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Instance-Based Classifiers
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Instance Based Classifiers re

o Rote-learner

o Memorizes entire training data and performs classification only
it attributes of record match one of the training examples
exactly

o Nearest neighbor

o Uses k “closest” points (nearest neighbors) for performing
classitication
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Nearest Neighbor Classifiers "

Basic idea:
o If it walks like a duck, quacks like a duck, then it’s probably a duck
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Nearest-Neighbor Classt

Unknown record
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® Requires three things

The set of stored records

Distance Metric to compute distance
between records

The value of £, the number of nearest
neighbors to retrieve

® 'To classify an unknown record:

Compute distance to other training records
Identify £ nearest neighbors

Use class labels of nearest neighbors to
determine the class label of unknown
record (e.g, by taking majority vote)
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Definition ot Nearest Neighbor
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(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have
the k smallest distance to x
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1 nearest-neighbor

Voronoi Diagram
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Nearest Neighbor Classitication

Compute distance between two points:

o Euclidean distance

d(p.q)=./>(p,—q)

Determine the class from nearest neighbor list

o take the majority vote of class labels among the k-nearest
neighbors

o Weigh the vote according to distance
o weight factor, w = 1/d?
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Nearest Neighbor Classt

Choosing the value of k:

o If kis too small, sensitive to noise points

cation. ..

o If kis too large, neighborhood may include points from other

classes
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Nearest Neighbor Classification... #'t

o Attributes may have to be scaled to prevent distance
measures from being dominated by one of the attributes
o Example:
o height of a person may vary from 1.5m to 1.8m
o weight of a person may vary from 90lb to 300lb

o 1ncome of a person may vary from $10K to $1M
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Nearest Neighbor Classification... #'t

o High dimensional data

o curse of dimensionality

o Can produce counter-intuitive results
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+ Solution: Normalize the vectors to unit length
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Nearest neighbor Classification... #%

lazy learners
o It does not build models explicitly

o Unlike eager learners such as decision tree induction and
rule-based systems

o Classifying unknown records are relatively expensive
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Example: PEBLS

Distance between nominal attribute values:

= |2/4—0/4|+|2/4—4/4|= 1

= |2/4-1/2|+|2/4—1/2|= 0

= |0/M4-1/2|+|4/4-1/2|= 1
d(Refund=Yes,Refund=No)
=|10/3-3/7|+|3/3-4/7|=6/7

Tid Refund Marital Taxable
Status Income |Cheat
1 Yes Single 125K No d(Single,Married)
2 No Married 100K No
3 No Single 70K No d(Sinale.Di q
4 Yes Married 120K No ( Ingie,Livorce )
5 No Divorced |95K Yes
6 |No Married | 60K No d(Married,Divorced)
7 Yes Divorced |220K No
8 No Single 85K Yes
9 No Married 75K No
10 [No Single 90K Yes
Marital Status Refund
Class : : : Class
Single Married Divorced Yes No
Yes 2 0 1 Yes 0 3
No 2 4 1 No 3 4
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Example: PEBLS ’

Tid Refund Marital Taxable

Status Income Cheat
X |Yes Single 125K No
Y |No Married 100K No

Distance between record X and record Y:

d
AX,Y)=w,w, 2 :d(Xl., Y.)?
i=1

where: 1, — Number of times X is used for prediction

Number of times X predicts correctly

wy = 11f X makes accurate prediction most of the time
wy > 11f X 1s not reliable for making predictions
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Support Vector Machines
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Find a linear hyperplane (decision boundary) that will separate the data
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One Possible Solution

O O
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Another possible solution
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Other possible solutions
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Support Vector Machines
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Which one is better? B1 or B2?

How do you define better?
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Support Vector Machines ra

1
O
© O
O
O
Pelim i, It
.......... TS SEmL L O b
- . b22
[ |
- .
- ‘.."'Tar .. b11
[ | [ .
b12

Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines

o But subjected to the following constraints:

1 ifweX +b=1
—1 ifwexX +b=<-—1

f(f,-)Z{

o This 1s a constrained optimization problem

o Numerical approaches to solve it (e.g., quadratic programming)
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Support Vector Machines

What if the problem is not linearly separable?
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Support Vector Machines ra

What if the problem is not linearly separable?

o Introduce slack variables

o Need to minimize: L(w) = I 7;”2 N C(iékj
i=1

o Subject to:
iy |1 ifWeR b d-&
T -1 ifwex, +b=Cl+ &
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Nonlinear Support Vector Machines#s

What if decision boundary is not linear?
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Nonlinear Support Vector Machines#s

Transtform data into higher dimensional space
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Exercise re

Consider the following 5 points in a 2-dimension space (X,
y): (-2,0), (0,-1) (0,0), (0,1), (2,1). Of these, (0,1) and (2,1)
belong to class C1 and (-2,0) (0,-1), and (0,0) belong to class
C2. Use support vector machine to classity. Provide the
support vectors, the decision boundary, and the maximized
margin.
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