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ABSTRACT

Object shape delineation during the tracking process plays
important roles in correctly interpreting tracked results, pro-
viding visually meaningful outcomes, and furthermore as-
sisting better motion estimation. For the majority of object
tracking scenario, the emphasis has been put on achieving
robust motion estimation in different situations; and object
shape delineation, though critical, has not been paid enough
attention due to its ill-posed nature. Approaches have been
proposed by assuming the similarity of object pixels in the
vicinities of the boundaries between the current frame and
the previous one. Such an assumption is usually broken
down when occlusion occurs; instead, our implementation
is based on a stronger assumption: the local properties of
object silhouette should be similar to those of the nearby
object pixels. In this paper, we are going to address how
to depict object boundary by a novel double-region grow-
ing and statistical pattern classification approach. Different
from using a single point as a seed as which is a typical
way for region growing, our seeds are segmented contours;
also instead of growing outward in a single direction from
the seed, we propose a two-directional region growing ap-
proach. Finally the best object boundary candidates are ar-
bitrated from the dual-region growing results by a statistical
classification approach.

1. INTRODUCTION

In this paper, we introduce an approach to the tracking of
rigid objects with an emphasis on object shape delineation
when self-occlusion occurs. Our approach is a feature-based
one in the sense the object motion estimation is resulted
from feature correspondences. To handle the problem of
self-occlusion, we will present a multi-frame motion es-
timation scheme which is based on the genesis frames in
which features are first registered. Our system also keeps
extracting the object boundary during the tracking process.

As obvious as it is, some of the boundary points on an
object undergoing motion – especially rotation – will be-

come occluded, while other points on the object surface will
become the boundary points in the image captured by the
camera. The goal of object shape recovery is to make a best
attempt at extracting the silhouette of the object in the cur-
rent frame.

The problem of silhouette extraction of a moving ob-
ject undergoing rotation is highly ill-posed [1, 3, 8, 7, 9, 4].
All proposed solutions are based on the assumption that the
object pixels in the vicinity of the boundary in the current
frame possess texture and color properties similar to the ob-
ject pixels in the vicinity of the boundary in the previous
frame. But this assumption is often not satisfied by real-
world objects when occlusion occurs.

For the boundary updating, while the implementations
of other researchers’ are based on the assumption that the
local properties of the boundary pixels in the current frame
should be similar to the local properties of boundary pix-
els in the previous frame, our implementation is based on a
stronger assumption that the local properties of the bound-
ary pixels in the current frame should be similar to the local
properties of the nearby interior pixels in the same frame.

2. OBJECT MOTION ESTIMATION

Our tracking process begins with an automatic selection of
feature points inside and on the boundary of the region of in-
terest (ROI). The interior features contribute to the motion
estimation, while the boundary ones delineate the tracked
object. For initially registered interior feature points, we
keep tracking them until they disappear due to self-occlusion
or feature mis-match, and in the meantime, new features are
registered as time goes on.

To estimate object motion when self-occlusion occurs,
or in another word, when some of the initially selected fea-
tures disappear, we first group the features in current frames
according to their different starting frames. Let � be the
index of current frame,

�
be the first frame of an image se-

quence, and � be the frame where feature � is first registered.
Our goal is, of course, to estimate the object motion from
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Fig. 1. Interior feature point flow, where feature � starts in frame
�

and disappears in frame ����� , and feature � starts in frame� and is still active in current frame �
frame

�
to � . Toward that end, we will group the features in

the current frame on the basis of the genesis frame for the
features. The genesis frame for a given feature is that frame
in which it first makes its appearance.

Let the 	 groups of features formed according to their
genesis indices be denoted 
���� ��� � ��������� 	���� . For fea-
tures within a group 
�� whose genesis index is � , we do fea-
ture extraction from frame � to � based on the normalized
cross-correlation and motion estimation of ����� �"!#�%$& � � �(')�+*
by multi-visit of extended Kalman filtering (EKF) [5]. Here���,�-�.!#�/$& � � �(' �0* is the motion uncertainty from frame �
to � of which the first element is the mean motion vector,
meaning the 3D pose change from frame � to frame � , and
the second element is the covariance associated with this
pose change.

Given motion estimates ����� in the current frame � for
different values of genesis frame index � , our goal now is
to estimate ���21 . In terms of the genesis frame index � , the
motion transformations 3 ’s among initial frame

�
, genesis

frame � and current frame � are related by

� 3 1 � � 3 �(� 3 1 (1)

Since � 3 1 was already estimated when the current frame
index was � , and since we have available to us � 3 � from
the two-frame motion estimation, we can use Eq.(1) to up-
date the uncertainty associated with ��3�1 . To integrate all
estimates for different values of � between 0 and the current
frame index � . We proposed a Kalman framework to bring
about this integration. In this framework, we treat �54& 1 as
the “state vector” to be estimates from the “measurements”�54& � and �"4& 1 for different values of � . A set of constraint
functions expanded from Eq. (1) are linearized for the up-
dating. Mathematical details will not be provided here [6].

3. DUAL REGION-GROWING FOR BOUNDARY
POINT DETECTION

Once we obtained the motion estimation from frame
�

to
frame � , as described in the previous section, the motion
parameters between the two adjacent frames � �6� and �

can be calculated through:�73-�98;:<�=�>3�1�!#�98;:�3�1�* 8?: (2)

The initially predicted object boundary @ � A in frame � can
be obtained by perspective transformation using the motion
transform ��3-�98;: . Based on the predicted boundary @B� A , we
define @<CEDGF as its dilation, and @ � � as its erosion. In Fig.
2(a), the contours in yellow, blue, and green show @H� A , @ � �
and @<CEDGF respectively. The uncertainty field is defined as
the region between @ C�DGF and @ � � . We will now present a
framework to locate the real object boundary @H� within this
field.

(a) (b)

Fig. 2. (a) Boundary potential field definition. (b) Dual
region growing result where the red pixels show the overlap
of inward and outward region growing, and blue and green
are outward and inward grown points separately.

3.1. Outward Region-Growing

We first introduce the outward region-growing from the eroded
ROI boundary @ � � . Outward region growing here means the
eroded ROI boundary @ � � is expanded outside into the un-
certainty field based on certain similarity and discontinuity
measures.

Seed Segment Selection:
We start the outward region-growing from the selection of a



set of seeds on the contour @ � � . Instead of choosing single
points as seeds, the seeds here are chosen as the segmentedI segments J � �� � �K� � ��������� I ��� on the contour @ � � . The
squared Fisher distance is used as the similarity criterion to
segment the contour:

LNMO �QPSRUTWV � ! � : � � M *�!YXZ : �[XZ M * M� :�X\ M: � � M X\ MM (3)

where � : , � M , XZ : , XZ M , X\ M: , X\ MM are the sizes, means, and vari-
ances of the two adjacent contour segments on @ � � . In Fig.
3, the segmented seed contours on @ � � are represented in
blue and white “x”s.

Region Growing by Point Aggregation:
The above selected contour segments then grow outside into
the uncertainty field. A neighbor pixel !^] �E_ * is joined to
the current contour segment region with satisfying of the
following intensity and chromacity criteria:`a bdcc e !#] ��_ *%�fXZ;g� cc7h �;X\ g�i j !#] �E_ */�fXZ V� i h �5X\ V�i k !#] ��_ *l�fXZ?m� i h �;X\ m� (4)

where e , j , and
k

refer to the image intensity, normalized
red, and green colors.

All the seed segments grow simultaneously during each
iteration and act like water front. Fig. 3 shows a visual
demonstration of the seed selection and the point aggrega-
tion process. All the blue solid dots depict outward region-
grown points.

3.2. Inward Region-Growing

The inward region-growing performs a similar operation as
the above outward one except with a different growing di-
rection.
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Fig. 3. Dual region growing.

3.3. Boundary Points Arbitrating from Results of Dual
Region-Growing

During the dual region-growing, under the assumption that
the intensity and chromacity of the eroded boundary are
similar to those of the actual object boundary, the object
boundary can always be flooded by the growing of eroded
contour. The ideal situation after dual region-growing is
that the grown regions from the two directions, outward and
inward, meet each other and the object boundary is at the
meeting point. But the actual reality is not the case. As we
can see from Fig. 3, after dual region-growing, there will be
three different situations:

Clear cut:
In this case, the inward growing region and outward grow-
ing one confront with each other. This cut provides the ob-
ject boundary we pursue.

Gap:
When the contours @ � � or @ C�DGF don’t represent all pixel
predicates within the uncertainty field, there will be gaps be-
tween two grown regions. Under the assumption that predi-
cates of @ � � represent those of the boundary, the true object
boundary can always be grown from @ � � . In this case, it is
plausible to take the most outward grown points as bound-
ary points.

Overlap:
When a pixel satisfies the predicates of both inside eroded
contour @ � � and outside dilated contour @ CEDGF , it will be la-
beled as the grown point from both directions.

For the overlap region, starting point n is where the in-
ward growing part first meets outward growing parts, and
point o is where the meeting is over as shown in Fig. 4(a).
To locate object boundary pixels within overlap region, it is
equal to trace boundary points starting from point n .

Let’s say point p is the previous boundary point, and
point q is current boundary point. The next possible bound-
ary candidate r is chosen within the s possible neighbor-
hood of point q . And the candidate is chosen by produc-
ing the maximum difference or separability between a local
inside window and a local outside window cut by the link
from q to r . The local inside and outside windows are rep-
resented as e � and t=uwv in Fig. 4(b). If we choose both two
local windows the same size, the difference on two sides
of the link 
qxr can be measured by squared Fisher distance
which in this case would be,

y0z|{/}~yY�� � y0z|{/}~yY� L MO ��PERGTSV � !YXZ : �fXZ M * MX\ M: �[X\ MM (5)

where as before XZ : , XZ M , X\ : , and X\ M are estimated local statis-
tic parameters of chosen windows.
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Fig. 4. Boundary point tracking within overlap regions. (a)
Red part shows the overlapped region. (b) Possible bound-
ary candidate r is selected within s neighborhood of current
boundary point q . (c) Two possible directions for candidate
selection.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Object silhouette delineation during tracking is a challeng-
ing problem in the sense of unpredictability and ill-posedness
especially when occlusion occurs. In this paper, we pre-
sented a computational scheme to tackle this problem by
a novel region growing approach. Fig. 5 demonstrates an
example to show the performance of our algorithms. The
object is a Pooh shampoo container sitting on a rotating ta-
ble. The table rotates counter-clockwise which causes the
container turn around from left to right. We can see the
self-occlusion from the position of Pooh’s nose and the tex-
ture content change of the container. In spite of the rotation,
our algorithm can still follow the object and well depict the
contour of the object.
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