CSE4334/5334 Data Mining 7 Classification: Naïve Bayes Classifier

Chengkai Li

Department of Computer Science and EngineeringUniversity of Texas at ArlingtonFall 2018 (Slides courtesy of Pang-Ning Tan, Michael Steinbach and Vipin Kumar)

A probabilistic framework for solving classification problems

Conditional Probability:
$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$
$$P(A \mid C) = \frac{P(A, C)}{P(C)}$$
Bayes theorem:
$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

Given:

A doctor knows that meningitis causes stiff neck 50% of the time
Prior probability of any patient having meningitis is 1/50,000
Prior probability of any patient having stiff neck is 1/20
If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

Consider each attribute and class label as random variables

- Given a record with attributes $(A_1, A_2, ..., A_n)$
- Goal is to predict class C
- $\circ\,$ Specifically, we want to find the value of C that maximizes P(C | A11, A21,...,An)

Can we estimate $P(C | A_1, A_2, ..., A_n)$ directly from data?

Bayesian Classifiers

Approach:

 \circ compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

o Choose value of C that maximizes

$$P(C \mid A_1, A_2, \dots, A_n)$$

• Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$

How to estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

Assume independence among attributes A_i when class is given: $\circ P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$

• Can estimate $P(A_i | C_j)$ for all A_i and C_j .

• New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class: $P(C) = N_c/N$ o e.g., P(No) = 7/10, P(Yes) = 3/10

For discrete attributes: $P(A_i | C_k) = |A_{ik}| / N_c$

- \circ where $|A_{ik}|$ is number of instances having attribute A_i and belongs to class C_k
- Examples:
 P(Status=Married | No) = 4/7
 P(Refund=Yes | Yes)=0

How to Estimate Probabilities from Data?

For continuous attributes:

- Discretize the range into bins and thus transform the attribute into an ordinal attribute.
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - $\circ~$ Once probability distribution is known, can use it to estimate the conditional probability $P(A_i \,|\, c)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

 $P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$

For (Income, Class=No):

o If Class=No

- \circ sample mean = 110
- \circ sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record: P(X | Class=No) = P(Refund=No | Class=No) \times P(Married | Class=No) \times P(Income=120K| Class=No) $= 4/7 \times 4/7 \times 0.0072 = 0.0024$ P(X | Class=Yes) = P(Refund=No | Class=Yes) \times P(Married | Class=Yes) \times P(Income=120K| Class=Yes) $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$ Since P(X | No)P(No) > P(X | Yes)P(Yes)Therefore P(No | X) > P(Yes | X)=> Class = No

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7P(Refund=No|No) = 4/7P(Refund=Yes|Yes) = 0P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/3 P(Marital Status=Divorced|Yes)=1/3 P(Marital Status=Married|Yes) = 0 For taxable income: If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

Naïve Bayes Classifier

If one of the conditional probability is zero, then the entire expression becomes zero Probability estimation:

Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classes p: prior probability

m: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Ji-mannais	
ammals	/
on-mammals	$D(A \mid N) = 1$
on-mammals	$P(A \mid N) = \frac{1}{12}$
on-mammals	1.

A: attributes M: mammals N: non-mammals

$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$
$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$
$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$
$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A | M)P(M) > P(A | N)P(N)=> Mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Naïve Bayes (Summary)

Robust to isolated noise points

Handle missing values by ignoring the instance during probability estimate calculations

Robust to irrelevant attributes

Independence assumption may not hold for some attributesO Use other techniques such as Bayesian Belief Networks (BBN)