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What is Cluster Analysis?
Finding groups of  objects such that the objects in a group will be 
similar (or related) to one another and different from (or unrelated to) 
the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Applications of  Cluster Analysis
Understanding

Summarization

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia



What is not Cluster Analysis?
Supervised classification

Simple segmentation

Results of  a query

Graph partitioning



Notion of  a Cluster can be 
Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



Types of  Clusterings
A clustering is a set of  clusters

Important distinction between hierarchical
and partitional sets of  clusters 

Partitional Clustering

Hierarchical clustering



Partitional Clustering

Original Points A Partitional  Clustering



Hierarchical Clustering

p4
p1

p3

p2

 

p4 
p1 

p3 

p2 
p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram



Other Distinctions Between Sets of  Clusters

Exclusive versus non-exclusive

Fuzzy versus non-fuzzy

Partial versus complete

Heterogeneous versus homogeneous



Types of  Clusters

Well-separated clusters

Center-based clusters

Contiguous clusters

Density-based clusters

Property or Conceptual

Described by an Objective Function



Types of Clusters: Well-Separated

Well-Separated Clusters: 

3 well-separated clusters



Types of Clusters: Center-Based

Center-based

centroid
medoid

4 center-based clusters



Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or 
Transitive)

8 contiguous clusters



Types of Clusters: Density-Based

Density-based

6 density-based clusters



Types of Clusters: Conceptual Clusters

Shared Property or Conceptual Clusters

2 Overlapping Circles



Types of Clusters: Objective Function

Clusters Defined by an Objective Function



Types of Clusters: Objective Function …

Map the clustering problem to a different 
domain and solve a related problem in that 
domain



Characteristics of  the Input Data Are Important

Type of  proximity or density measure

Sparseness

Attribute type

Type of  Data

Dimensionality
Noise and Outliers
Type of  Distribution



Clustering Algorithms

K-means and its variants

Hierarchical clustering



K-means Clustering

o Partitional clustering approach 
o Each cluster is associated with a centroid (center point) 
o Each point is assigned to the cluster with the closest centroid
o Number of  clusters, K, must be specified
o The basic algorithm is very simple



K-means Clustering – Details

Initial centroids are often chosen randomly.

The centroid mi is (typically) the mean of  the points in the cluster.

‘Closeness’ is measured by Euclidean distance, cosine similarity, 
correlation, etc.

K-means will converge for common similarity measures mentioned 
above.

Most of  the convergence happens in the first few iterations.

Complexity is O( n * K * I * d )
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Evaluating K-means Clusters

Most common measure is Sum of  Squared Error (SSE)
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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Problems with Selecting Initial Points

If  there are K ‘real’ clusters then the chance of  selecting one centroid 
from each cluster is small. 



10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4

Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

o Multiple runs

o Sample and use hierarchical clustering to 
determine initial centroids

o Select more than k initial centroids and 
then select among these initial centroids

o Postprocessing
o Bisecting K-means



Handling Empty Clusters

Basic K-means algorithm can yield empty 
clusters

Several strategies



Updating Centers Incrementally

In the basic K-means algorithm, centroids are 
updated after all points are assigned to a 
centroid

An alternative is to update the centroids after 
each assignment (incremental approach)



Pre-processing and Post-processing

Pre-processing

Post-processing



Bisecting K-means

Bisecting K-means algorithm



Bisecting K-means Example



Limitations of  K-means

K-means has problems when clusters are of  
differing 

K-means has problems when the data 
contains outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations

Original Points K-means Clusters



Hierarchical Clustering 

Produces a set of  nested clusters organized as 
a hierarchical tree
Can be visualized as a dendrogram
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Strengths of  Hierarchical Clustering

Do not have to assume any particular number 
of  clusters

They may correspond to meaningful 
taxonomies



Hierarchical Clustering

Two main types of  hierarchical clustering

Traditional hierarchical algorithms use a similarity or distance matrix



Agglomerative Clustering Algorithm
More popular hierarchical clustering technique

Basic algorithm is straightforward

Key operation is the computation of  the proximity of  two clusters



Starting Situation 

Start with clusters of  individual points and a 
proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

We want to merge the two closest clusters (C2 and C5)  and update the 
proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



After Merging

The question is “How do we update the proximity matrix?” 

C1

C4

C2 U C5

C3
?        ?        ?        ?    

?

?

?

C2 
U 
C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

● MIN
● MAX
● Group Average
● Distance Between Centroids
● Other methods driven by an objective 

function
– Ward’s Method uses squared error

Proximity Matrix



How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

● MIN
● MAX
● Group Average
● Distance Between Centroids
● Other methods driven by an objective 

function
– Ward’s Method uses squared error

´ ´



Cluster Similarity: MIN or Single 
Link 
Similarity of  two clusters is based on the two 
most similar (closest) points in the different 
clusters

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Hierarchical Clustering: MIN

Nested Clusters Dendrogram

1

2

3

4

5

6

1
2

3

4

5

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2



Strength of  MIN

Original Points Two Clusters

• Can handle non-elliptical shapes



Limitations of  MIN

Original Points Two Clusters

• Sensitive to noise and outliers



Cluster Similarity: MAX or Complete Linkage

Similarity of  two clusters is based on the two 
least similar (most distant) points in the 
different clusters

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of  MAX

Original Points Two Clusters

• Less susceptible to noise and outliers



Limitations of  MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters



Cluster Similarity: Group Average
Proximity of  two clusters is the average of  pairwise proximity between 
points in the two clusters.

Need to use average connectivity for scalability since total proximity favors 
large clusters
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I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Hierarchical Clustering: Group 
Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group 
Average
Compromise between Single and Complete Link

Strengths

Limitations



Cluster Similarity: Ward’s Method

Similarity of  two clusters is based on the increase in 
squared error when two clusters are merged

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of  K-means



Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space requirements

O(N2) space since it uses the proximity 
matrix.  

O(N3) time in many cases



Hierarchical Clustering:  Problems and Limitations

Once a decision is made to combine two 
clusters, it cannot be undone

No objective function is directly minimized

Different schemes have problems with one or 
more of  the following:



MST: Divisive Hierarchical 
Clustering
Build MST (Minimum Spanning Tree)



MST: Divisive Hierarchical 
Clustering
Use MST for constructing hierarchy of  
clusters



Cluster Validity 

For supervised classification we have a variety of  measures to 
evaluate how good our model is

For cluster analysis, the analogous question is how to evaluate the 
“goodness” of  the resulting clusters?

But “clusters are in the eye of  the beholder”! 

Then why do we want to evaluate them?



Clusters found in Random Data
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1. Determining the clustering tendency of  a set of  data, i.e., 
distinguishing whether non-random structure actually exists in the 
data. 

2. Comparing the results of  a cluster analysis to externally known 
results, e.g., to externally given class labels.

3. Evaluating how well the results of  a cluster analysis fit the data 
without reference to external information. 
- Use only the data

4. Comparing the results of  two different sets of  cluster analyses to 
determine which is better.

5. Determining the ‘correct’ number of  clusters.
For 2, 3, and 4, we can further distinguish whether we want to 
evaluate the entire clustering or just individual clusters. 

Different Aspects of  Cluster Validation



Numerical measures that are applied to judge various aspects of  cluster 
validity, are classified into the following three types.
o External Index:

o Internal Index:

o Relative Index:

Sometimes these are referred to as criteria instead of  indices

Measures of  Cluster Validity



Two matrices 

Compute the correlation between the two matrices

High correlation indicates that points that belong to the same cluster 
are close to each other. 

Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

Correlation of  incidence and proximity 
matrices for the K-means clusterings of  the 
following two data sets. 
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Order the similarity matrix with respect to cluster labels and 
inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp
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Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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Clusters in more complicated figures aren’t well separated
Internal Index:  Used to measure the goodness of  a clustering structure 

without respect to external information

SSE is good for comparing two clusterings or two clusters (average 
SSE).

Can also be used to estimate the number of  clusters

Internal Measures: SSE
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Internal Measures: SSE

SSE curve for a more complicated data set

1 
2

3

5

6

4

7

SSE of clusters found using K-means



Need a framework to interpret any measure. 

Statistics provide a framework for cluster validity

For comparing the results of  two different sets of  cluster analyses, a 
framework is less necessary.

Framework for Cluster Validity



Example

Statistical Framework for SSE
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Correlation of  incidence and proximity matrices for the K-means 
clusterings of  the following two data sets. 

Statistical Framework for Correlation
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Cluster Cohesion: Measures how closely related 
are objects in a cluster

Cluster Separation: Measure how distinct or 
well-separated a cluster is from other clusters

Example: Squared Error

Internal Measures: Cohesion and Separation
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Internal Measures: Cohesion and Separation

Example: SSE
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A proximity graph based approach can also be used for cohesion and 
separation.

Internal Measures: Cohesion and Separation

cohesion separation



Silhouette Coefficient combine ideas of  both cohesion and separation, 
but for individual points, as well as clusters and clusterings

For an individual point, i

Can calculate the Average Silhouette width for a cluster or a clustering

Internal Measures: Silhouette Coefficient
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External Measures of  Cluster Validity: Entropy and 
Purity



“The validation of  clustering structures is the 
most difficult and frustrating part of  cluster 
analysis. 
Without a strong effort in this direction, 
cluster analysis will remain a black art 
accessible only to those true believers who 
have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity


