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ABSTRACT 
Recent advances in low-power sensing devices coupled with the 
widespread availability of wireless ad-hoc networks have fueled 
the development of sensor networks. These are typically deployed 
over wide areas to gather data in the environment and monitor 
events of interest. The ability to run spatial queries is extremely 
useful for sensor networks. Spatial query execution has been 
extensively studied in the context of centralized spatial databases; 
however because of the energy and bandwidth limitation of sensor 
nodes these solutions are not directly applicable to the sensor 
network. In this paper we propose a scalable and distributed way 
of spatial query execution in sensor networks. We develop a 
distributed spatial index over the sensor nodes that is used in 
processing spatial queries in a distributed fashion. We evaluate 
the behavior of our approach and show that our mechanism 
provides an efficient and scalable way to run spatial queries over 
sparse and dense sensor networks.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Spatial 
databases and GIS 
General Terms  
Algorithms  
Keywords 
Spatial Indices, Sensor Networks, Spatial Queries 

1.  INTRODUCTION 
Wireless sensor networks have received a lot of attention recently. 
In a wireless sensor network the interconnected units are battery 
operated micro sensors with limited computational power and 
communication resources. Sensor nodes collect data and transmit 
them, possibly compressed and/or aggregated with those of the 
neighboring nodes to other nodes or to a sink. Sensors are 
deployed to gather physical data for a variety of purposes such as 
environmental monitoring, surveillance or agriculture. The typical 
application is to monitor a geographical region over a time period 
to gather data such as temperature values or animal movements.  

Spatial queries are a subset of queries in which the database or the 
sensor network is queried by location rather than an attribute. 
Spatial queries are used to answer questions, such as find the 
average temperature in an area or count the number of sensors 
within one mile of a point of interest. In a traditional spatial 
database, spatial indexing techniques such as R-Tree, R+-Tree, 
and R*-Tree[15], [16], [17] are used to execute a spatial query. In 
a sensor network, however, spatial queries have to be processed in 
a distributed manner. Because of the resource limitation of sensor 
nodes, it is desirable to process the query only on those sensors 
that have relevant data or are used to route the data to the base 
station.  
Centralized indexing techniques like R-Tree provide a fast 
mechanism to process spatial queries in a traditional database. 
The idea behind these techniques is to create a spatial index on 
groups of objects which are geographically related, and use this 
index to process spatial queries. Processing spatial queries in 
sensor networks differs from traditional databases. The unique 
characteristics of the sensor networks generate new challenges for 
processing spatial queries in sensor network settings: 
1. Distributed query execution. Queries must run in a 

distributed manner, because sensor data are distributed in the 
network, and there is no global view of the data. 

2. Distributed and dynamic index maintenance. The high 
energy cost of communication requires to decide where to 
run the query to optimize the resource usage. In addition, 
sensors may fail at any time and thus the spatial index must 
reorganize itself. 

Attribute queries in sensor networks have been studied 
extensively in the recent years. Systems like Cougar [8] and 
TinyDB [5] process attribute queries using a declarative SQL 
language. Their goal is to use sensor resources in an efficient way 
when collecting the query results. Although collecting spatial 
query results in a spatially enabled sensor network is the same as 
collecting attribute query results, we can significantly reduce the 
energy consumption in processing spatial queries by exploiting 
the fact that the sensors with the query result are usually located 
in the same geographical area.  
In this paper, we address the problem of spatial query execution 
in sensor networks. We assume that sensors are aware of their 
location (i.e. GPS). We propose a distributed SPatial IndeX 
(SPIX) over the sensor network that will be used in processing 
spatial queries in a distributed fashion. This distributed spatial 
index is built once by flooding a message into the sensor network 
and will be used for processing all spatial queries in the sensor 
network. We introduce mechanisms to maintain the spatial index 
structure when sensors fail or new sensor nodes join the network. 
We study the effect of using SPIX in processing spatial queries 
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and perform an extensive set of experiments to illustrate the 
efficiency, scalability and performance of our approach.  
Our contributions in this paper are listed as follows: 

• We propose SPIX, a distributed spatial index structure over 
the sensor network, which is maintained by the sensors to 
efficiently evaluate spatial queries. 

• We present a distributed way of constructing and 
maintaining the spatial index in the sensor network. 

• We present a distributed way of optimizing the spatial index 
to reduce energy consumption of the system for spatial 
queries. 

• We perform extensive experiments on this spatial index 
structure in Cartesian and Polar coordinates, in sparse and 
dense sensor networks. Our results demonstrate the 
efficiency, scalability and performance of our techniques in 
processing spatial queries. 

The rest of the paper is organized as follows. Section 2 reviews 
related existing work.  Section 3 introduces spatial queries over 
the sensor networks and section 4 proposes the spatial index 
structure. We propose techniques for building SPIX in section 5 
and present methods for maintaining and optimizing the index 
structure in section 6. We present detailed experimental result in 
section 7. Finally we conclude and discuss future direction of this 
work in section 8. 

2.  RELATED WORK 
Spatial query processing has been studied extensively in 
centralized systems. R-Tree [15] is one of the most popular spatial 
index structures that has been proposed. In R-Tree each spatial 
data object is represented by a Minimum Bounding Rectangle 
which is used to store the leaf node entries in the form of (Ptr, 
rect) where Ptr is a pointer to the object in the database and rect 
is the MBR of the object. Non-leaf nodes store an MBR that 
covers all the MBRs in the children nodes. Variants of the R-Tree 
structure such as R+Tree [17] and R*Tree [16] have also been 
proposed. However, due to energy and computing power 
limitations of sensor nodes, computationally sophisticated 
approaches like the R-Tree or its distributed variants [10], [11], 
[12] are not directly applicable to the sensor networks 
environment.   
Range queries have also been studied in dynamic [23] and large-
scale environments [2], [4], [19]. However because of the 
resource limitation of the sensors, building a centralized index, a 
distributed index or a super-peer network to facilitate executing 
queries is not practical in a sensor network. Ferhatosmanoglu et al 
[3] have proposed peer-tree, a distributed R-Tree method using 
peer-to-peer techniques in which they partition the sensor network 
into hierarchical rectangle shaped clusters. Similar to R-Tree, 
their techniques implement joins/splits of clusters when the 
number of items (sensor nodes) in the cluster satisfies certain 
criteria. Peer-tree is a novel structure.  The authors have shown 
how to use the peer-tree structure to answer Nearest Neighbor 
queries. In [3], the peer-tree is created bottom up by grouping 
together nodes that are close to each other. Each group of nodes 
selects a representative, which acts as the parent of this group of 
nodes, and these representatives are in turn grouped together at 
the next level. As a result, the connections between parents and 
children become progressively longer, and there is no way to 
guarantee that they can be implemented as single hops in the 

sensor network unless we make the assumption that the nodes' 
transition range is in the order of the dimensions of the sensor 
field. We note however that such long transmission ranges would 
have large energy costs. Our technique, on the other hand, 
operates in a top down fashion when constructing the hierarchy, 
and guarantees that each parent to child connection is only one 
hop away. 
Other techniques have been proposed to reduce energy usage in 
sensor networks. LEACH [9] proposes an energy adaptive 
efficient clustering to distribute energy load evenly among the 
sensors in the network. Hu et al [6] present a proactive caching 
scheme for mobile environment. Their idea is to create an index 
(R-Tree) and a cache from the spatial query results and use the 
cached records to reduce the size of the subsequent spatial query 
area. The cache and the index are stored in the mobile base 
station. These techniques reduce the size of the queried area and 
the number of requests that need to be sent to the sensor network, 
thus saving energy and increasing the lifetime of the sensor 
network. Unlike the above approaches, we design our spatial 
index in a way that it can be applied to sensor networks with 
limited resources for processing spatial queries.  
Many routing protocols have been proposed to route a packet to a 
specific location in the sensor network. Direct Diffusion [1] 
forwards the request based on the sender’s interest such as 
location. Geographic based routing [20], [21] use geographic 
coordinates to route queries to a specific sensor. Unlike the 
general routing protocols, we focus on running spatial queries that 
query the sensor network for sensors in a specific area. In our 
approach we build a distributed spatial index over the sensor 
network that at the same time reduces energy consumption in 
disseminating and processing spatial queries. 
Several attribute-based query processors have been developed for 
sensor networks. Madden et al [5], [7] have proposed an 
Acquisitional Query Processor (ACQP) that executes attribute 
queries over a sensor network. ACQP builds a semantic routing 
tree (SRT) that is conceptually an attribute index on the network.  
It stores a single one-dimensional interval representing the range 
values beneath each of its children in each node. Every time a 
query arrives at a node s, s checks to see if any child’s value 
overlaps the query range. If so, it prepares and forwards the 
query. SRT provides an efficient way for disseminating queries 
and collecting query results over constant attributes. Unlike the 
semantic routing tree, SPIX stores a two dimensional minimum 
bounding area (MBA) in each sensor node, which covers each of 
its children minimum bounding areas. SPIX manages the 
minimum bounding areas to obtain better performance in spatial 
query execution while saving sensor resources. 
The proposed work is a decentralized approach of executing 
spatial queries in a sensor network, without any assumptions of 
the capabilities of the sensor nodes. We focus on processing 
spatial queries in a sensor network and propose a protocol that 
reduces the network energy consumption in processing spatial 
queries.  

3.  SPATIAL QUERIES OVER A SENSOR 
NETWORK 
A spatial query in a sensor network is a function F {vi | si ∈R}, 
where a sensor i has a value vi ∈  R, and a location si ∈  R2 (the 
values are real numbers and the locations are x, y coordinates). F 
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can be an aggregate, such as SUM, MAX, MIN, AVG, applied to 
a set of values, and R is a range of the form [a, b]x[c, d], (a, b, c, d 
∈  R, that is, a, b, c, d, are real numbers, a<b, c<d) and a sensor is 
in the area when its x coordinate is between a and b and its y 
coordinate is between c and d. The techniques we propose can be 
used for other hierarchically decomposable functions. Alternative 
ways to define ranges (such as the intersection of arbitrarily 
oriented halfspaces) are also possible. It allows finding and/or 
aggregating attributes of sensors located within a defined area of 
interest such as a window, circle, polygon or trace. More 
specifically we are interested in spatial range queries that have 
one or more spatial constraint that represents the area of interest. 
A spatial query has one or more spatial constraint which 
represents the area of interest. Let q be the area of interest. Sensor 
s located at position p satisfies the spatial query constraint if p is 
inside q.  
Spatial queries are used to answer questions such as “what is the 
average temperature in the region R?”. Spatial query processors 
typically execute spatial queries in two steps; a coarse grained 
search to find sensors in the minimum bounding rectangle of the 
area of interest and a fine grained search to filter out sensors that 
do not satisfy the spatial constraint. Therefore, unlike traditional 
attribute queries, spatial queries require that the sensor network 
understands more complex data types like points and polygons. 
Operations on these types are more complex when compared to 
operations on simple types.  
In a spatial database, a spatial index [15], [16] will be used to 
identify nodes that intersect the minimum bounding rectangle 
(MBR) of the area of interest. These nodes will then be filtered 
out if they do not satisfy the spatial constraint.  
In a sensor network, sensors may join or fail at any time and the 
base station may not be aware of the location of all sensors at all 
times, so the base station may not be able to create a complete 
spatial index of the currently active sensors in the network.  
In this paper we introduce a distributed spatial index (SPIX) over 
the sensor network that will be used in processing spatial queries 
in a distributed fashion, while reducing the complexity of spatial 
query processing. The spatial query processor running on each 
sensor uses this index structure to: 
1. Bound the branches that do not lead to any result.  
2. Find a path to the sensors that might have a result. 
3. Aggregate the data in the sensor network to reduce the 

number of packets transferred and save energy. 
 
We describe the structure and operation of SPIX in the next 
section. 

4.  SPIX INDEX STRUCTURE 
In this section we describe SPIX, a distributed index structure that 
allows each sensor to efficiently determine if any of the sensors 
need to participate in a given spatial query. SPIX is an index 
structure built on top of a sensor network, which essentially forms 
a routing tree that is optimized for processing spatial queries in 
sensor networks.  
SPIX imposes a hierarchical structure in the network. We assume 
that spatial queries will always be disseminated into the sensor 
network from a base station. The base station is responsible for 
preparing the query, submitting it into the sensor network and 

getting the result back. The spatial query will be disseminated 
into the routing tree and the result will be sent back to the root 
(base station). When a sensor receives the query, it must decide if 
the query applies locally and/or needs to be submitted to one of its 
children in the routing tree.  A query applies locally if there is a 
non-zero probability that the sensor produces a result for the 
query. 
Each sensor node in SPIX maintains a minimum bounded area 
(MBA), which covers itself and the nodes below it. When a node 
receives a spatial query, it intersects the query area to its MBA. If 
the intersection is not empty, it applies the query and forwards the 
request to its children. Clearly, sensors with smaller MBAs have a 
higher chance to determine if the query applies to them and/or the 
sensors below them accurately and therefore save more energy in 
processing spatial queries.  
SPIX exploits two models for creating a routing tree, Rectangle 
Model and Angular Model. In the rectangular model, the MBA is 
the minimum bounded rectangle (MBR) that covers the node and 
all nodes below it. In the Angular model, the MBA is the 
minimum bounded pie represented by start/end radius and 
start/end angles. Our goal is to minimize the MBA area and MBA 
perimeter in SPIX to reduce energy consumption in the sensor 
network. We experiment with two models, rectangular and 
angular model. Angular model is more effective when the base 
station query the sensor network based on the distance between 
base station and the sensors. Rectangular model is more effective 
in other cases. 
A sample SPIX tree for a sensor network with 400 sensors, 
randomly distributed in a field of size 200x200 is shown in 
Figure 1. 

 
Figure 1, SPIX tree, 400 sensors, 200x200 

(Perimeter/Rectangle) 
 
In the sensor network we assume that the sensors are static and 
aware of their location. We assume that the sensors may fail from 
the network at any time. Spatial queries are always submitted 
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from a base station and the query result will be sent back to the 
base station. We also assume that sensors in the sensor network 
may be heterogeneous in transmission and processing power, but 
they use the same energy on processing a specific task or 
submitting a radio signal. As in Cougar [8], TAG [7] and TinyTB 
[5], each sensor maintains data as a single table with two columns 
for the sensor geography (X and Y location). Queries are parsed 
and disseminated into the sensor network at the base station and a 
spatial query over a sensor network can return a set of attributes 
or an aggregation of attributes of sensors in any area of the sensor 
network. 

5.  BUILDING SPIX 
Building SPIX is a two phase process: 
1. Advertisement phase: Advertisement phase starts from the 

base station. In the advertisement phase, each sensor waits to 
receive an advertisement before it advertises itself to the 
sensors in its radio range. The advertisement includes the 
location of the base station and the advertiser. The sensors 
maintain a list of advertisements they have received for the 
parent selection phase. Advertisement phase continues until 
all the sensors in the network hear an advertisement. 
Currently we assumed that the radio range is pre-specified. 

2. Parent selection phase: If a sensor has no children, it 
chooses its parent. If a sensor has candidate children, it waits 
until they select their parent and then it starts the parent 
selection phase. Our experiments showed that this phase can 
also be started when a timer expires. The closer the sensor is 
to the base station, the longer it needs to wait to start this 
phase. The parent selection phase continues until all the 
sensors in the network select their parent. 

In order to avoid disconnections or cycles in the network, the base 
station submits its location to the sensors in the advertisement 
phase. Each sensor reviews its candidate parents before starting 
the parent selection phase and if there is at least one candidate 
closer from this sensor to the base station, it removes all the 
candidates that are farther from this sensor to the base station 
from the candidate parent list. In the maintenance phase, these 
candidates will be re-considered. 
During the waiting period, when a sensor hears a parent selection 
message from another sensor, it updates its MBA, adds the sensor 
to its children list and notifies its vicinity that its MBA is updated. 
We define the vicinity of a sensor s to be the set of sensors that are 
one hop away from s. Sensors in its vicinity are one hop away 
from it and thus the notification can be sent by broadcasting a 
message to its vicinity. When a sensor notices that its children’s 
MBA is updated, it updates its MBA and notifies its vicinity. 

5.1  Parent Selection Criterion 
The parent selection criterion is important because the structure of 
the routing tree will determine the way that the query will be 
propagated in the sensor network and the efficiency of the spatial 
query execution. A weak parent selection criterion might create 
long and thin rectangles, which increases the radio range, or 
increases the overlapped area dramatically and as a result queries 
more sensors during processing. Based on the experiences with R-
Tree and its variants, we choose two criteria for selecting the 
parent and evaluate them in polar and coordinate systems. 
When a sensor wants to select a parent, it chooses a parent whose 
MBA needs the least area or perimeter enlargement to include the 

MBA of this sensor. If it finds two or more parent with the same 
area/perimeter enlargement, it chooses the parent that is 
geographically closer. Minimizing MBA perimeter enlargement 
would create more square-like rectangles and prevents creating 
long and thin rectangles [16]. 
In section 6.2, we evaluate how the parent selection criteria affect 
the efficiency of the sensor network. 

5.2  Eliminating Thin Rectangles 
Each sensor selects its parent based on the increase in parent 
MBA area or perimeter. This criterion might create long range 
radio communication links which is not desirable. In order to 
eliminate thin rectangles we optimize the links as below: 
When a sensor selects its parent, it notifies it children. When a 
child notices that it is closer to its grandparent than its parent, it 
disconnects from its parent and selects the grandparent as the new 
parent. This method eliminates large and thin rectangles, which is 
necessary when sensors are not close, but their X or Y coordinates 
is the same or is close enough to make thin rectangles. Figure 2 
shows the network state before and after the optimization. 

  
Figure 2. Effect of eliminating thin rectangles 

 

5.3  Energy Optimization Phase 
In the energy optimization phase, the sensor network tries to 
reduce MBA areas of its sensors by re-organizing the sensor 
network leaf sensors. This would reduce the MBA area of the 
higher level sensors significantly when the sensor joins another 
branch. Sensors with smaller MBA have a higher chance of 
determining if the query applies to them and/or the sensors below 
them accurately and therefore saves more energy in processing 
spatial queries.  
When a spatial query propagates in the sensor network, each 
sensor intersects its MBA with the queried area. If a sensor finds 
that the intersection area is zero, it knows that the query does not 
apply to it and its children and therefore does not propagate it 
further. It is worth pointing out that sensors with a smaller MBA 
area have a higher chance to say “no” to a query and save energy. 
When a leaf sensor determines that it is located in another sensor 
MBA area, it runs “parent-switching verification” process. It asks 
its parent: “What would be your MBA if I leave you?” If the 
parent’s determines that its MBR would be zero without this 
child, it forwards the question to its parent. The question will not 
propagate further and the answer will be forwarded to the leaf 
node. If the leaf node determines that it is not located in the 
replied MBR, it disconnects from its parent and runs the join 
process.  
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In the energy optimization phase, the sensor network moves some 
sensors from one branch to another to reduce the MBR area of the 
higher level sensors. This transfer reduces the overlapped area of 
the sensors and therefore saves energy. Since the MBR size is 
reduced, fewer numbers of sensors will be involved in query 
processing and the system responds faster. Figure 3 shows how 
the energy optimization phase reduces the MBR size of the higher 
level sensors. 

 
Figure 3. Effect of Energy Optimization Phase 

6.  MAINTAINING AND OPTIMIZING 
PHASE 
During the maintenance phase and optimization phase, a sensor 
node might join or leave the network. This may happen in the 
following conditions: 
1. One or more sensors are added to the network. 
2. A sensor fails to respond and thus it must be removed from 

the SPIX structure. 
3. A sensor did not join the network during building phases. 

6.1  Join  
When a sensor determines that it needs to connect to the network, 
it runs the Join phase. In the Join phase, sensor s broadcasts a 
message to its vicinity and requests for advertisement. Sensor 
nodes that hear the request for advertisement and are connected to 
the tree, send back their location and MBA to the sensor s. When 
sensor s receives a reply, it adds the sender to the candidate parent 
list. When it hears from all sensors in its vicinity, it selects the 
parent as follows:  
The criterion we use for choosing a parent among all candidates is 
to choose the parent that results in the minimum increase in MBA 
area in order to include that sensor. If most of the candidate 
parents have small MBA area (or possibly zero area), then the 
criterion becomes choosing the parent that is geographically 
closer. Joining the closest parent may cause a large increase in the 
grandparent MBA size. Since the grandparent has at least one 
child, we do not need to check more than 2 hops away. Therefore, 
during the maintenance phase when a sensor determines that most 
of its candidate parents have zero or very small MBAs, it requests 
for a two hops parent selection. Each candidate parent replies with 
the MBA of its parents and the node chooses the parent that 
satisfies the parent selection criterion the best. 

6.2  Sensor Node Failures 
In order to determine sensor failures, we use the “soft-state” 
stabilization [13], [14] technique. We assign a lease (timeout 
period) on the children. When the lease expires, the sensor 
verifies the correctness of the parent-child relationships and 
recalculates its MBR, if necessary. Conversely, every time a 
sensor hears from its parent, it sets a random timer (greater than 
the lease period). When this timer expires, the child initiates the 
parent-children verification process.  

Each sensor stores a list of its children and their MBR. Sensors 
may fail at any time; when a child does not respond to a query or 
the lease expires, the sensor determines that its child has failed 
and it re-computes its MBR using the stored values. When the 
MBR size changes, the sensor notifies its vicinity. MBR updates 
may reach all the way to the base station. 
Recalculating the new parent has overhead on the sensor network. 
The sensor must select its parent, which requires sending several 
messages to the sensors in its radio range and after selecting the 
parent, MBR of the branch connecting the sensor to the base 
station needs to be updated. To reduce the number of messages, 
MBR updates will be propagated when a random timer expires. 
When a sensor fails, its children become orphan. Orphan nodes 
run a “Join” process to join the network again. Because of the 
limited radio range, it is possible that a sensor cannot find a parent 
and the network becomes disconnected.  

7.  IMPLEMENTATION AND 
EVALUATION 
7.1  Implementation 
We have implemented SPIX modules and the simulation program 
in C++. We used our implementation to experimentally evaluate 
our technique. 

7.2  Evaluation 
The goal is to show that SPIX provides an efficient distributed 
way to execute spatial queries in the sensor network. 
Conceptually, SPIX is a distributed spatial index over the sensor 
network that can be used to locate sensor nodes that have relevant 
data to the spatial query. When a query arrives at a sensor s, s 
checks if any of its children MBA intersect with the queried area. 
If so, it prepares to receive results and forwards the query. If no 
child’s MBA intersects the queried area; the query will not be 
forwarded. Also, if the query applies locally, it executes the 
query. If the query does not apply to a sensor s and its children, it 
will be dropped.  
We differentiate between two sets of sensor that participate in the 
query; executers and forwarders. Executers are sensors that the 
query applies to them and forwarders are sensors that forward the 
query to executers. An executer sensor may also be a forwarder 
and forward the query to another sensor. The number of executers 
in a spatial query is a function of the query area and the 
distribution of the sensors and is independent of the way that we 
process spatial queries. The number of forwarder sensors depends 
on the way that we route the queries toward the executers. For 
each sensor network, we build four SPIX index structures using 
different parent selection criteria, and one routing tree, in which 
each sensor selects the geographically closest sensor as the parent, 
to study the effect of parent selection in processing spatial 
queries. 

7.2.1  Evaluation Parameters 
We used the following parameters to evaluate SPIX: 
1- Number of sensors involved in a query. 

Number of forwarders. The forwarders are responsible for 
sending queries to the executers, collecting the results,  
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Figure 4. MBR Area, Grid Distribution 400 Sensors 

MBR Area, Random Distribution, 400 
sensors 200x200

0

50

100

150

200

0 0.5 1 1.5 2 5 10 20 50 100
Area%

# 
of

 re
ct

an
gl

es Ar ea/ Rec

Ar ea/ Ang

Per imeter / Rec

Per imeter / Ang

 
Figure 5.  MBR Area, Random Distribution 400 Sensors 
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Figure 6, MBR Area, Grid Distribution 1600 Sensors 
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Figure 7. MBR Area, Random Distribution 1600 Sensors

possibly aggregate them and send the results back to the base 
station.  Assuming that the energy required for 
communication is O(d2), where d is the Euclidean distance  
between two sensors. When the forwarders are located in a 
straight line to the base station, it might be more energy 
efficient to forward the result through several forwarders 
rather than directly send it to the base station. However, 
sending data through forwarders increases the response time 
of the system and therefore there is a trade off between 
saving energy and the system response time. The number of 
forwarders is a factor in evaluating SPIX. 

2- MBR Area size. When SPIX determines that a query does not 
apply to a sensor and the sensors below it, it does not 
forward the query to that sensor to save energy. The smaller 
the MBR of a sensor, the higher chance that the MBR will 
not intersect the query area. When the query does not 
intersect with the MBR of a sensor, SPIX determines that 
this sensor and sensors below it are not involved in 
processing the query and therefore, the query will not be 
forwarded to them. Thus, MBR size is an important factor in 
evaluating SPIX.  

 
7.2.2  Results 
We studied the effect of the following parent selection criteria in 
sparse and dense sensor networks: 
1- MBR is in Cartesian coordinate system and the criterion is to 

minimize the increase in the parent area (Area/Rec). 
2- MBR is in Cartesian coordinate system and the criterion is to 

minimize the increase in the parent perimeter 
(Perimeter/Rec). 

3- MBA is in Polar coordinate system and the criterion is to 
minimize the increase in the parent area (Area/Ang). 

4- MBA is in Polar coordinate system and the criterion is to 
minimize the increase in the parent perimeter 
(Perimeter/Ang). 

5- MBR is in Cartesian coordinate system and the criterion is to 
select the closest sensor which is one hop closer to the base 
station as the parent. 

 
In the simulations, we evaluated the effect of density and sensor 
distribution and measured what are the effects when the density 
changes. We evaluated both random and uniform distribution of 
sensors over an area of size 200x200. In the first set of 
simulations, we studied a sparse network where 400 sensors were 
distributed in the field and in the second simulation we evaluated 
a dense network in which 1600 sensor were distributed over a 
field of the same size.   
 
7.2.2.1  MBR Area Distribution 
Figures 4 - 7 show the distribution of MBR area size in the 
simulated sensor networks. The X axis is the ratio of the MBR 
area of the field size and the Y axis is the number of sensors. 
These charts show that most sensors have MBR size less than 1% 
of the field size. Therefore, SPIX can efficiently determine the 
sensors that have relevant data, thus the dissemination of spatial 
queries will be bounded to those with relevant data. The 
simulation results show that the parent selection criteria do not 
change the MBR area distribution in a sensor network 
dramatically. 
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Figure 8. Legend for figures 9 to 16 
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Figure 9. Sensors involved in a query - 400 sensors, 200x200 
Grid Distribution 
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Figure 10. Sensors involved in a query - 400 sensors, 200x200 
Random Distribution 
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Figure 11. Sensors involved in a query - 1600 sensors, 200x200 
Grid Distribution 
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Figure 12. Sensors involved in a query - 1600 sensors, 200x200 
Random Distribution

7.2.2.2 Average Number of Sensors That Participate 
In Spatial Queries 
Figures 9 - 12 show the number of sensor nodes which participate 
in spatial queries over variable size for the query areas. The X 
axis shows the ratio of the query area size to the study area size 
and Y axis shows the number of participant nodes. Each point in 
the graph was obtained by averaging 100 randomly constructed 
spatial queries. In these figures, the “Executers” graph represents 
the number of executers and forwarders for different parent 
selection criteria. The number of forwarders as a function of the 
ratio of query area to the field size is shown in figures 13-16. In 
both the Rectangle and Angular models, when the query size is 
about 2 to 50% of the field size, the average number of forwarders 
does not change significantly with the query size. Our 
experiments show that this behavior is consistent in sparse and 
dense sensor networks over random and grid distributions. Since 
the query areas were rectangle, it was expected that the Rectangle 
model uses fewer number of forwarders. The Angular model is 

expected to use less number of forwarders, when the queried areas 
are in (r, θ) format. Below we discuss our results in more detail. 
Figure 9 shows the number of sensors involved in processing a 
spatial query in a sensor network with 400 sensors, uniformly 
distributed in an area of size 200x200. Since sensors are 
uniformly distributed and the maximum radio range in the sensor 
is comparable to the distance between the sensors, closest parent 
selection, both the Perimeter/Rectangle and Area/Rectangle 
parent selection criteria have almost the same performance for 
every query size. 
Figure 10 shows the number of sensors involved in processing a 
spatial query in a sensor network with 400 sensors, randomly 
distributed in an area of size 200x200. The perimeter/Rectangle 
parent selection criterion performs better than other criteria. 
Figure 11 shows the number of sensors involved in processing a 
spatial query in a dense sensor network with 1600 sensors, 
uniformly distributed in an area of size 200x200. The 
perimeter/Rectangle parent selection criterion performs better 
than other criteria. Closest Parent Selection and Area/Rectangle 
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Figure 13. Number of sensors that forward a query - 400 
sensors, 200x200  Grid Distribution 
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Figure 14. Number of sensor that forward a query - 400 
sensors, 200x200 Random Distribution 
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Figure 15. Number of sensors that forward in a query - 1600 
sensors, 200x200 Grid Distribution 
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Figure 16. Number of sensors that forward a query - 1600 
sensors, 200x200 Random Distribution

criteria have the same performance in a dense uniform 
distribution. 
Figure 12 shows the number of sensors involved in processing a 
spatial query in a dense sensor network with 1600 sensors, 
randomly distributed in an area of size 200x200. The Perimeter 
-Rectangle parent selection criterion performs better than other 
criteria. Closest Parent Selection and Area/Rectangle criteria 
almost have the same performance. 

7.2.2.3 Number of Sensors That Forward the Spatial 
Query 
Figure 13 shows the number of sensors that forward the query in 
processing a spatial query in a sensor network with 400 sensors, 
uniformly distributed in an area of size 200x200. Since sensors 
are uniformly distributed and the maximum radio range in the 
sensor is comparable to the distance between the sensors, the 
closest parent selection and the Perimeter/Rectangle parent 
selection criteria have almost the same performance for every 
query size. 
Figure 14 shows the number of forwarders involved in processing 
a spatial query in a sensor network with 400 sensors, randomly 
distributed in an area of size 200x200. The perimeter/Rectangle 
parent selection criterion performs better than other criteria. 

Figure 15 shows the number of forwarders involved in processing 
a spatial query in a dense sensor network with 1600 sensors, 
uniformly distributed in an area of size 200x200. The 
perimeter/Rectangle parent selection criterion performs better 
than other criteria.  
Figure 16 shows the number of sensors involved in processing a 
spatial query in a dense sensor network with 1600 sensors, 
randomly distributed in an area of size 200x200. The Perimeter-
Rectangle parent selection criterion performs better than other 
criteria. Closest Parent Selection and Area/Rectangle criteria 
almost have the same performance. 

7.2.2.4  Number of Messages 
Figure 18 shows the total number of messages in processing 
spatial queries in a sparse sensor network with 400 sensors, 
randomly distributed in an area of size 200x200. The perimeter 
parent selection criterion has the least number of messages to 
process the spatial query. We did some experiments with a grid 
sensor node distribution and we got the same result. Figure 19 
shows the total number of messages in processing spatial queries 
in a dense sensor network with 1600 sensors, randomly 
distributed in an area of size 200x200. The perimeter parent 
selection criterion has the least number of messages to process the 
spatial query. 
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Figure 17. Legends for figures 18 to 21 
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Figure 18. Number of Messages versus Query Size (%) 
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Figure 19. Number of Messages versus Query Size (%) 
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Figure 20. Energy consumption versus Query Size (%) 
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Figure 21. Energy consumption versus Query Size (%)

 

7.2.2.5 Energy Consumption 
To evaluate the power consumption in this model, we used a 
simplified version of PowerTOSSIM (Shnayder et. al. [22]) for 
energy consumption in sensor nodes. We used representative 
values for the Mica2 sensor nodes (developed by Berkeley), 
including CPU usage 5 mA, Radio Listen 12 mA and Radio 
Transmit usage 20-25  mA   (depends  on  the  transmission  
range) per request [22]. The power consumption in the above 
simulations is shown in figures 20-21. Each point in these graphs 
was obtained by averaging 100 randomly constructed spatial 
queries. 
Figure 20 shows the power consumption in processing spatial 
queries in a sparse sensor network with 400 sensors, randomly 
distributed in an area of size 200x200. The perimeter parent 
selection criterion uses the least power to process the spatial 
query. Our experiments with a grid sensor network structure 
showed similar results. 
Figure 21 shows power consumption in processing spatial queries 
in a dense sensor network with 1600 sensors, randomly 
distributed in an area of size 200x200. The perimeter parent 
selection criterion has the least power consumption to process the 
spatial query. 

7.3 Summary of Experimental Results 
Our experiments show that SPIX produces a tree where the 
majority of the rectangles have small geographical size. 

Consequently, SPIX is very efficient in evaluating spatial queries. 
The simulation results show that in sparse and dense sensor 
networks, the criterion “Choose the parent that increases its 
perimeter the least” will involve fewer number of sensors in 
spatial query processing when the spatial query area is a 
rectangle. Therefore, it would be more energy efficient to use this 
criterion in sensor networks. The experimental results show that 
the power consumption and the number of messages in SPIX is 
lower than the other models evaluated. 

8.  CONCLUSION AND FUTURE WORK 
In this paper we presented SPIX, a distributed index for spatial 
query execution in sensor networks. SPIX provides an efficient 
way to access sensor data in a distributed manner while 
preserving energy and reducing the communication cost. SPIX 
includes a maintenance and optimization phase, which enables the 
network to reconstruct itself when a sensor fails or allows the 
sensors to choose a different parent to minimize their MBAs. This 
mechanism will refine the structure of the index to respond to the 
failure and save energy in spatial query processing. 
 
We have evaluated the behavior of SPIX in sparse and dense 
networks and show that this spatial index provides an effective 
method to run spatial queries. In particular, we studied the effect 
of selecting parent using simulations and showed that in a sensor 
network, choosing the parent with the least enlargement perimeter 
in the Cartesian coordinate will involve fewer sensors in 
processing a spatial query in a sensor network.  The simulation 
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results showed that most of the sensors in the sensor network will 
have an MBR area of size less than 1% of the field size, which 
enables the spatial query processor to involve fewer number of 
sensors in processing a spatial query and therefore saves energy. 
We have identified several opportunities for future research. SPIX 
is designed in a way that it can respond to spatial queries that are 
not submitted from the base station. Therefore it can be used for 
tracking objects. When an object moves from one sensor’s area to 
another’s, messages can be send through SPIX to track the object 
movements. Since SPIX is designed for spatial queries, it must be 
able to handle this task efficiently. Furthermore, we expect the 
Angular model to perform better when the query area is in polar 
coordinate system, which can be evaluated by submitting queries 
in polar coordinates.  
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