Data In, Facts Out:
 Automated Monitoring of Facts by FactWatcher

Chengkai Li

Associate Professor, Department of Computer Science and Engineering
Director, Innovative Database and Information Systems Research (IDIR) Laboratory University of Texas at Arlington

Our Computational Journalism Project

Started in 2010. Collaborative project with Duke, Google Research, HP Labs, Stanford, and Chinese Academy of Sciences

- Story finding: finding and monitoring number-based facts pertinent to real-world events. The facts are leads to news stories.

FactWatcher

- Fact checking: discovering and checking factual claims in political discourses, social media, and news.

ClaimBuster

A

FactWatcher

Automated Monitoring of Facts from RealWorld Events

FactWatcher

Tuple t for new real world event appended to database

Fact Finding

Prominent streaks

Long consecutive subsequence of high values in a sequence

One-of-the-few objects

Qualifying statements that can only be made for very few objects

Situational facts

Comparison contexts and spaces that make a given object stand ou

FactWatcher Finds Three Types of Facts (and can be Extended)

Domains

- sports, weather, crimes, transportation, finance, social media analytics

Examples from Real News Media

Prominent streaks

- "This month the Chinese capital has experienced 10 days with a maximum temperature in around 35 degrees Celsius - the most for the month of July in a decade." http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm
- "The Nikkei 225 closed below 10000 for the 12th consecutive week, the longest such streak since June 2009."
http://www.bloomberg.com/news/articles/2010-08-06/japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen

FactWatcher Finds Three Types of Facts (and can be Extended)

Examples from Real News Media

Situational facts, One-of-the-few objects

- "Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992."
- "The social world’s most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon." htpp://www.cnbc.com/id/49728455

FactWatcher Demo

 http://idir.uta.edu/factwatcher/
LIVE UPDATE

[February 20, 1998] Todd Fuller had 1 assist, 3 steals and 1 block in the Golden State Warriors' defeat against the Denver Nuggets. It is one of the best performance made by him.

Presented In

Excellent Demo Award

COMPUTATION + JOURNALISM

http://idir.uta.edu/factwatcher/

©2015 The University of Texas at Arlington. All Rights Reserved.

[April 24, 1994] David Robinson had 71 points and 14 rebounds in the San Antonio Spurs' victory against the Los Angeles Clippers. No one before had a better performance in NBA history.
[April 20, 1994] Shaquille O'neal had 53 points and 18 rebounds in the Orlando Magic's win over the Minnesota Timberwolves. No one before had a better performance in NBA history.
[February 16, 1993] Shaquille O'neal had 46 points and 21 rebounds in the Orlando Magic's defeat against the Detroit Pistons. No one before had a better performance in NBA history.
[February 27, 1992] David Robinson had 37 points and 24 rebounds in the San Antonio Spurs' victory against the Golden State Warriors. No one before had a better performance in NBA history.

Compare Similar Stories

Number of Facts

STL

How were these Facts Discovered in Current Systems?

Our (educated?) guess

- Experts monitor real-world events (e.g., watching an NBA game), have a gut-feeling, issue database queries, check out or not
- Prepared facts-to-be (e.g., Nowitzki only needs 477 more points to surpass O'Neal. Perhaps will happen around Christmas 2015)
- Predefined templates of facts/database queries
- Perhaps in-house systems/algorithms similar to FactWatcher

StatSheet

No. 1-Seeded Louisville Clips No. 4-Seeded Michigan 82-76, Wins NCAA Championship

Filed under Game Recap on April 9th, 2013

Share this recap

- Tweet or «hLike If One person likes this. Be the first of your friends.

NCAA Tournament 7th Round

		1ST	2ND	TOTAL	SPREAD	Mon, Apr 08 2013, 10:23 PM EDT
	\#4 Michigan	38	38	76	$+4.0{ }^{\circ}$	Georgia Dome Atlanta, Georgia
A8,	\#1 Louisville	37	45	82	$-4.0{ }^{\circ}$	Attendance: 74,326 TV: CBS

- StatSeed: NCAA Automatic \#1 Seed

More about Fan Satisfaction

Find another NCAA team:

Categories

Narrative

 Science
Narrative Science

Forbes Partner

+ Follow (50)

> xerox 6

Handling \$421 billion in accounts payables annually for companies like yours.

learn more

in Share

0
(3) Submit

Wall Street projections are down 1.1\% year-over-year, as the company reported earnings of 92 cents per share.

The consensus estimate has gone up, from 82 cents, over the past three months. Analysts are expecting earnings of $\$ 4.04$ per share for the fiscal year. Revenue is projected to be $\$ 3.49$ billion for the quarter, 1.2% above the year-earlier total of $\$ 3.45$ billion. For the year, revenue is projected to roll in at $\$ 15.21$ billion.

Reyenue has declined for the third quarter in a row. The year-pver-

Publications

- Online Frequent Episode Mining. Xiang Ao, Ping Luo, Chengkai Li, Fuzhen Zhuang, and Qing He. ICDE 2015, pages 891-902.
- Data In, Fact Out: Automated Monitoring of Facts by FactWatcher. Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li, Jun Yang, and Cong Yu. VLDB 2014, pages 1557-1560. Demonstration description. (excellent demonstration award)
- Finding, Monitoring, and Checking Claims Computationally Based on Structured Data. Brett Walenz, You (Will) Wu, Seokhyun (Alex) Song, Emre Sonmez, Eric Wu, Kevin Wu, Pankaj K. Agarwal, Jun Yang, Naeemul Hassan, Afroza Sultana, Gensheng Zhang, Chengkai Li, Cong Yu. 2014 Computation+Journalism Symposium.
- Incremental Discovery of Prominent Situational Facts. Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, Cong Yu. ICDE 2014, pages 112-123.
- Discovering General Prominent Streaks in Sequence Data. Gensheng Zhang, Xiao Jiang, Ping Luo, Min Wang, Chengkai Li. ACM TKDD, 8(2):article 9, June 2014.
- Discovering and Learning Sensational Episodes of News Events. Xiang Ao, Ping Luo, Chengkai Li, Fuzhen Zhuang, Qing He, and Zhongzhi Shi. WWWW 2014, pages 217-218.
- On "One of the Few" Objects. You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, Cong Yu. KDD 2012, pages 1487-1495.
- ProminentStreak Discovery in Sequence Data. Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, Yong Yu. KDD 2011, pages 1280-1288.

Incremental Discovery of Prominent Situational Facts. Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, Cong Yu. ICDE 2014, pages 112-123.

Situational Facts

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

Skyline

Situational Facts

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

Situational Facts

"Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player with a 20/10/5 (points/rebounds/assists) game against the Bulls since Detlef Schrempf in December 1992." (http://espn.go.com/espn/elias?date=20130205)

Situational Facts

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."
(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

Situational Facts

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."
(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

Situational Facts

"The social world's most viral photo ever generated 3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon."
(http://www.cnbc.com/id/49728455/President Obama Sets New Social Media Record)

Situational Facts

-Stock Data: Stock A becomes the first stock in history with price over $\$ 300$ and market cap over $\$ 400$ billion.
-Weather Data: Today's measures of wind speed and humidity are x and y, respectively. City B has never encountered such high wind speed and humidity in March.
-Criminal Records: There were 50 DUI arrests and 20 collisions in city C yesterday, the first time in 2013.

A Mini-world of Basketball Gamelogs

id	player	day	month	season	team	opp_team	pts	ast	reb
t_{1}	Bogues	11	Feb.	$1991-92$	Hornets	Hawks	4	12	5
t_{2}	Seikaly	13	Feb.	$1991-92$	Heat	Hawks	24	5	15
t_{3}	Sherman	7	Dec.	$1993-94$	Celtics	Nets	Nets	13	13
t_{4}	Wesley	4	Feb.	$1994-95$	Celtics	5			
t_{5}	Wesley	5	Feb.	$1994-95$	Celtics	Timberwolves	3	5	3
t_{6}	Strictland	3	Jan.	$1995-96$	Blazers	Celtics	2	5	2
t_{7}	Wesley	25	Feb.	$1995-96$	Celtics	Nets	27	18	8

Last tuple appenaed to tade

A Mini-world of Basketball Gamelogs

id	player	day	month	season	team	opp_team	pts	ast	reb
t_{1}	Bogues	11	Feb.	$1991-92$	Hornets	Hawks	4	12	5
t_{2}	Seikaly	13	Feb.	$1991-92$	Heat	Hawks	24	5	15
t_{3}	Sherman	7	Dec.	$1993-94$	Celtics	Nets	13	13	5
t_{4}	Wesley	4	Feb.	$1994-95$	Celtics	Nets	2	5	2
t_{5}	Wesley	5	Feb.	$1994-95$	Celtics	Timberwolves	3	5	3
t_{6}	Strictland	3	Jan.	$1995-96$	Blazers	Celtics	27	18	8
t_{7}	Wesley	25	Feb.	$1995-96$	Celtics	Nets	12	13	5

A Mini-world of Basketball Gamelogs

id			month					pts	ast	reb
t_{1}			Feb.					4	12	5
t_{2}			Feb.					24	5	15
t_{4}			Feb.					2	5	2
t_{5}			Feb.					3	5	3
t_{7}			Feb.					12	13	5

A Mini-world of Basketball Gamelogs

id			month				pts	ast	reb
t_{1}			Feb.					4	12
t_{2}			Feb.				5		
							24	5	15
t_{4}			Feb.						
t_{5}			Feb.						
t_{7}									

- Wesley had 12 points, 13 assists and 5 rebounds on February 25, 1996 to become the first player with a
(points/assists/rebounds) in February.

A Mini-world of Basketball Gamelogs

id				season			pts	ast	reb
t_{6}									
t_{7}									

lidir

A Mini-world of Basketball Gamelogs

id					team	opp_team		ast	reb
t_{3}					Celtics	Nets		13	5
t_{4}					Celtics	Nets		5	2
t_{7}					Celtics	Nets		13	5

-Wesley had 13 assists and 5 rebounds on February 25, 1996 to become the second Celtics player with a $13 / 5$ (assists/rebounds) game against the Nets.

Problem Definition

Dimension space: $\mathscr{D}=\left\{d_{1}, \ldots, d_{n}\right\}$

Measure space: $\mathcal{M}=\left\{m_{1}, \ldots, m_{s}\right\}$

| id | player | day | month | season | team | opp_team | pts | ast | reb |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| t_{1} | Bogues | 11 | Feb. | $1991-92$ | Hornets | Hawks | 4 | 12 | 5 |
| t_{2} | Seikaly | 13 | Feb. | $1991-92$ | Heat | Hawks | 24 | 5 | 15 |
| t_{3} | Sherman | 7 | Dec. | $1993-94$ | Celtics | Nets | 13 | 13 | 5 |
| t_{4} | Wesley | 4 | Feb. | $1994-95$ | Celtics | Nets | 2 | 5 | 2 |
| t_{5} | Wesley | 5 | Feb. | $1994-95$ | Celtics | Timberwolves | 3 | 5 | 3 |
| t_{6} | Strictland | 3 | Jan. | $1995-96$ | Blazers | Celtics | 27 | 18 | 8 |

append-only table

Problem Definition

\square Constraint $(C): d_{1}=v_{1} \wedge d_{2}=v_{2} \wedge \ldots \wedge d_{n}=v_{n}, v_{i} \in \operatorname{dom}\left(d_{i}\right) \cup\{*\}$

- team=Celtics \wedge opp_team=Nets

id					team	opp_team				
t_{3}					Celtics	Nets				
t_{4}					Celtics	Nets				

Problem Definition

\square Constraint-Measure Pair (C, M): Combination of a constraint and measure subspace

- (team=Celtics \wedge opp_team=Nets, \{assists,rebounds $\}$)

id					team	opp_team		ast	reb
t_{3}					Celtics	Nets		13	5
t_{4}					Celtics	Nets		5	2

Problem Definition

\square Contextual skyline: skyline regarding (C, M)

- $\sigma_{\text {team }=\text { Celtics }} \wedge$ opp_team=Nets $(R), M=\{$ assists,rebounds $\}$ $>\left\{t_{3}\right\}$

id					team	opp_team		ast	reb
t_{3}					Celtics	Nets		13	5
t_{4}					Celtics	Nets		5	2

FactWatcher

Tuple t for new real world event appended to database

Related Work

>Conventional skyline analysis (Borzsonyi et al. ICDE 2001)

-Q: context, measure subspace $\Longrightarrow \mathrm{A}$: contextual skyline tuples
\checkmark Our focus--- A: tuple $\Longrightarrow \mathrm{Q}$: constraint-measure pairs

Related Works

Compressed Skycube (Xia et al. SIGMOD 2006)

-Update compressed skycube in monitoring fashion
\checkmark We adapted CSC for each constraint: Constraint-

id	player	day	month	season	team	opp_team	pts	ast	reb
t_{1}	Bogues	11	Feb.	$1991-92$	Hornets	Hawks	4	12	5
t_{2}	Seikaly	13	Feb.	$1991-92$	Heat	Hawks	24	5	15
t_{3}	Sherman	7	Dec.	$1993-94$	Celtics	Nets	13	13	5
t_{4}	Wesley	4	Feb.	$1994-95$	Celtics	Nets	2	5	2
t_{5}	Wesley	5	Feb.	$1994-95$	Celtics	Timberwolves	3	5	3
t_{6}	Strictland	3	Jan.	$1995-96$	Blazers	Celtics	27	18	8
t_{7}	Wesley	25	Feb.	$1995-96$	Celtics	Nets	12	13	5

Constraint	Measure
month=Feb	pts, ast, reb
opp_team=Nets	ast, reb
 opp_team=Nets	ast, reb
\ldots	\ldots

Related Works

PProminent Analysis by Ranking (Wu et. Al. vLDB 2009)

- Static data, onetime query
\checkmark We dealt on continuous data, standing query
-Find the contexts where an object is ranked high in a single scoring attribute
\checkmark We considered skyline on multiple measure subspaces

Modeling

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Tuple Satisfied Constraint C^{t} : If $\forall d_{i} \in \mathcal{D}$, C. $d_{i}=*$ or $C . d_{i}==. d_{i}, t$ satisfies C.

Modeling

Lattice of $C^{t_{s}}$

id	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
\boldsymbol{t}_{4}	\boldsymbol{a}_{2}	\boldsymbol{b}_{1}	c_{1}	$\mathbf{2 0}$	$\mathbf{2 0}$
\boldsymbol{t}_{5}	\boldsymbol{a}_{1}	\boldsymbol{b}_{1}	c_{1}	$\mathbf{1 1}$	$\mathbf{1 5}$

Lattice of $C^{t_{s}}$

Lattice of $C^{t_{4}}$

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
\boldsymbol{t}_{4}	\boldsymbol{a}_{2}	\boldsymbol{b}_{1}	\boldsymbol{c}_{1}	$\mathbf{2 0}$	$\mathbf{2 0}$
\boldsymbol{t}_{5}	\boldsymbol{a}_{1}	\boldsymbol{b}_{1}	c_{1}	$\mathbf{1 1}$	$\mathbf{1 5}$

Lattice of $C^{t_{s}}$

Lattice Intersection: $C^{t_{s} t_{s}}=C^{t_{s}} \cap C^{t_{5}}$

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{I}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{I}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	\boldsymbol{m}_{2}
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	\boldsymbol{m}_{2}
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\boldsymbol{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Brute-Force Approach

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Total $|R|^{*}\left(2^{\text {DD }}+\mid \operatorname{MM}-1\right)$ comparisons!
 Total 16 comparisons in this case!

Challenges

$>$ Exhaustive comparison with every tuple
>Under every constraint
$>$ Over every measure subspace

Challenges and Ideas

$>$ Exhaustive comparison with every tuple

\checkmark Tuple reduction

-Comparison with skyline tuples is enough

$\boldsymbol{i} \boldsymbol{d}$		$\boldsymbol{d}_{\mathbf{2}}$			$\boldsymbol{m}_{\boldsymbol{1}}$
				$\boldsymbol{m}_{\mathbf{2}}$	
t_{2}		b_{1}			15
t_{3}		b_{1}		17	17
t_{4}		b_{1}		20	20
t_{5}		b_{1}		11	15

Challenges and Ideas

$>$ Under every constraint
\checkmark Constraint pruning

- In $C^{t, t^{\prime}}$, one comparison on t and t^{\prime} is enough

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Challenges and Ideas

$>$ Under every constraint
\checkmark Constraint pruning

- In $C^{t, t^{\prime}}$, one comparison on t and t^{\prime} is enough

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\boldsymbol{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Challenges and Ideas

Over every measure subspace

\checkmark Sharing computation across measure subspaces

- Reusing computations on full space in subspaces

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

Challenges and Ideas

Over every measure subspace
\checkmark Sharing computation across measure subspaces

- Reusing computations on full space in subspaces

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	
t_{1}	a_{1}	b_{2}	c_{2}	10	
t_{2}	a_{1}	b_{1}	c_{1}	15	
t_{3}	a_{2}	b_{1}	c_{2}	17	
t_{4}	a_{2}	b_{1}	c_{1}	20	
t_{5}	a_{1}	b_{1}	c_{1}	11	

Our Algorithms

$>$ Tuple reduction + Constraint pruning

- BottomUp
- TopDown
>Tuple reduction + Constraint pruning + Sharing computation
- SBottomUp
- STopDown

BottomUp

$>$ Stores a tuple for every such constraint that qualifies it as a contextual skyline tuple
$>$ Traverses the constraints in C^{t} in a bottom-up, breadth-first manner

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{I}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{I}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{I}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{5}	a_{1}	b_{1}	c_{1}	11	15

$\left\{t_{2}\right\} \rightarrow \underbrace{\left\{t_{2}\right\}}_{a_{1}, b_{1}, \mathrm{c}_{1}}, t_{4}\}$

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{I}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{I}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{5}	a_{1}	b_{1}	c_{1}	11	15

$\left\{\mathrm{t}_{2}\right\} \underset{\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}}{\left\{\mathrm{t}_{2}\right\}}\left\{\mathrm{t}_{4}\right\}$

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{5}	a_{1}	b_{1}	c_{1}	11	15

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{5}	a_{1}	b_{1}	c_{1}	11	15

BottomUp

$\boldsymbol{i d}$		$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{2}		b_{1}	c_{1}	15	10
t_{4}		b_{1}	c_{1}	20	20
t_{5}		b_{1}	c_{1}	11	15

BottomUp

$\boldsymbol{i d}$		$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{2}		b_{1}	c_{1}	15	10
t_{4}		b_{1}	c_{1}	20	20
t_{5}		b_{1}	c_{1}	11	15

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$			$\boldsymbol{m}_{\boldsymbol{1}}$	\boldsymbol{m}_{2}
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
t_{5}	a_{1}			11	15

BottomUp

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$			$\boldsymbol{m}_{\boldsymbol{I}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
t_{5}	a_{1}			11	15

6 comparisons in this case

BottomUp

$>$ Cons of BottomUp

-Repetitive storage: space complexity
-Repetitive comparisons: time complexity

TopDown stores a tuple for its maximal skyline constraints only.

TopDown

Skyline Constraints

Constraints whose contextual skylines include t.

(| $\boldsymbol{i d}$ | $\boldsymbol{d}_{\boldsymbol{1}}$ | $\boldsymbol{d}_{\mathbf{2}}$ | \boldsymbol{d}_{3} | $\boldsymbol{m}_{\boldsymbol{1}}$ | \boldsymbol{m}_{2} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| t_{1} | a_{1} | b_{2} | c_{2} | 10 | 15 |
| t_{2} | a_{1} | b_{1} | c_{1} | 15 | 10 |
| t_{3} | a_{2} | b_{1} | c_{2} | 17 | 17 |
| t_{4} | a_{2} | b_{1} | c_{1} | 20 | 20 |
| t_{5} | a_{1} | b_{1} | c_{1} | 11 | 15 |

TopDown

Maximal Skyline Constraints

Constraints not subsumed by any other skyline constraints of t.

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\boldsymbol{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

TopDown

Maximal Skyline Constraints

Constraints not subsumed by any other skyline constraints of t.

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\boldsymbol{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

\{\}

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

\{\}

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

\{\}

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$			$\boldsymbol{m}_{\boldsymbol{1}}$	\boldsymbol{m}_{2}
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
t_{5}	a_{1}			11	15

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{I}}$			$\boldsymbol{m}_{\boldsymbol{I}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
t_{5}	a_{1}			11	15

\{\}

TopDown

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$			$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
t_{5}	a_{1}			11	15

3 comparisons in this case

\{\}

STopDown and SBottomUp

$>$ Con of BottomUp and TopDown

-Need to compute over every measure subspace separately $>$ STopDown and SBottomUp share computation across different subspaces

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$	$\boldsymbol{m}_{\boldsymbol{1}}$	$\boldsymbol{m}_{\boldsymbol{2}}$
t_{1}	a_{1}	b_{2}	c_{2}	10	15
t_{2}	a_{1}	b_{1}	c_{1}	15	10
t_{3}	a_{2}	b_{1}	c_{2}	17	17
t_{4}	a_{2}	b_{1}	c_{1}	20	20
t_{5}	a_{1}	b_{1}	c_{1}	11	15

$-$

$\boldsymbol{i d}$	$\boldsymbol{d}_{\boldsymbol{1}}$	$\boldsymbol{d}_{\mathbf{2}}$	$\boldsymbol{d}_{\mathbf{3}}$		$\boldsymbol{m}_{\mathbf{2}}$
t_{1}	a_{1}	b_{2}	c_{2}		15
t_{2}	a_{1}	b_{1}	c_{1}		10
t_{3}	a_{2}	b_{1}	c_{2}		17
t_{4}	a_{2}	b_{1}	c_{1}		20
t_{5}	a_{1}	b_{1}	c_{1}		15

(C2015 The University of Texas at Arlington. All Rights Reserved.

STopDown

$\boldsymbol{i d}$	\boldsymbol{d}_{1}			\boldsymbol{m}_{1}	\boldsymbol{m}_{2}
t_{1}	a_{1}			10	15
t_{2}	a_{1}			15	10
					15
t_{5}	a_{1}				

$\boldsymbol{i} \boldsymbol{d}$	\boldsymbol{d}_{1}	\boldsymbol{d}_{2}	\boldsymbol{d}_{3}	\boldsymbol{m}_{1}	
t_{1}	a_{1}	b_{2}	c_{2}	10	
t_{2}	a_{1}	b_{1}	c_{1}	15	
t_{3}	a_{2}	b_{1}	c_{2}	17	
t_{4}	a_{2}	b_{1}	c_{1}	20	
t_{5}	a_{1}	b_{1}	c_{1}	11	

Experiment Setup

\square NBA Dataset

- 317,371 tuples of NBA box scores from 1991-2004 seasons
- 8 dimension attributes
- 7 measure attributes
\square Weather Dataset
- 7.8 million tuples of weather forecast from different locations of six countries \& regions of UK
- 7 dimension attributes
- 7 measure attributes

Memory-Based Implementation

- Maintaining CSC for each constraint causes overhead (Xia et al. SIGMOD 2006)
- Can't take advantage of constraint pruning

Memory-Based Implementation

\square BottomUp/SBottomUp exhausted available JVM heap

- memory overflow
- TopDown / STopDown was outperformed by BottomUp/ SBottomUp
- Updating maximal skyline constraints causes onentiad

File-Based Implementation

\square Each (C, M) is stored in a binary file

- While traversing, file-read operation occurs if file is non-empty: FSTopDown encounters many empty files
\square For updating, file-write operation occurs: FSTopDown stores fewer tuples
I I/O-cost dominates in-memory computation

Discovered Facts

$>$ Lamar Odom had 30 points, 19 rebounds and 11 assists on March 6, 2004. No one before had a better or equal performance in NBA history.
$>$ Allen Iverson had 38 points and 16 assists on April 14, 2004 to become the first player with a $38 / 16$ (points/assists) game in the 2004-2005 season.
$>$ Damon Stoudamire scored 54 points on January 14, 2005. It is the highest score in history made by any Trail Blazers.

Prominent Streak Discovery in Sequence Data. Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, Yong Yu. KDD 2011, pages 1280-1288.

Discovering General Prominent Streaks in Sequence Data. Gensheng Zhang, Xiao Jiang, Ping Luo, Min Wang, Chengkai Li. ACM TKDD, 8(2):article 9, June 2014.

Prominent Streaks

Prominent streaks stated in news articles:

"This month the Chinese capital has experienced 10 days with a maximum temperature in around 35 degrees Celsius - the most for the month of July in a decade."
"The Nikkei 225 closed below 10000 for the 12th consecutive week, the longest such streak since June 2009."
"He (LeBron James) scored 35 or more points in nine consecutive games and joined Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the feat."

Concepts
 Streak

Input: a sequence of values
Streak $\langle[I, r], v>$ is a triple: left-end (I), right-end (r), minimum value in interval $[I, r]$

$$
\begin{array}{lllllllll}
& 3 & 7 & 7 & 2 & 5 & 4 & 6 & 7 \\
& <[6,8], & 4> & & & &
\end{array}
$$

Streak dominance relation

$$
\begin{gathered}
s 1=<[\mid 1, r 1], v 1>\text { dominates } s 2=<[\mid 2, r 2], v 2>\text { iff } \\
r 1-|1>r 2-| 2, v 1>=v 2 \text { or } r 1-|1>=r 2-| 2, v 1>v 2
\end{gathered}
$$

Prominent streaks (PS)

A streak is prominent if it is not dominated by any other streaks.

Example

3177254673

Prominent Streaks are Skyline Points

 in 2-d Space 3177254673

Tasks

Task 1: discovery

Find all prominent streaks in a sequence

Task 2: monitoring

Always keep prominent streaks up-to-date, when sequence grows (real-world sequences often grow)

Solution Framework

Candidate Generation: Number Of Candidates Brute-force

Quadratic

Superlinear

Linear

Local Prominent Streak

Local dominance relation

$s 1=<[11, r 1], v 1>$ locally dominates $s 2=<[12, r 2]$, v2> iff $s 1$ dominates s2 and [$11, r 1] \supset[12, r 2]$

Local prominent streak (LPS)

A streak is locally prominent if it is not locally dominated by any other streaks.

Important Properties
 (1) LPS is sufficient

A prominent streak must be an LPS.

(2) LPS is small

The number of LPSs is less than or equal to the sequence length. (Hint: The number of LPSs getting min value at position k is at most 1.)

Conclusion

LPS is an excellent set of candidate streaks, of linear size.
Candidate generation problem $=>$ finding local prominent streaks

Linear LPS (LLPS) Method

Sequence $p_{1}, p_{2}, \ldots, p_{n}$.

1. Maintain a list of candidate streaks when scanning the sequence rightward.
2. After p_{k}, right-ends of candidates are all k .
3. At p_{k+1}, try to extend the candidates rightward.

Candidates s:
(3.a) s.v $<p_{k+1}$: extend.
(3.b) s.v $>\mathrm{p}_{\mathrm{k}+1}$: belong to LPS.
(3.c) s.v $>=\mathrm{p}_{\mathrm{k}+1}$: extend the leftmost (longest) such s.
4. After pnall remaining candidates are LPS.

Linear LPS (LLPS) Method

 Candidates share the same right-end, their minimum values monotonically increase, if they are listed in the increasing order of leftends.

Linear LPS (LLPS) Method After p_{k}, it has found:
 All LPSs ending before k

Candidates ending at k either are LPSs or can be grown to LPSs ending after k .

Monitoring (keeping prominent streaks up-to-date) is simple:
 If PSs till k are requested, compare all found LPSs and all remaining candidates.

A

Datasets In Experiments

(a) Data Sequence ${ }_{\text {O2015 The University of Texas at Arlington. All Rights Reserved. }}$ (b) Prominent Streaks

Sample Prominent Streaks

 Melbourne daily min/max temperature between 1981 and 1990 (Melb1 \& Melb2)More than 2000 days with min temperature above zero 6 days: the longest streak above 35 degrees Celsius

Traffic count of Wikipedia page of Lady Gaga (Wiki2)

More than half of the prominent streaks are around Sep. 12th (VMA 2010) at least 2000 hourly visits lasting for almost 4 days

General Prominent Streaks

Top-k, multi-dimensional and multi-sequence PS

"He (LeBron James) scored 35 or more points in nine consecutive games and joined Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the feat."
"Only player in NBA history to average at least 20 points, 10 rebounds and 5 assists per game for 6 consecutive seasons." (http://en.wikipedia.org/wiki/Kevin Garnett)

NLPS/LLPS extended to such general PSs

Experiments On Multi-Sequence PSs

Tat Table IX. Multi-sequence Prominent Streaks in Datast NBA1.

n11
\square
\square

length	minimal value	players
1	71	David Robinson
2	51	Allen Iverson; Antawn Jamison
4	42	Kobe Bryant
9	40	Kobe Bryant
13	35	Kobe Bryant
14	32	Kobe Bryant
16	30	Kobe Bryant
17	27	Wichael sordan
27	26	Allen Iversom
334	24	Iracy Mrecrady
45	21	Allen Iverson
57	20	Allen Iversom
74	19	Shaquille O'Neal
94	18	Shaquille O'Neal
96	17	Karl Malone
119	16	Karl Malone
149	15	Karl Mialone
159	14	Karl Malone
263	13	Karl Malone
357	12	Karl Malone
527	11	Karl Malone
575	10	Karl Malone
758	7	Karl Malone
858	6	Shaquille O'Neal
866	2	Karl Malone
932	1	John Stocktom
1185	0	Jim Jacksom

©2015 The University of Texas at Arlington. All Rights Reserved.

Experiments On Multi-Dim PSs

Table X. Data Sequences Used in Experiments on Multi-dimensional Prominent Streak Discovery.

name	length	\# prominent streaks	\# dimensions	description
Malone	986	640	6	$1991-2004$ game log of Karl Malone (minutes, points, rebounds, assists, steals, blocks)

(a) Number of Prominent Streaks

(b) Execution Time of LLPS

Fig. 13. Experiments on Increasing Dimensionality.

Experiments On General PSs

Table XIII. Data Sequences Used in Experiments on Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery

name	\# sequences	average length	\# dimensions	\# prominent streaks	description
NBA2	1185	290	6	10867	1991-2004 game log of all N-
				BA players (minutes, points, re- bounds, assists, steals, blocks)	

Table XIV. Number of Candidate Streaks, Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery.

name	Baseline	NLPS	LLPS
NBA2	9.41×10^{7}	2.98×10^{6}	8.76×10^{5}

Table XV. Execution Time (in Milliseconds), Top-5 Multi-sequence Multi-dimensional Prominent Streak Discovery.

name	Baseline	NLPS	LLPS
NBA2	1.39×10^{7}	4.33×10^{5}	1.14×10^{5}

Fig. 14. Distribution of Prominent Streaks by Length.
 © 2015 The University of Texas at Arlington. All Rights Reserved.

On "One of the Few" Objects. You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, Cong Yu. KDD 2012, pages 1487-1495

One-Of-The-Few Claims

Do these claims really hold water?

Karl Malone is ONE OF THE ONLY TWO players in NBA history with 25,000 points, 12,000 rebounds, and 5,000 assists in one's career.

He is ONE OF THE ONLY THREE candidates who have raised more than 25% from PAC contributions and 25% from self-financing.

How do we find truly interesting claims or individuals?

X Is One-Of-K $\rightarrow \mathrm{X}$ Is In K-Skyband

Claim

Karl Malone is ONE OF THE ONLY TWO players in NBA history with 25,000 points, 12,000 rebounds, and 5,000 assists in one's career.

General claim

Fewer than k objects dominate X in subspace of attributes $S \subseteq\left\{A_{-} 1, A_{-} 2, . . ., A_{-} d\right\}$
k-skyband [Papadias et al. 2005] in S is the set of points each dominated by fewer than k other points in S
1-skyband: skyline

Small K \neq Interesting

Subspaces are different

E.g., 2 -skyand in \{rebounds\} vs. in \{rebounds, assists\}

Small K \neq Interesting

Data distribution matters

E.g., 2 -skyand in \{points, rebounds\} vs. in \{rebounds, assists\}

Top- τ Skyband

k-Skyband

Using the same k for all subspaces doesn't work
Asking user pick k for each subspace is infeasible
Top- τ Skyband

- User specifies a single parameter τ to cap \# skyband objects.
- For each subspace S, find its top- τ skyband, i.e., the largest k-skyband containing no more than τ objects
- E.g., in \{points, rebounds\}:
$\tau=2 \rightarrow$ 1-skyband (size 2)
$\tau=6 \rightarrow 2$-skyband (size 5; 3-skyband would be too big)
A

Experiments

Experiments

Experiments

