
Lecture 1: The Role of Algorithms in Computer Science

• Algorithms

– Informally: any well defined computational
procedure

∗ Input values

∗ Output values

– A computational sequence of steps that trans-
form an input into an output

∗ Algorithm describes such a transforma-
tion

– Tool to solve a well specified computational
problem

• Sorting problem

• Input: sequence of numbers (a1, a2, . . . , an)

• Output: permutation (reordering), (a′1, a
′
2, . . . , a

′
n)

of the input sequence such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

• For sequence (31, 41, 59, 26, 41, 58), the output is:
(26, 31, 41, 41, 58, 59)

• The input sequence is known as instance

• An instance

– Satisfies the problem restrictions

– Necessary to compute the problem solution

• Sorting is a fundamental operation in computer sci-
ence

– Used as an intermediate step

– There are many good sorting algorithms

– Which one is the best for a given task?

∗ It depends?

∗ Number of elements to sort?

∗ Are some of the elements already sorted?

∗ Are there restrictions in the values to
sort?

∗ What kind of storing are we using (main
memory, hard drives, tapes)?

– We’ll work with different sorting algorithms

• Correct, an algorithm is correct if and only if for
each input instance, it halts when it obtains the
correct output

• We say that a correct algorithm solves the given
computational problem

• An incorrect algorithm

– Might not halt at all for some instances

– Might halt with an incorrect answer

• Incorrect algorithms might be useful

– If we can control their error rate

• We’ll work with correct algorithms

• Algorithm specification

• Can be specified in English

• As a computer program

• As pseudocode

• There’s only one restriction

– Specification must provide a precise descrip-
tion of the computational procedure to follow

• Common characteristics of algorithms

– They have many candidate solutions but most
of them are useless for us, finding the one we
need might be difficult

– They have practical applications, as in the
shortest path

• Data structures

– A way to store and organize data to facilitate
access and modification

– A data structure doesn’t work well for every
purpose, they have strengths and limitations

• Technique

– It might be that the algorithm we need isn’t
published yet

– We need a technique to design and analyze
algorithms

– So we can develop new ones

– Show they produce the right answer

– Understand their efficiency

• Hard Problems

• There exist some problems for which an efficient
solution isn’t known

– NP-complete algorithms

– No efficient algorithm has been found for NP-
complete problems

∗ We don’t know either whether there ex-
ist or not efficient algorithms for NP-
complete problems

– Property of NP-complete algorithms



∗ If there exists an efficient algorithm for
any of them, then there exist efficient al-
gorithms for all of them

– Several NP-complete problems are similar
(not identical) to problems for which we know
there exist efficient algorithms

∗ A subtle change in the problem definition
causes a big change in the efficiency of the
best known algorithm

– It’s good to know about NP-complete prob-
lems

∗ They appear frequently in real world ap-
plications

∗ We may invest too much time in them

∗ If we show that the algorithm is NP-
complete

∗ We could invest all that time in develop-
ing an algorithm that gets a good answer
(not the best possible one)

• Parallelism

– For many years single processor clock speeds
increased at steady rate

– But there are physical limitations on ever in-
creasing clock speeds

– Chips have been designed to to contain more
than one core

– Multicore computers are a type of parallel
computer

– Multithreaded algorithms take advantage of
multiple cores

• Algorithms as a Technology

– What would happen if computers were in-
finitely fast and memory were free?

– Oh!, but since they aren’t infinitely fast nor
memory is free

∗ Computing time and memory space are
limited resources

∗ We must be smart to use them

∗ Need efficient algorithms in time and
space

• Efficiency

– Algorithms solving the same problem fre-
quently have different efficiency

∗ More significant than differences due to
HW or SW

• Efficiency, sorting algorithms

– InsertionSort c1n
2 to sort n elements, c1 is a

constant independent from n

– MergeSort c2n lgn, where lgn is log2n and c2
is another constant independent of n

– c1 < c2

– constant factors are not as important as n

– n much higher than lgn

– InsertionSort faster than MergeSort for small
inputs

– There is a point (in size of n) in which Merge-
Sort gets faster than InsertionSort

– Efficiency, example

∗ Computer A is faster than Computer B

∗ A, 100 millions of instructions per second
→ 108 inst/sec

∗ B, 1 million of instructions per second
→ 106 inst/sec

∗ We implement InsertionSort in A, 2n2

(c1 = 2)

∗ We implement MergeSort in B, 50nlgn
(c2 = 50)

∗ Task of sorting 1,000,000 of numbers,
(n = 106)

∗ A→ 2(106)2inst

108inst/sec
= 20,000 seconds = 5.56

hours

∗ B → 50 · 106 lg 106inst

106inst/sec
= 1,000 seconds

= 16.67 minutes

∗ With 10,000,000 numbers

· B (20 min) is 20 times faster than A
(2.3 days) to sort the numbers

· The advantage of the efficiency of
MergeSort

∗ Algorithms and other technologies

∗ Predict the resources required by the al-
gorithm Memory, computing time

∗ Consider the model of the implementa-
tion technology 1 processor RAM mem-
ory One instruction after the other, no
concurrent operations

∗ We need mathematical tools to de-
scribe/represent this!


