkowski Distance is a generalization of Euclidean Distance

$$
\operatorname{dist}=\left(\sum_{k=1}^{n}\left|p_{k}-q_{k}\right|^{r}\right)^{\frac{1}{r}}
$$

Where r is a parameter, n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

$r=1$. City block (Manhattan, taxicab, L_{1} norm) distance.
A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
$r=2$. Euclidean distance
$r \rightarrow \infty$. "supremum" ($\mathrm{L}_{\text {max }}$ norm, L_{∞} norm) distance.
This is the maximum difference between any component of the vectors

Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

$\mathbf{L 1}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	4	4	6
$\mathbf{p 2}$	4	0	2	4
$\mathbf{p 3}$	4	2	0	2
$\mathbf{p 4}$	6	4	2	0

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

$\mathbf{L 2}$	p1	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

\mathbf{L}_{∞}	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
	$\mathbf{p 1}$	0	2	3

Common Properties of a Distance

Distances, such as the Euclidean distance, have some well known properties.

1. $d(p, q) \geq 0$ for all p and q and $d(p, q)=0$ only if $p=q$. (Positive definiteness)
2. $\quad d(p, q)=d(q, p)$ for all p and q. (Symmetry)
3. $\mathrm{d}(p, r) \leq d(p, q)+d(q, r)$ for all points p, q, and r.
(Triangle Inequality)
where $d(p, q)$ is the distance (dissimilarity) between points (data objects), D and q.

A distance that satisfies these properties is a metric

Common Properties of a Similarity

Similarities, also have some well known properties.

1. $s(p, q)=1$ (or maximum similarity) only if $p=q$.
2. $\quad s(p, q)=s(q, p)$ for all p and q. (Symmetry)
where $s(p, q)$ is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

Common situation is that objects, p and q, have only binary attributes

Compute similarities using the following quantities
$\mathrm{M}_{01}=$ the number of attributes where p was 0 and q was 1 $\mathrm{M}_{10}=$ the number of attributes where p was 1 and q was 0 $\mathrm{M}_{00}=$ the number of attributes where p was 0 and q was 0 $\mathrm{M}_{11}=$ the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

$\mathrm{SMC}=$ number of matches $/$ number of attributes

$$
=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)
$$

$J=$ number of 11 matches / number of not-both-zero attributes values

$$
=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)
$$

SMC versus Jaccard: Example

$p=1000000000$
$q=0000001001$
$\mathrm{M}_{01}=2$ (the number of attributes where p was 0 and q was 1)
$\mathrm{M}_{10}=1$ (the number of attributes where p was 1 and q was 0)
$\mathrm{M}_{00}=7$ (the number of attributes where p was 0 and q was 0) $\mathrm{M}_{11}=0$ (the number of attributes where p was 1 and q was 1)
$\mathrm{SMC}=\left(\mathrm{M}_{11}+\mathrm{M}_{00}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}+\mathrm{M}_{00}\right)=(0+7) /(2+1+0+7)=0.7$
$\mathrm{J}=\left(\mathrm{M}_{11}\right) /\left(\mathrm{M}_{01}+\mathrm{M}_{10}+\mathrm{M}_{11}\right)=0 /(2+1+0)=0$

Cosine Similarity

If d_{1} and d_{2} are two document vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) / \| d_{1}| || | d_{2}| |,
$$

where \bullet indicates vector dot product and $||d||$ is the length of vector d.

Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=1000000102 \\
& d_{1} \bullet d_{2}=3^{*} 1+2^{*} 0+0 * 0+5^{*} 0+0 * 0+0^{*} 0+0^{*} 0+2^{*} 1+0^{*} 0+0 * 2=5 \\
& \left|\left|d_{1}\right|\right|=\left(3^{*} 3+2^{*} 2+0^{*} 0+5^{*} 5+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0 * 0\right)^{0.5}=(42)^{0.5}=6.481 \\
& \left|\left|d_{2}\right|\right|=\left(1 * 1+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+1^{*} 1+0^{*} 0+2^{*} 2\right)^{0.5}=(0)^{0.5}=2.245
\end{aligned}
$$

$$
\cos \left(d_{p}, d_{2}\right)=.3150
$$

Pearson Correlation Coefficient

* Correlation measures the linear relationship between objects

population correlation

$$
\begin{aligned}
\mathrm{E}[X]=\mu . \quad \sigma & =\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]} \\
& =\sqrt{\mathrm{E}\left[X^{2}\right]+\mathrm{E}[-2 \mu X]+\mathrm{E}\left[\mu^{2}\right]}=\sqrt{\mathrm{E}\left[X^{2}\right]-2 \mu \mathrm{E}[X]+\mu^{2}}
\end{aligned}
$$

$$
\rho_{X, Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}},
$$

covariance
sample correlation

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

$$
\begin{aligned}
\longleftrightarrow \operatorname{cov}(X, Y) & =\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])] \\
& =\mathrm{E}[X Y-X \mathrm{E}[Y]-\mathrm{E}[X] Y+\mathrm{E}[X] \mathrm{E}[Y]] \\
& =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]-\mathrm{E}[X] \mathrm{E}[Y]+\mathrm{E}[X] \mathrm{E}[Y] \\
& =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]
\end{aligned}
$$

$$
r=r_{x y}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{\sqrt{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \sqrt{n \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}}}
$$

$$
r=r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \longleftarrow \operatorname{dot} \text { product }
$$

$$
r=r_{x y}=\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{(n-1) s_{x} s_{y}}
$$

$$
r=r_{x y}=\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{\sqrt{\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)} \sqrt{\left(\sum y_{i}^{2}-n \bar{y}^{2}\right)}}
$$

$$
s_{x}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Visually Evaluating Correlation

-1.00	-0.90	-0.80	-0.70	-0.60	-0.50	-0.40
-0.30	-0.20	-0.10	0.00	0.10	0.20	0.30
0.40	0.50	0.60	0.70	0.80	0.90	1.00

Scatter plots showing the similarity from -1 to 1 .

General Approach for Combining Similarities

Sometimes attributes are of many different types, but an overall similarity is needed.

1. For the $k^{t h}$ attribute, compute a similarity, s_{k}, in the range $[0,1]$.
2. Define an indicator variable, δ_{k}, for the $k_{t h}$ attribute as follows:

$$
\delta_{k}= \begin{cases}0 & \text { if the } k^{t h} \text { attribute is a binary asymmetric attribute and both objects have } \\ \text { a value of } 0, \text { or if one of the objects has a missing values for the } k^{t h} \text { attribute } \\ 1 & \text { otherwise }\end{cases}
$$

3. Compute the overall similarity between the two objects using the following formula:

$$
\operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}}
$$

Using Weights to Combine Similarities

* May not want to treat all attributes the same.

- Use weights w_{k} which are between 0 and 1 and sum to 1 .

$$
\begin{aligned}
& \operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} w_{k} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}} \\
& \operatorname{distance}(p, q)=\left(\sum_{k=1}^{n} w_{k}\left|p_{k}-q_{k}\right|^{r}\right)^{1 / r}
\end{aligned}
$$

