
Lecture 3: Growth of Functions

Growth of Functions

• Order of growth of the running time of an algorithm

– Characterizes an algorithm’s efficiency

– Allows comparing relative performance of algo-
rithms

• With large enough input sizes, in terms of n

– Merge sort θ(n lg n) beats insertion sort θ(n2)

• We study large enough input sizes to make relevant
the order of growth of the running time

– We study the asymptotic efficiency of algorithms

– How running time of an algorithm increases with
the size of the input in the limit, as input size
increases without bound

• An asymptotically more efficient algorithm is usually
the best choice for all but very small inputs

Asymptotic Notation

• Notation to describe asymptotic running time of an
algorithm

– Defined as functions with domain as
N = {0, 1, 2, . . . }

– Describe worst case running time of T (n)

– Usually defined only for integer input sizes

– Careful not to abuse asymptotic notation

• Remember we characterize running time of algorithms
with functions

– Insertion sort: Θ(n2)

∗ After abstraction from an2 + bn+ c

• Θ(n2) stands for function an2 + bn + c as the worst
case running time of insertion sort

• Asymptotic notation can also characterize other as-
pects of algorithms, i.e. amount of space

Θ-notation

• What does T (n) = Θ(n2) means as worst-case running
time for insertion sort?

• For a given function g(n), we denote by Θ(g(n)) the
set of functions

• Θ(g(n)) = {f(n) : there exist positive constants c1, c2,
and n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥ n0}.

• A function f(n) belongs to the set Θ(g(n)) if there
exist positive constants c1 and c2 such that it can be
?sandwiched? between c1g(n) and c2g(n), for suffi-
ciently large n.

• Θ(g(n)) is a set, then, f(n) ∈ Θ(g(n)), but we write:
f(n) = Θ(g(n))

• For all n ≥ n0, f(n) is equal to g(n) to within a con-
stant factor

• g(n) is an asymptotically tight bound for f(n)

• By definition, Θ(g(n)) requires every member f(n) ∈
Θ(g(n)) be asymptotically nonnegative

– f(n) nonnegative when n is sufficiently large

• Using the formal definition

• Example using the Θ-notation for 1
2n

2 − 3n = Θ(n2)

• Determine positive constants c1, c2, and n0 such that
c1n

2 ≤ 1
2n

2 − 3n ≤ c2n2

– dividing by n2, c1 ≤ 1
2 −

3
n ≤ c2

– For case c1 ≤ 1/2− 3/n

– Because c1 is a positive constant, then,
0 < 1/2− 3/n, then n > 6

– then, if n0 = 7 then c1 ≤ 1/2 − 3/7, which is
equal to c1 ≤ 1/14. Let c1 = 1/14

• Determine positive constants c1, c2, and n0 such that
c1n

2 ≤ 1
2n

2 − 3n ≤ c2n2

• For case 1/2 − 3/n ≤ c2, when n → ∞ then,
1/2− 3/n→ 1/2, then, c2 = 1/2

– For c1 = 1/14, c2 = 1/2 and n0 = 7, it holds that
f(n) ∈ Θ(n2) or 1

2n
2 − 3n = Θ(n2)



O-notation

• The O notation denotes an asymptotic upper bound

• For a function g(n) we denote O(g(n)) and say: big-oh
of g of n, or oh of g of n

• O(g(n)) also refers to a set of functions

• O(g(n)) = {f(n) : there exist positive constants c and
n0 such that 0 ≤ f(n) ≤ cg(n) ∀ n ≥ n0}.

• Use O-notation to give upper bound on a function, to
within a constant factor

• Note that f(n) = Θ(g(n)) implies f(n) = O(g(n))

– Θ-notation is stronger than O-notation

Ω-notation

• Ω-notation provides an asymptotic lower bound

• For a function g(n), we denote Ω(g(n)) and say: big-
omega of g of n or omega of g of n

• Ω(g(n)) also refers to a set of functions

• Ω(g(n)) = {f(n) : there exist positive constants c and
n0 such that 0 ≤ cg(n) ≤ f(n) ∀ n ≥ n0}. Use Ω-
notation to give lower bound on a function, to within
a constant factor

• Note that f(n) = Θ(g(n)) also implies f(n) = Ω(g(n))

– Θ-notation is stronger than Ω-notation

• Given a function g(n), we denote as Ω(g(n)) to the set
of functions such that:

• For any two functions f(n) and g(n), we have f(n) =
Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Ω(g(n)).

• If we say the running time of an algorithm is Ω(g(n)),
we mean:

– No matter what particular input of size n is cho-
sen for each value of n, the running time on that
input is at least a constant times g(n) for suffi-
ciently large n

– We can also mean best-case times, as in insertion
sort is Ω(n).

• Insertion Sort belongs to both, Ω(n) and O(n2)

• In n = O(n2), the = sign means set membership:
n ∈ O(n2)

• When we use asymptotic notation in a formula, we in-
terpret it as representing a function for which we don’t
care about its name, only its order

– In 2n2+3n+1 = 2n2+Θ(n) means 2n2+3n+1 =
2n2 + f(n), where f(n) is a function in the set
Θ(n)

• Example: 2n2 + 3n+ 1 = 2n2 + Θ(n) = Θ(n2).

Asymptotic Notation in Equations and In-
equalities

• Given a function g(n), we denote as O(g(n)) to the set
of functions such that:

• We often describe the running time of an algorithm by
inspecting the algorithm’s overall structure

– We use O-notation

– A doubly nested loop structure shows an O(n2)
upper bound on the worst case running time

o-notation

• The upper bound O-notation may or may not be
asymptotically tight

• 2n2 = O(n2) is asymptotically tight

• 2n = O(n2) is not asymptotically tight

• We use o−notation to denote an upper bound that is
not asymptotically tight

• We define o(g(n)) and say little-oh of g of n as
the set o(g(n)) = {f(n) : for any positive constant
c > 0, there exists a constant n0 > 0 such that
0 ≤ f(n) < cg(n) ∀ n ≥ n0}. Example, 2n = o(n2)
but 2n2 6= o(n2).

ω-notation

• ω-notation is to Ω-notation as o-notation is to O-
notation

– Use ω-notation to denote a lower bound that is
not asymptotically tight

– f(n) ∈ ω(g(n)) if and only if g(n) ∈ o(f(n)).

• Formally

– ω(g(n)) = {f(n) : for any positive constant
c > 0, there exists a constant n0 > 0 such that
0 ≤ cg(n) < f(n) ∀ n ≥ n0}.

• n2/2 = ω(n)

• n2/2 6= ω(n2)

Comparing functions

• Many relational properties of real numbers also apply
to asymptotic comparisons

• Properties of Asymptotic Functions: Transitivity, Re-
flexive, symmetry, Transpose Symmetry

• Analogy between asymptotic comparison of 2 func-
tions f and g and comparison of 2 real numbers a
and b:

• Trichotomy: for any 2 real numbers a and b, exactly
one of the following must hold: a < b, a = b, or a > b

– NOT all functions are asymptotically comparable

– Given 2 functions f(n) and g(n), it could be that
neither f(n) = O(g(n)) nor f(n) = Ω(g(n)) holds


