Find the Kth largest number

Special topics in Advanced Algorithms
-Slides prepared by Raghu Srinivasan
Problem

• Input: Unsorted set of numbers and an integer k
• Output: kth largest number from the given set of numbers

• Deterministic Solution – Using median of medians
 – Runtime: Linear i.e., $O(n)$
Randomization

• Let S be the set of numbers that are provided, of which we need to find the kth largest

$\text{RandSelect}(S, k)$

Step 1: Select a partitioning element s belonging to S at random

Step 2: Partition S into \{L\} \{s\} \{R\}, where $L \leq s \leq R$
Randomization (Contd...)

Step 3: If $|L| = k-1$, then return s
else if $[L] \geq k$ then return $\text{RandSelect}(L,k)$
else return $\text{RandSelect}(R, k-|L|-1)$

What is the expected number of recursive calls?
Algorithms behavior simplified

• Consider this

 1. Marker is initially set to n
 2. Pick a number at random such that it is less than n. E.g., x and move marker to that number
 3. Pick a number at random such that it is less than x. E.g., y and move marker to that number
 4. Continue this way till to marker reaches 1

• Similar to the algorithm, here we don’t know how many steps it takes for the marker to reach ‘1’; could be anywhere between 1 and n
Intuition

• The randomly selected element, for most of the runs will divide the given set of numbers equally.

• From the above intuition, the estimated number of steps or recursive calls for most of the runs would be, $O(\log n)$
Proof by induction

• We will prove that the number of steps in the recursive process, $T(N) \leq f(N)$

• Using summation we have:

$$f(N) = \sum_{i=1}^{n} \left(\frac{1}{i/2} \right),$$

pleas read f(N) equals sigma, i ranging from 1 to n of, 1 over i by 2

• Note: Here, the above solution is already known and we are just verifying its correctness.
Proof by induction

• With the diagram on LHS as reference, please consider, that the marker was moved from N to N-X in the first move, therefore

\[
T(N) = 1 + E \left[f(N-X) \right]
\]

\[
T(N) = 1 + E[f(N)] - E \left[\sum_{i=N-X}^{N} \frac{1}{i/2} \right]
\]
Proof by induction

Since N is always ≥ 1,

$$T(N) \leq 1 + f(N) - E \left[\sum_{i=N-X}^{N} \frac{1}{(N/2)} \right]$$

$$T(N) \leq 1 + f(N) - \frac{(E[X])}{(N/2)}$$

$$T(N) \leq 1 + f(N) = \frac{(N/2)}{(N/2)}$$

Therefore $T(N) \leq f(N)$

Hence the number of recursive calls is atmost $O(\log n)$

Exercise: Prove that the total word done is linear in time
References

• Class notes on 01/30/2008
• Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan