Class notes for CSE 6311 Adv. Comp. Models and Algorithms Instructor: Prof Gautam Das

Giacomo Ghidini

CSE Department UT Arlington

Mar 26, 2009 / Lecture 15

Outline

- Approximation Algorithms
 - Fully Polynomial-time Approximation Scheme for Subset Sum Problem
 - Constant-bound Polynomial-time Approximation Algorithm for Subset Sum Problem

Outline

- Approximation Algorithms
 - Fully Polynomial-time Approximation Scheme for Subset Sum Problem
 - Constant-bound Polynomial-time Approximation Algorithm for Subset Sum Problem

Fully Polynomial-time Approximation Scheme for SSP

- Exact algorithm based on dynamic programming features O(nW) time complexity
- Fully PTAS consists in compressing the list of partial solutions at each iteration by storing only solution y_i to represent all solutions $y_i \in [y_i, (1+\delta)y_i]$ where $\delta = \varepsilon/2n$
- At the last iteration in L_n , $y_{opt} \le (1 + \delta)y_m$ where y_m is the last representing solution chosen by the approximate algorithm
- Thus, $y_{approx} \le y_{opt} \le (1+\delta)^n y_{approx}$ as the approximate solution is compressed at most n times

Fully Polynomial-time Approximation Scheme for SSP Proof of Approximation Scheme

• In order to prove that this an approximation scheme driven by ε , we need to prove that

$$(1+\delta)^n \leq 1+\varepsilon$$

Proof:

$$(1+\delta)^n = (1+\frac{\varepsilon}{2n})^n = 1+n(\frac{\varepsilon}{2n})+\binom{n}{2}(\frac{\varepsilon}{2n})^2 \dots \leq 1+\varepsilon$$

• Thus, $y_{approx} \leq y_{opt} \leq (1 + \varepsilon)y_{approx}$

Fully Polynomial-time Approximation Scheme for SSP

Proof of Polynomial-time Complexity

 In the worst-case intervals cover from the first element of the list y₁ through W

$$y_1(1+\delta)^m = W$$

$$m = \log_{1+\delta} \frac{W}{y_1} \le \log_{1+\delta} W = \log_{1+\frac{\varepsilon}{2n}} W = \frac{\ln W}{\ln(1+\frac{\varepsilon}{2n})} \le \frac{\ln W(1+\frac{\varepsilon}{2n})}{\frac{\varepsilon}{2n}} = \frac{2n(1+\frac{\varepsilon}{2n})\ln W}{\varepsilon}$$

• Thus, $m = O(n, \ln W, \frac{1}{\varepsilon})$, which is characteristic of a fully polynomial approximation scheme

Outline

- Approximation Algorithms
 - Fully Polynomial-time Approximation Scheme for Subset Sum Problem
 - Constant-bound Polynomial-time Approximation Algorithm for Subset Sum Problem

Constant-bound Polynomial-time Approximation Algorithm for SSP

Proof that it doesn't exist unless P = NP

- Polynomial-time algorithm s. t. $|y_{opt} y_{approx}|$ does not exist for SSP unless P = NP
- Proof by contradiction
 - Assume such an algorithm A with $c \neq 0$ exists
 - Given an instance of SSP: $S = s_1, s_2, \dots s_n, W$
 - Create an instance of SSP:

$$S = (c+1)s_1, (c+1)s_2, ... (c+1)s_n, (c+1)W$$

- ullet By definition $S_{opt}'=(c+1)S_{opt},$ and $\mid S_{opt}'-S_{approx}'\mid \leq c$
- Thus, $|S_{opt} S_{approx}| \le \frac{c}{c+1} = 0$ i. e., polynomial-time algorithm A yields optimal solution for NP-complete problem SSP