
Lecture 2: Getting Started

Insertion Sort

• Our first algorithm is Insertion Sort

– Solves the sorting problem

– Input: A sequence of n numbers
〈a1, a2, . . . , an〉.

– Output: A permutation (reordering)
〈a′1, a′2, . . . , a′n〉 of the input sequence such
that a′1 ≤ a′2 . . . ,≤ a′n.

• We use pseudocode to to describe algorithms

– Similar to C, C++, Java, Python, Pascal

– Very descriptive

– Sometimes sentences in English

• We will describe insertion sort with pseudocode

• How does insertion sort work?

– Similar to the way we sort a hand of playing
cards

– Start with empty left hand, cards face down
on the table

– Take one card at a time and insert it to its
correct position in the left hand

∗ Compare card with cards already in the
hand

∗ From right to left

– We always keep our cards in the left hand
sorted

• Analysis of Insertion Sort

– Execution time depends on the input

– Input size

– Is the input partially ordered?

• Input size

– Number of elements in the input

– A vector, the number of elements

– Graphs, number of vertices, number of edges

• Insertion sort with input A = 〈5, 2, 4, 6, 1, 3〉

– j indicates current card being inserted

– A[1 . . . j − 1], currently sorted hand

– A[j + 1 . . . n], cards still to be sorted

• Insertion sort works the way many people sort a
hand of playing cards. We start with an empty left
hand and the cards face down on the table. We
then remove one card at a time from the table and
insert it into the correct position in the left hand.
To find the correct position for a card, we compare
it with each of the cards already in the hand, from
right to left.

Insertion-Sort(A)

1. for j = 2 to A.length

2. key = A[j]

3. i = j − 1

4. while i > 0 and A[i] > key

5. A[i+ 1] = A[i]

6. i = i− 1

7. A[i+ 1] = key

• We present our pseudocode for insertion sort as
a procedure called Insertion-Sort, which takes as a
parameter an array A[1 . . . n] containing a sequence
of length n that is to be sorted. (In the code, the
number n of elements in A is denoted by A.length.)
The algorithm sorts the input numbers in place: it
rearranges the numbers within the array A, with
at most a constant number of them stored outside
the array at any time. The input array A contains
the sorted output sequence when the Insertion-Sort
procedure is finished.

The operation of INSERTION-SORT on the array A = 〈5, 2, 4, 6, 1, 3〉. Array indices appear above the rectangles,
and values stored in the array positions appear within the rectangles. (a)–(e) The iterations of the for loop of lines
1–7. In each iteration, the black rectangle holds the key taken from A[j], which is compared with the values in
shaded rectangles to its left in the test of line 5. Shaded arrows show array values moved one position to the right
in line 6, and black arrows indicate where the key moves to in line 7. (f) The final sorted array.



Example 1. We will use Insertion-Sort to sort the sequence A = 〈5, 7, 9, 4, 6〉.

j = 2 1 2 3 4 5 6

5 2 4 6 1 7
key = 2
i = 1

1 > 0 and 5 > 2 (True) 1 2 3 4 5 6

5 5 4 6 1 7
A[2] = 5
i = 0

0 > 0 (False) 1 2 3 4 5 6

2 5 4 6 1 7
A[1] = 2

j = 3 1 2 3 4 5 6

2 5 4 6 1 7
key = 4
i = 2

2 > 0 and 5 > 4 (True) 1 2 3 4 5 6

2 5 5 6 1 7
A[3] = 5
i = 1

1 > 0 and 2 > 4 (False) 1 2 3 4 5 6

2 4 5 6 1 7
A[2] = 4

j = 4 1 2 3 4 5 6

2 4 5 6 1 7
key = 6
i = 3

3 > 0 and 5 > 6 (False) 1 2 3 4 5 6

2 4 5 6 1 7
A[4] = 6

j = 5 1 2 3 4 5 6

2 4 5 6 1 7
key = 1
i = 4

4 > 0 and 6 > 1 (True) 1 2 3 4 5 6

2 4 5 6 6 7
A[5] = 6
i = 3

3 > 0 and 5 > 1 (True) 1 2 3 4 5 6

2 4 5 5 6 7
A[4] = 5
i = 2

2 > 0 and 4 > 1 (True) 1 2 3 4 5 6

2 4 4 5 6 7
A[3] = 4
i = 1

1 > 0 and 2 > 1 (True) 1 2 3 4 5 6

2 2 4 5 6 7
A[2] = 3
i = 1

1 > 0 and 1 > 1 (False) 1 2 3 4 5 6

1 2 4 5 6 7
A[1] = 1

j = 7 1 2 3 4 5 6

1 2 4 5 6 7
key = 7
i = 6

6 > 0 and 6 > 7 (False) 1 2 3 4 5 6

1 2 4 5 6 7
A[7] = 7



Insertion Sort - Loop Invariant

At the beginning of each iteration of the for loop, which
is indexed by j, the subarray consisting of elements
A[1 . . . j − 1] constitutes the currently sorted hand, and
the remaining subarray A[j + 1 . . . n] corresponds to
the pile of cards still on the table. In fact, elements
A[1 . . . j − 1] are the elements originally in positions 1
through j − 1, but now in sorted order. We state these
properties of A[1 . . . j − 1] formally as a loop invariant:

At the start of each iteration of the for loop of lines 1-
7, the subarray A[1 . . . j−1] consists of the elements
originally in A[1 . . . j − 1], but in sorted order.

Initialization: We start by showing that the loop
invariant holds before the first loop iteration, when
j = 2. The subarray A[1 . . . j − 1], therefore, con-
sists of just the single element A[1], which is in fact
the original element in A[1]. Moreover, this subar-
ray is sorted (trivially, of course), which shows that
the loop invariant holds prior to the first iteration
of the loop.

Maintenance: The body of the for loop works by
moving A[j−1], A[j−2], A[j−3], and so on by one
position to the right until it finds the proper posi-
tion for A[j] (lines 4-6), at which point it inserts
the value of A[j] (line 7). The subarray A[1 . . . j]
then consists of the elements originally in A[1 . . . j],
but in sorted order. Incrementing j for the next

iteration of the for loop then preserves the loop
invariant.

Termination: Finally, we examine what happens
when the loop terminates. The condition causing
the for loop to terminate is that j > A.length = n.
Because each loop iteration increases j by 1, we
must have j = n + 1 at that time. Substituting
n + 1 for j in the wording of loop invariant, we
have that the subarray A[1 . . . n] consists of the el-
ements originally in A[1 . . . n], but in sorted order.
Observing that the subarray A[1 . . . n] is the entire
array, we conclude that the entire array is sorted.
Hence, the algorithm is correct.

Analyzing Insertion Sort

The running time of the algorithm is the sum of run-
ning times for each statement executed; a statement that
takes ci steps to execute and executes n times will con-
tribute cin to the total running time.

To compute T (n), the running time of Insertion-
Sort on an input of n values, we sum the products of
the cost and times columns, obtaining

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

n∑
j=2

tj

+ c5

n∑
j=2

(tj − 1) + c6

n∑
j=2

(tj − 1) + c7(n− 1).

Best Case

In Insertion-Sort, the best case occurs if the array is already sorted. For each j = 2, 3, . . . , n, we then find that
A[i] ≤ key in line 5 when i has its initial value of j − 1. Thus tj = 1 for j = 2, 3, . . . , n, and the best-case running
time is

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c7(n− 1)

= (c1 + c2 + c3 + c4 + c7)n− (c2 + c3 + c4 + c7)

= O(n).

Worst Case

If the array is in reverse sorted order –that is, in decreasing order –the worst case results. We must compare each
element A[j] with each element in the entire sorted subarray A[1 . . . j − 1], and so tj = j for j = 2, 3, . . . n. We find
that in the worst case, the running time of Insertion-Sort is

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4

(
n(n+ 1)

2
− 1

)
+ c5

(
n(n− 1)

2
− 1

)
+ c6

(
n(n− 1)

2
− 1

)
+ c7(n− 1)

=
(c4

2
+
c5
2

+
c6
2

)
n2 +

(
c1 + c2 + c3 +

c4
2
− c5

2
− c6

2
+ c7

)
n

− (c2 + c3 + c4 + c7)

= O(n2).



Analyzing Algorithms

• Predicting the resources that the algorithm re-
quires

• Mostly computational time

• We analyze several candidates and choose the best
one (most efficient) for the problem at hand

• Need to know the model of the implementation
technology

• We assume a generic one processor

• Random-access machine (RAM), one instruction
after the other with no concurrent operations

• We measure running time

• Number of primitive operations (steps) executed

• Need to define the notion of step in a way indepen-
dent from the computer. Constant time to execute
each pseudocode line. Add, Multiply, divide, floor,
remainder, and so on. They actually take different
time but we treat it as the same and as constant
time.

• Order of Growth

– We simplify the analysis of algorithms

∗ We use constants to represent the cost of
lines of code

– Another simplification (abstraction)

∗ We only care about the growing rate or
order of growth

∗ We only consider the leading term in a
formula (i.e. an2)

– We also ignore constant coefficients

∗ They are less significant than the growing
rate

– Worst case for InsertionSort: θ(n2)

– Theta of n-squared

– We say that an algorithm is more efficient
than another one if its worst case running time
has a lower order of growth

∗ There might be inconsistencies for short
input sizes but not for large ones

– Many techniques to design algorithms

– InsertionSort follows an incremental approach

– Other techniques such as Divide and conquer

∗ 3 steps in each level of recursion

∗ Divide the problem in subproblems

∗ Conquer the problems by recursively solv-
ing them, if the problem is trivial (small
enough) it solves it directly

∗ Combine the solutions to obtain the solu-
tion to the original problem

Designing Algorithms

– Many techniques to design algorithms

∗ InsertionSort follows an incremental ap-
proach

∗ Other techniques such as Divide and con-
quer

– Divide and Conquer

∗ 3 steps in each level of recursion

∗ Divide the problem in subproblems

∗ Conquer the problems by recursively solv-
ing them, if the problem is trivial (small
enough) it solves it directly

∗ Combine the solutions to obtain the solu-
tion to the original problem

– Many algorithms are recursive in their struc-
ture

∗ Recursive algorithms call themselves once
or more times to solve similar subprob-
lems

∗ They follow a divide and conquer ap-
proach

· Divide the problem in similar sub-
problems but smaller

· Solve the problems recursively

· Combine the solutions to create the
solution to the original problem

The Merge Sort Algorithm

– MergeSort follows the divide-and-conquer
paradigm

∗ Divides the sequence of n-elements to sort
in 2 subsequences of n/2 elements each

∗ Sorts the 2 subsequences recursively using
MergeSort

∗ Combines, merges the 2 sorted subse-
quences to produce the sorted solution

– Initially A is the input array, p = 1,
q = length[A], p ≤ q < r



Merge(A, p, q, r)

1. n1 = q − p+ 1

2. n2 = r − q
3. let L[1 · · ·n1 + 1] and
R = [1 · · ·n2 + 1] be new arrays

4. for i = 1 to n1

5. L[i] = A[p+ i− 1]

6. for j = 1 to n2

7. R[j] = A[q + j]

8. L[n1 + 1] =∞
9. R[n2 + 1] =∞

10. i = 1

11. j = 1

12. for k = p to r

13. if L[i] ≤ R[j]

14. A[k] = L[i]

15. i = i+ 1

16. else A[k] = R[j]

17. j = j + 1

Merge Sort(A, p, r)

1. if p < r

2. q = (p+ r)/2

3. Merge-Sort(A, p, q)

4. Merge-Sort(A, q + 1, r)

5. Merge(A, p, q, r)

• Recursive algorithm

– Its execution time is described with a recur-
rence equation. Describes the execution time
of a problem of size n in terms of the execution
time of smaller inputs We use mathematical
tools to solve recurrences

• A recurrence for running time of a divide-and-
conquer algorithm

– Comes from the 3 steps of the basic paradigm

– Let T (n) be the running time of a problem of
size n

– If problem enough small (n ¡ c), it takes con-
stant time: θ(1)

• A recurrence for running time of a divide-and-
conquer algorithm

– Each problem division has a subproblems,
each 1/b of the original size, in MergeSort
a = b = 2

– It takes T (n/b) time to solve a subproblem of
size n/b

– It takes aT (n/b) to solve a of them

– D(n) is the time to divide the problem into
subproblems

– C(n) is the time to combine the solutions

T (n) =

{
θ(1) if n ≤ c
aT (n/b) +D(n) + C(n) otherwise

• Analysis of MergeSort

– We assume problem size as a power of 2

– Each problem division generates 2 subse-
quences of size n/2

– Worst time execution time for MergeSort with
n numbers

– MergeSort with only one number→ Constant
time

– For n > 1 we divide the problem:

– Divide→ Computes the middle of subarray in
constant time, D(n) = θ(1)

– Conquer: Recursively solve 2 subproblems,
each of size n/2, contributes 2T (n/2) to the
running time

– Combine: Merge on n-element subarray takes
θ(n), then C(n) = θ(n)

– We sum functions D(n) and C(n) for the anal-
ysis

– Sum θ(n) and θ(1)

– We add the term 2T (n/2) to get the worst
case for MergeSort

T (n) =

{
θ(1) if n = 1

2T (n/2) + θ(n) n > 1

– Solution for recurrence: T (n) is θ(n lg n)

– For large enough inputs, MergeSort with
θ(n lg n) is better than InsertionSort with
θ(n2)



The operation of lines 10–17 in the call MERGE(A, 9, 12, 16), when the subarray A[9 . . . 16] contains the sequence
(2, 4, 5, 7, 1, 2, 3, 6). After copying and inserting sentinels, the array L contains (2, 4, 5, 7,∞), and the array R con-
tains (1, 2, 3, 6,∞). Lightly shaded positions in A contain their final values, and lightly shaded positions in L and
R contain values that have yet to be copied back into A. Taken together, the lightly shaded positions always
comprise the values originally in A[9 . . . 16], along with the two sentinels. Heavily shaded positions in A contain
values that will be copied over, and heavily shaded positions in L and R contain values that have already been
copied back into A. (a)–(h) The arrays A, L, and R, and their respective indices k, i, and j prior to each iteration
of the loop of lines 12–17. (i) The arrays and indices at termination. At this point, the subarray in A[9 . . . 16] is
sorted, and the two sentinels in L and R are the only two elements in these arrays that have not been copied into A.



The operation of merge sort on the array A = (5, 2, 4, 7, 1, 3, 2, 6). The lengths of the sorted sequences being merged
increase as the algorithm progresses from bottom to top.

Merge(A, p, q, r)

1. n1 = q − p+ 1

2. n2 = r − q
3. let L[1 · · ·n1 + 1] and
R = [1 · · ·n2 + 1] be new arrays

4. for i = 1 to n1

5. L[i] = A[p+ i− 1]

6. for j = 1 to n2

7. R[j] = A[q + j]

8. L[n1 + 1] =∞
9. R[n2 + 1] =∞

10. i = 1

11. j = 1

12. for k = p to r

13. if L[i] ≤ R[j]

14. A[k] = L[i]

15. i = i+ 1

16. else A[k] = R[j]

17. j = j + 1

In detail, the MERGE procedure works as follows.
Line 1 computes the length n1 of the subarray A[p . . . q],

and line 2 computes the length n2 of the subarray
A[q+1 . . . 2]. We create arrays L and R, of lengths n1+1
and n2 + 1, respectively, in line 3; the extra position in
each array will hold the sentinel. The for loop of lines
4–5 copies the subarray A[p . . . q] into L[1 . . . n1], and the
for loop of lines 6–7 copies the subarray A[q+1 . . . r] into
R[1 . . . n2]. Lines 8–9 put the sentinels at the ends of the
arrays L and R. Lines 10–17, illustrated above, perform
the basic steps by maintaining the following loop invari-
ant:

Loop Invariant
At the start of each iteration of the for loop of lines
12–17, the subarray Ap::k 1 contains the k p small-
est elements of L1::n1 C 1 and R1 : : n2 C 1 , in
sorted order. Moreover, Li and Rj are the smallest
elements of their arrays that have not been copied
back into A.

We must show that this loop invariant holds prior to
the first iteration of the for loop of lines 12–17, that each
iteration of the loop maintains the invariant, and that the
invariant provides a useful property to show correctness
when the loop terminates.

Initialization: Prior to the first iteration of
the loop, we have k = p, so that the subarray
A[p . . . k − 1] is empty. This empty subarray con-
tains the k − p = 0 smallest elements of L and
R, and since i = j = 1, both L[i] and R[j] are



the smallest elements of their arrays that have not
been copied back into A.

Maintenance: To see that each iteration main-
tains the loop invariant, let us first suppose that
L[i] ≤ R[j]. Then L[i] is the smallest element not
yet copied back into A. Because A[p . . . − 1] con-
tains the k−p smallest elements, after line 14 copies
L[i] into A[k], the subarray A[p . . . k] will contain
the k − p + 1 smallest elements. Incrementing k
(in the for loop update) and i (in line 15) reestab-
lishes the loop invariant for the next iteration. If

instead L[i] > R[j], then lines 16–17 perform the
appropriate action to maintain the loop invariant.

Termination: At termination, k = r + 1. By the
loop invariant, the subarray A[p . . . k − 1], which
is A[p . . . r], contains the k − p = r − p + 1 small-
est elements of L[1 . . . n1 + 1 and R[1 . . . n2 + 1, in
sorted order. The arrays L and R together contain
n1 + n2 + 2 = r − p+ 3 elements. All but the two
largest have been copied back into A, and these two
largest elements are the sentinels.


