Lecture 3: Growth of Functions

Growth of Functions

- Order of growth of the running time of an algorithm
- Characterizes an algorithm's efficiency
- Allows comparing relative performance of algorithms
- With large enough input sizes, in terms of n
- Merge sort $\theta(n \lg n)$ beats insertion sort $\theta\left(n^{2}\right)$
- We study large enough input sizes to make relevant the order of growth of the running time
- We study the asymptotic efficiency of algorithms
- How running time of an algorithm increases with the size of the input in the limit, as input size increases without bound
- An asymptotically more efficient algorithm is usually the best choice for all but very small inputs

Asymptotic Notation

- Notation to describe asymptotic running time of an algorithm
- Defined as functions with domain as $\mathbb{N}=\{0,1,2, \ldots\}$
- Describe worst case running time of $T(n)$
- Usually defined only for integer input sizes
- Careful not to abuse asymptotic notation
- Remember we characterize running time of algorithms with functions
- Insertion sort: $\Theta\left(n^{2}\right)$
* After abstraction from $a n^{2}+b n+c$
- $\Theta\left(n^{2}\right)$ stands for function $a n^{2}+b n+c$ as the worst case running time of insertion sort
- Asymptotic notation can also characterize other aspects of algorithms, i.e. amount of space

Θ-notation

- What does $T(n)=\Theta\left(n^{2}\right)$ means as worst-case running time for insertion sort?
- For a given function $g(n)$, we denote by $\Theta(g(n))$ the set of functions
- $\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and $\left.n_{0}: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}$.
- A function $f(n)$ belongs to the set $\Theta(g(n))$ if there exist positive constants c_{1} and c_{2} such that it can be ?sandwiched? between $c_{1} g(n)$ and $c_{2} g(n)$, for sufficiently large n.
- $\Theta(g(n))$ is a set, then, $f(n) \in \Theta(g(n))$, but we write: $f(n)=\Theta(g(n))$
- For all $n \geq n_{0}, f(n)$ is equal to $g(n)$ to within a constant factor
- $g(n)$ is an asymptotically tight bound for $f(n)$
- By definition, $\Theta(g(n))$ requires every member $f(n) \in$ $\Theta(g(n))$ be asymptotically nonnegative
- $f(n)$ nonnegative when n is sufficiently large
- Using the formal definition
- Example using the Θ-notation for $\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
- Determine positive constants c_{1}, c_{2}, and n_{0} such that $c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
- dividing by $n^{2}, c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$
- For case $c_{1} \leq 1 / 2-3 / n$
- Because c_{1} is a positive constant, then, $0<1 / 2-3 / n$, then $n>6$
- then, if $n_{0}=7$ then $c_{1} \leq 1 / 2-3 / 7$, which is equal to $c_{1} \leq 1 / 14$. Let $c_{1}=1 / 14$
- Determine positive constants c_{1}, c_{2}, and n_{0} such that $c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
- For case $1 / 2-3 / n \leq c_{2}$, when $n \rightarrow \infty$ then, $1 / 2-3 / n \rightarrow 1 / 2$, then, $c_{2}=1 / 2$
- For $c_{1}=1 / 14, c_{2}=1 / 2$ and $n_{0}=7$, it holds that $f(n) \in \Theta\left(n^{2}\right)$ or $\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$

(a)

(b)

(c)

O-notation

- The O notation denotes an asymptotic upper bound
- For a function $g(n)$ we denote $O(g(n))$ and say: big-oh of g of n, or oh of g of n
- $O(g(n))$ also refers to a set of functions
- $O(g(n))=\{f(n):$ there exist positive constants c and n_{0} such that $\left.0 \leq f(n) \leq c g(n) \forall n \geq n_{0}\right\}$.
- Use O-notation to give upper bound on a function, to within a constant factor
- Note that $f(n)=\Theta(g(n))$ implies $f(n)=O(g(n))$
- Θ-notation is stronger than O-notation

Ω-notation

- Ω-notation provides an asymptotic lower bound
- For a function $g(n)$, we denote $\Omega(g(n))$ and say: bigomega of g of n or omega of g of n
- $\Omega(g(n))$ also refers to a set of functions
- $\Omega(g(n))=\{f(n)$: there exist positive constants c and n_{0} such that $\left.0 \leq c g(n) \leq f(n) \forall n \geq n_{0}\right\}$. Use Ω notation to give lower bound on a function, to within a constant factor
- Note that $f(n)=\Theta(g(n))$ also implies $f(n)=\Omega(g(n))$
- Θ-notation is stronger than Ω-notation
- Given a function $g(n)$, we denote as $\Omega(g(n))$ to the set of functions such that:
- For any two functions $f(n)$ and $g(n)$, we have $f(n)=$ $\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=$ $\Omega(g(n))$.
- If we say the running time of an algorithm is $\Omega(g(n))$, we mean:
- No matter what particular input of size n is chosen for each value of n , the running time on that input is at least a constant times $g(n)$ for sufficiently large n
- We can also mean best-case times, as in insertion sort is $\Omega(n)$.
- Insertion Sort belongs to both, $\Omega(n)$ and $O\left(n^{2}\right)$
- In $n=O\left(n^{2}\right)$, the $=$ sign means set membership: $n \in O\left(n^{2}\right)$
- When we use asymptotic notation in a formula, we interpret it as representing a function for which we don't care about its name, only its order
- In $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$ means $2 n^{2}+3 n+1=$ $2 n^{2}+f(n)$, where $f(n)$ is a function in the set $\Theta(n)$
- Example: $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)$.

Asymptotic Notation in Equations and Inequalities

- Given a function $g(n)$, we denote as $O(g(n))$ to the set of functions such that:
- We often describe the running time of an algorithm by inspecting the algorithm's overall structure
- We use O-notation
- A doubly nested loop structure shows an $O\left(n^{2}\right)$ upper bound on the worst case running time

O-notation

- The upper bound O-notation may or may not be asymptotically tight
- $2 n^{2}=O\left(n^{2}\right)$ is asymptotically tight
- $2 n=O\left(n^{2}\right)$ is not asymptotically tight
- We use o - notation to denote an upper bound that is not asymptotically tight
- We define $o(g(n))$ and say little-oh of g of n as the set $o(g(n))=\{f(n)$: for any positive constant $c>0$, there exists a constant $n_{0}>0$ such that $\left.0 \leq f(n)<c g(n) \forall n \geq n_{0}\right\}$. Example, $2 n=o\left(n^{2}\right)$ but $2 n^{2} \neq o\left(n^{2}\right)$.

ω-notation

- ω-notation is to Ω-notation as o-notation is to O notation
- Use ω-notation to denote a lower bound that is not asymptotically tight
$-f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.
- Formally
$-\omega(g(n))=\{f(n):$ for any positive constant
$c>0$, there exists a constant $n_{0}>0$ such that $\left.0 \leq c g(n)<f(n) \forall n \geq n_{0}\right\}$.
- $n^{2} / 2=\omega(n)$
- $n^{2} / 2 \neq \omega\left(n^{2}\right)$

Comparing functions

- Many relational properties of real numbers also apply to asymptotic comparisons
- Properties of Asymptotic Functions: Transitivity, Reflexive, symmetry, Transpose Symmetry
- Analogy between asymptotic comparison of 2 functions f and g and comparison of 2 real numbers a and b :
- Trichotomy: for any 2 real numbers a and b, exactly one of the following must hold: $a<b, a=b$, or $a>b$
- NOT all functions are asymptotically comparable
- Given 2 functions $f(n)$ and $g(n)$, it could be that neither $f(n)=O(g(n))$ nor $f(n)=\Omega(g(n))$ holds

