CSE4334/5334 Data Mining9 Classification: KNN and SVM

Chengkai Li

Department of Computer Science and Engineering University of Texas at Arlington Fall 2018 (Slides courtesy of Pang-Ning Tan, Michael Steinbach and Vipin Kumar)

Instance-Based Classifiers

Instance Based Classifiers

Examples:

o Rote-learner

 Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Nearest neighbor

• Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

Basic idea:

• If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

Requires three things

- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

Compute distance between two points:

• Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

Determine the class from nearest neighbor list

- take the majority vote of class labels among the k-nearest neighbors
- Weigh the vote according to distance
 - \circ weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

Choosing the value of k:

- 0 If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

Problem with Euclidean measure:

- 0 High dimensional data
 - o curse of dimensionality
- o Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

k-NN classifiers are lazy learners

- o It does not build models explicitly
- Unlike eager learners such as decision tree induction and rule-based systems
- o Classifying unknown records are relatively expensive

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	Νο
2	No	Married	100K	Νο
3	No	Single	70K	Νο
4	Yes	Married	120K	Νο
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	Νο
8	No	Single	85K	Yes
9	No	Married	75K	Νο
10	No	Single	90K	Yes

Class	Marital Status				
Class	Single	Married	Divorced		
Yes	2	0	1		
No	2	4	1		

Class	Refund		
Class	Yes	No	
Yes	0	3	
No	3	4	

Distance between nominal attribute values:

d(Single,Married)

= | 2/4 - 0/4 | + | 2/4 - 4/4 | = 1

d(Single, Divorced)

= | 2/4 - 1/2 | + | 2/4 - 1/2 | = 0

d(Married, Divorced)

= | 0/4 - 1/2 | + | 4/4 - 1/2 | = 1

d(Refund=Yes,Refund=No)

 $= \mid 0/3 - 3/7 \mid + \mid 3/3 - 4/7 \mid = 6/7$

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
Х	Yes	Single	125K	No
Y	No	Married	100K	No

Distance between record X and record Y:

$$\Delta(X,Y) = w_X w_Y \sum_{i=1}^d d(X_i,Y_i)^2$$

where:

 $w_{X} = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}$

 $w_X \cong 1$ if X makes accurate prediction most of the time $w_X > 1$ if X is not reliable for making predictions

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

Which one is better? B1 or B2? How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

$$Margin = \frac{2}{\|\vec{w}\|}$$

• Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$

o But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

What if the problem is not linearly separable?

- What if the problem is not linearly separable?
- o Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\left\| \vec{w} \right\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

• Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Consider the following 5 points in a 2-dimension space (x, y): (-2,0), (0,-1) (0,0), (0,1), (2,1). Of these, (0,1) and (2,1) belong to class C1 and (-2,0) (0,-1), and (0,0) belong to class C2. Use support vector machine to classify. Provide the support vectors, the decision boundary, and the maximized margin.