1. Answer true or false to the following questions, and give proofs:
 • A problem X is NP-Complete if for all problems Y in NP, X ≤_p Y
 • If problem X is polynomially reducible to Y and Y is polynomially reducible to Z, then X is polynomially reducible to Z
 • 1-SAT is in P
 • 2-SAT is in NP

2. Given an algorithm A for the decision version of the Maximum Independent Set problem, design an algorithm B to compute the size of the maximum independent set that uses A as a subroutine. If A takes time T(n, m) where the graph has n vertices and m edges, what is the running time of B?

3. Given two graphs G and G’, the Subgraph Isomorphism problem seeks to determine whether G’ is a subgraph of G if we are allowed to relabel the vertices of G’ but make no other changes to its structure. Prove that the Subgraph Isomorphism problem is NP-complete.

4. Show that the Maximum Independent Set problem is NP-Complete by reducing from Vertex Cover. Likewise, prove in the reverse direction, i.e. that Vertex Cover is NP-Complete by a reduction from Maximum Independent Set.

5. Design a polynomial algorithm for computing an optimal vertex cover for graphs that are trees.

6. The vertex-cover problem and the clique problem are complimentary in the sense that the complement of an optimal vertex cover corresponds to a maximum clique in the complement graph. We also know that the vertex cover problem has an approximation algorithm with a constant approximation ratio. Does that mean that there is an approximation algorithm for the clique problem with a constant approximation ratio? Justify your answer.

7. Solve problem 35.2-3 from the book.

8. Solve problem 35.2-5 from the book.