Jesus A. Gonzalez
July 17, 2019
3- Flow conservation: \(\forall u \in V - \{s, t\}\), we require:
If \((u, v) \notin E\), there can’t be flow from \(u\) to \(v\), then \(f(u, v) = 0\).
\(f_p(u, v) = \begin{cases} c_f(p) &\mbox{if } (u, v) \in p\\ -c_f(p) &\mbox {if } (v, u) \in p\\ 0 &\mbox{any other way}\\ \end{cases}\)