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Practical Issues of  Classification
Underfitting and Overfitting

Missing Values

Costs of  Classification
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Underfitting and Overfitting 
(Example)

500 circular and 500 
triangular data points.

Circular points:

0.5 £ sqrt(x1
2+x2

2) £ 1

Triangular points:

sqrt(x1
2+x2

2) < 0.5 or

sqrt(x1
2+x2

2) > 1
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Underfitting and Overfitting
Overfitting

Underfitting: when model is too simple, both training and test errors are large 

Overfitting:  when model is too complex, test error increases even though training error 
decreases 
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Overfitting due to Noise 

Decision boundary is distorted by noise point
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Overfitting due to Insufficient Examples

Lack of  data points in the lower half  of  the diagram makes it difficult to predict 
correctly the class labels of  that region 

- Insufficient number of  training records in the region causes the decision tree to 
predict the test examples using other training records that are irrelevant to the 
classification task
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Notes on Overfitting
Overfitting results in decision trees that are more complex 
than necessary

Training error no longer provides a good estimate of  how 
well the tree will perform on previously unseen records

Need new ways for estimating errors
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Estimating Generalization Errors
Re-substitution errors: error on training (S e(t) )
Generalization errors: error on testing (S e’(t))

Methods for estimating generalization errors:
o Optimistic approach: e’(t) = e(t)
o Pessimistic approach:
o For each leaf  node: e’(t) = (e(t)+0.5) 
o Total errors: e’(T) = e(T) + N ´ 0.5 (N: number of  leaf  nodes)
o For a tree with 30 leaf  nodes and 10 errors on training (out of  1000 

instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30´0.5)/1000 = 2.5%
o Reduced error pruning (REP):
o uses validation data set to estimate generalization error
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Occam’s Razor
Given two models of  similar generalization errors,  one should prefer 
the simpler model over the more complex model

For complex models, there is a greater chance that it was fitted 
accidentally by errors in data

Therefore, one should include model complexity when evaluating a 
model
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Minimum Description Length (MDL)

Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
o Cost is the number of  bits needed for encoding.
o Search for the least costly model.

Cost(Data|Model) encodes the misclassification errors.
Cost(Model) uses node encoding (number of  children) plus splitting condition 

encoding.
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X2 0
X3 0
X4 1
… …
Xn 1

X y
X1 ?
X2 ?
X3 ?
X4 ?
… …
Xn ?



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

How to Address Overfitting
Pre-Pruning (Early Stopping Rule)
o Stop the algorithm before it becomes a fully-grown tree
o Typical stopping conditions for a node:
o Stop if  all instances belong to the same class
o Stop if  all the attribute values are the same

o More restrictive conditions:
o Stop if  number of  instances is less than some user-specified threshold
o Stop if  class distribution of  instances are independent of  the available features 

(e.g., using c 2 test)
o Stop if  expanding the current node does not improve impurity

measures (e.g., Gini or information gain).
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How to Address Overfitting…
Post-pruning
o Grow decision tree to its entirety
o Trim the nodes of  the decision tree in a bottom-up fashion
o If  generalization error improves after trimming, replace sub-tree 

by a leaf  node.
o Class label of  leaf  node is determined from majority class of  

instances in the sub-tree
o Can use MDL for post-pruning
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Example of  Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4 ´ 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

Examples of  Post-pruning
o Optimistic error?

o Pessimistic error?

o Reduced error pruning?

C0: 11
C1: 3

C0: 2
C1: 4

C0: 14
C1: 3

C0: 2
C1: 2

Don’t prune for both cases

Don’t prune case 1, prune case 2

Case 1:

Case 2:

Depends on validation set
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Handling Missing Attribute Values
Missing values affect decision tree construction in 
three different ways:
o Affects how impurity measures are computed
o Affects how to distribute instance with missing value to 

child nodes
o Affects how a test instance with missing value is 

classified
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Computing Impurity Measure
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

 Class 
= Yes 

Class 
= No 

Refund=Yes 0 3 
Refund=No 2 4 

 

Refund=? 1 0 
 

Split on Refund:
Entropy(Refund=Yes) = 0
Entropy(Refund=No) 
= -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183
Entropy(Children) 
= 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9 ´ (0.8813 – 0.551) = 0.3303

Missing 
value

Before Splitting:
Entropy(Parent) 
= -0.3 log(0.3)-(0.7)log(0.7) = 0.8813



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

Distribute Instances
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund
Yes No

Class=Yes 0 
Class=No 3 

 

 

Cheat=Yes 2 
Cheat=No 4 

 

 

Refund
Yes

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No
Class=Yes 2 + 6/9 
Class=No 4 

 

 

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 
3/9 and to the right child with weight = 6/9

Class=Yes 0 + 3/9 
Class=No 3 
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Classify Instances

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, 
Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 0 1+6/9 1 2.67

Total 3 2.67 1 6.67

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New record:

Probability that Marital Status 
= Married is 3/6.67

Probability that Marital Status 
={Single,Divorced} is 3.67/6.67
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Other Issues
Data Fragmentation
Search Strategy
Expressiveness
Tree Replication
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Data Fragmentation
Number of  instances gets smaller as you traverse 
down the tree

Number of  instances at the leaf  nodes could be 
too small to make any statistically significant 
decision
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Search Strategy
Finding an optimal decision tree is NP-hard

The algorithm presented so far uses a greedy, top-down, 
recursive partitioning strategy to induce a reasonable 
solution

Other strategies?
o Bottom-up
o Bi-directional
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Expressiveness
Decision tree provides expressive representation for learning discrete-valued 
function
o But they do not generalize well to certain types of  Boolean functions
o Example: parity function: 

o Class = 1 if  there is an even number of  Boolean attributes with truth 
value = True

o Class = 0 if  there is an odd number of  Boolean attributes with truth 
value = True

o For accurate modeling, must have a complete tree

Not expressive enough for modeling continuous variables
o Particularly when test condition involves only a single attribute at-a-time
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Decision Boundary

y < 0.33?

     : 0
     : 3

     : 4
     : 0

y < 0.47?

    : 4
    : 0

     : 0
     : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Border line between two neighboring regions of  different classes is known as 
decision boundary

• Decision boundary is parallel to axes because test condition involves a single 
attribute at-a-time
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Oblique Decision Trees

x + y < 1

Class = + Class =     

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive
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Tree Replication
P

Q R

S 0 1

0 1

Q

S 0

0 1

• Same subtree appears in multiple branches
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Model Evaluation
Metrics for Performance Evaluation
o How to evaluate the performance of  a model?

Methods for Performance Evaluation
o How to obtain reliable estimates?

Methods for Model Comparison
o How to compare the relative performance among competing 

models?
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Model Evaluation
Metrics for Performance Evaluation
o How to evaluate the performance of  a model?

Methods for Performance Evaluation
o How to obtain reliable estimates?

Methods for Model Comparison
o How to compare the relative performance among competing 

models?
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Metrics for Performance Evaluation
Focus on the predictive capability of  a model
o Rather than how fast it takes to classify or build models, scalability, 

etc.
Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)
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Metrics for Performance Evaluation…

Most widely-used metric:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

FNFPTNTP
TNTP

dcba
da

+++
+

=
+++

+
=Accuracy 
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Limitation of  Accuracy
Consider a 2-class problem
o Number of  Class 0 examples = 9990
o Number of  Class 1 examples = 10

If  model predicts everything to be class 0, accuracy 
is 9990/10000 = 99.9 %
o Accuracy is misleading because model does not detect 

any class 1 example
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Cost Matrix
PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i
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Computing Cost of  Classification
Cost Matrix PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -
+ -1 100
- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 150 40
- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -
+ 250 45
- 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255
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Cost vs Accuracy
Count PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N – a – d)
= q N – (q – p)(a + d)
= N [q – (q-p) ´ Accuracy]

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) = q 
2. C(Yes|Yes)=C(No|No) = p
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Cost-Sensitive Measures

cba
a

pr
rp

pr

ba
a

ca
a

++
=

+
=

+
=

+
=

+
=

2
22

11
2

(F) measure-F

(r) Recall

 (p)Precision 

● Precision is biased towards C(Yes|Yes) & C(Yes|No)
● Recall is biased towards C(Yes|Yes) & C(No|Yes)
● F-measure is biased towards all except C(No|No)

dwcwbwaw
dwaw

4321

41Accuracy  Weighted
+++

+
=

F-measure (also called 
F-score, F1 score) is 
the harmonic mean 
of  r and p.
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Model Evaluation
Metrics for Performance Evaluation
o How to evaluate the performance of  a model?

Methods for Performance Evaluation
o How to obtain reliable estimates?

Methods for Model Comparison
o How to compare the relative performance among competing 

models?
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Methods for Performance Evaluation
How to obtain a reliable estimate of  performance?

Performance of  a model may depend on other 
factors besides the learning algorithm:
o Class distribution
o Cost of  misclassification
o Size of  training and test sets
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Learning Curve
● Learning curve shows how 

accuracy changes with 
varying sample size

● Requires a sampling schedule 
for creating learning curve:
● Arithmetic sampling

(Langley, et al)
● Geometric sampling

(Provost et al)

Effect of  small sample size:
- Bias in the estimate
- Variance of  estimate
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Methods of  Estimation
Holdout
o Reserve 2/3 for training and 1/3 for testing 
Random subsampling
o Repeated holdout
Cross validation
o Partition data into k disjoint subsets
o k-fold: train on k-1 partitions, test on the remaining one
o Leave-one-out:   k=n
Stratified sampling 
o oversampling vs undersampling
Bootstrap
o Sampling with replacement
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Classification Step 1: 
Split data into train and test sets

Results Known
++
--+

THE PAST

Data

Training set

Testing set



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

Classification Step 2: 
Build a model on a training set

Training set
Results Known

++
--+

THE PAST

Data

Model Builder

Testing set
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Classification Step 3:
Evaluate on test set

Data

Predictions
Y N

Results Known
Training set

Testing set

++
--+

Model Builder
Evaluate

+
-
+
-
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A note on parameter tuning
q It is important that the test data is not used in any way to 
create the classifier
q Some learning schemes operate in two stages:
o Stage 1: builds the basic structure
o Stage 2: optimizes parameter settings

q The test data can’t be used for parameter tuning!
q Proper procedure uses three sets: training data, 
validation data, and test data
o Validation data is used to optimize parameters
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Making the most of  the data
qOnce evaluation is complete, all the data can be 
used to build the final classifier
qGenerally, the larger the training data the better 
the classifier (but returns diminish)
qThe larger the test data the more accurate the 
error estimate
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Classification: 
Train, Validation, Test split

Data

Predictions

Y N

Results Known
Training set

Validation set

++
--+

Model Builder
Evaluate

+
-
+
-

Final ModelFinal Test Set

+
-
+
-

Final Evaluation

Model
Builder
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Evaluation on “small” data
qThe holdout method reserves a certain amount for testing 
and uses the remainder for training
o Usually: one third for testing, the rest for training

qFor “unbalanced” datasets, samples might not be 
representative
o Few or none instances of  some classes

qStratified sample: advanced version of  balancing  the data
o Make sure that each class is represented with approximately 

equal proportions in both subsets
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Evaluation on “small” data
What if  we have a small data set?
o The chosen 2/3 for training may not be representative.
o The chosen 1/3 for testing may not be representative. 
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Repeated holdout method
repeated holdout method
qHoldout estimate can be made more reliable by repeating 
the process with different subsamples
o In each iteration, a certain proportion is randomly selected for 

training (possibly with stratification)
o The error rates on the different iterations are averaged to yield 

an overall error rate
qStill not optimum: the different test sets overlap.
o Can we prevent overlapping?
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Cross-validation
qCross-validation avoids overlapping test sets
o First step: data is split into k subsets of  equal size
o Second step: each subset in turn is used for testing and 

the remainder for training
qThis is called k-fold cross-validation
qOften the subsets are stratified before the cross-
validation is performed
qThe error estimates are averaged to yield an overall error 
estimate
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49

Cross-validation example:
Break up data into groups of  the same size 

Hold aside one group for testing and use the rest to build model

Repeat
Test
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More on cross-validation
qStandard method for evaluation: stratified ten-fold cross-
validation
qWhy ten? Extensive experiments have shown that this is 
the best choice to get an accurate estimate
qStratification reduces the estimate’s variance
qEven better: repeated stratified cross-validation
o E.g. ten-fold cross-validation is repeated ten times and results 

are averaged (reduces the variance)
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Leave-One-Out cross-validation

q Leave-One-Out:
a particular form of  cross-validation:
o Set number of  folds to number of  training instances
o I.e., for n training instances, build classifier n times

q Makes best use of  the data
q Involves no random subsampling
q Very computationally expensive

o (exception: NN)
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Summary of  Evaluation Methods

qUse Train, Test, Validation sets for “LARGE” data
qBalance “un-balanced” data
qUse Cross-validation for small data
qDon’t use test data for parameter tuning - use separate 
validation data

qMost Important: Avoid Overfitting
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Model Evaluation
Metrics for Performance Evaluation
o How to evaluate the performance of  a model?

Methods for Performance Evaluation
o How to obtain reliable estimates?

Methods for Model Comparison
o How to compare the relative performance among competing 

models?
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ROC (Receiver Operating Characteristic)

Developed in 1950s for signal detection theory to analyze noisy 
signals 
o Characterize the trade-off  between positive hits and false alarms
ROC curve plots TP (on the y-axis) against FP (on the x-axis)

Performance of  each classifier represented as a point on the ROC 
curve
o changing the threshold of  algorithm, sample distribution or cost 

matrix changes the location of  the point
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ROC Curve

At threshold t:

TPR=0.5, FNR=0.5, FPR=0.12, TNR=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive
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ROC Curve
(TP,FP):
(0,0): declare everything

to be negative class
(1,1): declare everything

to be positive class
(1,0): ideal

Diagonal line:
o Random guessing
o Below diagonal line:
o prediction is opposite of  the true 

class
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Using ROC for Model Comparison
● No model consistently 

outperform the other
● M1 is better for small FPR
● M2 is better for large FPR

● Area Under the ROC curve
● Ideal: 

§ Area = 1
● Random guess:

§ Area = 0.5
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How to Construct an ROC curve
Instance P(+|A) True Class

1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 +
5 0.85 -
6 0.85 -
7 0.76 -
8 0.53 +
9 0.43 -

10 0.25 +

• Use classifier that produces 
posterior probability for each test 
instance P(+|A)
• Sort the instances according to 
P(+|A) in decreasing order
• Apply threshold at each unique 
value of  P(+|A)
• Count the number of  TP, FP, 
TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)
• FP rate, FPR = FP/(FP + TN)
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How to construct an ROC curve
Class + - + - - - + - + +  

P 0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 
 

Threshold >= 

ROC Curve:



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

Test of  Significance
Given two models:
o Model M1: accuracy = 85%, tested on 30 instances
o Model M2: accuracy = 75%, tested on 5000 instances

Can we say M1 is better than M2?
o How much confidence can we place on accuracy of  M1 and M2?
o Can the difference in performance measure be explained as a result 

of  random fluctuations in the test set?
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Confidence Interval for Accuracy
q Prediction can be regarded as a Bernoulli trial
o A Bernoulli trial has 2 possible outcomes
o Possible outcomes for prediction: correct or wrong
o Collection of  Bernoulli trials has a Binomial distribution:
o x ~ Bin(N, p)      x: number of  correct predictions
o e.g:   Toss a fair coin 50 times, how many heads would turn up?

Expected number of  heads = N´p = 50 ´ 0.5 = 25

q x is given by a binomial distribution with mean Np and variance Np(1-p)
q acc is given by a binomial distribution with mean p and variance p(1-p)/N
q Given x (# of  correct predictions) or equivalently, acc=x/N, and N (# of  

test instances), Can we predict p (true accuracy of  model)?
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Confidence Interval for Accuracy
For large test sets (N > 30), 
o acc can be approximated by a normal distribution 

with mean p and variance p(1-p)/N

Confidence Interval for p:
a

aa
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<
-
-

<
-

1
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Confidence Interval for Accuracy
Consider a model that produces an accuracy of  80% when 
evaluated on 100 test instances:
o N=100, acc = 0.8
o Let 1-a = 0.95 (95% confidence)
o From probability table, Za/2=1.96

1-a Z

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65

N 50 100 500 1000 5000

p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811
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Comparing Performance of  2 Models
Given two models, say M1 and M2, which is better?
o M1 is tested on D1 (size=n1), found error rate = e1

o M2 is tested on D2 (size=n2), found error rate = e2

o Assume D1 and D2 are independent
o If  n1 and n2 are sufficiently large, then

o Approximate:
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Comparing Performance of  2 Models
To test if  performance difference is statistically significant:  
d = e1 – e2

o where dt is the true difference

o Since D1 and D2 are independent, their variance adds up:   

o At (1-a) confidence level, 
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An Illustrative Example
Given: M1: n1 = 30, e1 = 0.15

M2: n2 = 5000, e2 = 0.25
d = |e2 – e1| = 0.1   (2-sided test)

At 95% confidence level, Za/2=1.96

=> Interval contains 0 => difference may not be 
statistically significant

0043.0
5000

)25.01(25.0
30

)15.01(15.0ˆ 2 =
-

+
-

=ds

128.0100.00043.096.1100.0 ±=´±=
t
d



Copyright ©2007-2018 The University of Texas at Arlington. All Rights Reserved.

Comparing Performance of  2 Algorithms

Each learning algorithm may produce k models:
o L1 may produce M11 , M12, …, M1k
o L2 may produce M21 , M22, …, M2k

If  models are generated on the same test sets 
D1,D2, …, Dk (e.g., via cross-validation)
o For each set: compute dj = e1j – e2j

o dj has mean dt and variance st
2

o Estimate: 
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