Lecture 3: Growth of Functions

Growth of Functions

- Order of growth of the running time of an algorithm
 - Characterizes an algorithm's efficiency
 - Allows comparing relative performance of algorithms
- With large enough input sizes, in terms of n
 - Merge sort $\theta(n \lg n)$ beats insertion sort $\theta(n^2)$
- We study large enough input sizes to make relevant the order of growth of the running time
 - We study the asymptotic efficiency of algorithms
 - How running time of an algorithm increases with the size of the input in the limit, as input size increases without bound
- An asymptotically more efficient algorithm is usually the best choice for all but very small inputs

Asymptotic Notation

- Notation to describe asymptotic running time of an algorithm
 - Defined as functions with domain as $\mathbb{N} = \{0, 1, 2, \dots\}$
 - Describe worst case running time of T(n)
 - Usually defined only for integer input sizes
 - Careful not to abuse asymptotic notation
- Remember we characterize running time of algorithms with functions
 - Insertion sort: $\Theta(n^2)$

 n_0

- * After abstraction from $an^2 + bn + c$
- $\Theta(n^2)$ stands for function $an^2 + bn + c$ as the worst case running time of insertion sort
- Asymptotic notation can also characterize other aspects of algorithms, i.e. amount of space

n

 $f(n) = \Theta(g(n))$

(a)

Θ -notation

- What does $T(n) = \Theta(n^2)$ means as worst-case running time for insertion sort?
- For a given function g(n), we denote by $\Theta(g(n))$ the set of functions
- $\Theta(q(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \}$ and $n_0: 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0 \}.$
- A function f(n) belongs to the set $\Theta(q(n))$ if there exist positive constants c_1 and c_2 such that it can be ?sandwiched? between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.
- $\Theta(g(n))$ is a set, then, $f(n) \in \Theta(g(n))$, but we write: $f(n) = \Theta(g(n))$
- For all $n \ge n_0$, f(n) is equal to g(n) to within a constant factor
- q(n) is an asymptotically tight bound for f(n)
- By definition, $\Theta(g(n))$ requires every member $f(n) \in$ $\Theta(q(n))$ be asymptotically nonnegative

-f(n) nonnegative when n is sufficiently large

- Using the formal definition
- Example using the Θ -notation for $\frac{1}{2}n^2 3n = \Theta(n^2)$
- Determine positive constants c_1 , c_2 , and n_0 such that $c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2$
 - dividing by n^2 , $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$
 - For case $c_1 \le 1/2 3/n$
 - Because c_1 is a positive constant, then, 0 < 1/2 - 3/n, then n > 6
 - then, if $n_0 = 7$ then $c_1 \leq 1/2 3/7$, which is equal to $c_1 \leq 1/14$. Let $c_1 = 1/14$
- Determine positive constants c_1 , c_2 , and n_0 such that $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$
- For case $1/2 3/n \leq c_2$, when $n \to \infty$ then, $1/2 - 3/n \rightarrow 1/2$, then, $c_2 = 1/2$
 - For $c_1 = 1/14$, $c_2 = 1/2$ and $n_0 = 7$, it holds that $f(n) \in \Theta(n^2)$ or $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

O-notation

- The O notation denotes an asymptotic upper bound
- For a function g(n) we denote O(g(n)) and say: big-oh of g of n, or oh of g of n
- O(g(n)) also refers to a set of functions
- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \forall n \ge n_0\}.$
- Use *O*-notation to give upper bound on a function, to within a constant factor
- Note that $f(n) = \Theta(g(n))$ implies f(n) = O(g(n))
 - $\Theta\text{-}\mathrm{notation}$ is stronger than $O\text{-}\mathrm{notation}$

Ω -notation

- Ω -notation provides an asymptotic lower bound
- For a function g(n), we denote $\Omega(g(n))$ and say: bigomega of g of n or omega of g of n
- $\Omega(g(n))$ also refers to a set of functions
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \forall n \geq n_0\}.$ Use Ω -notation to give lower bound on a function, to within a constant factor
- Note that $f(n) = \Theta(g(n))$ also implies $f(n) = \Omega(g(n))$
 - Θ -notation is stronger than Ω -notation
- Given a function g(n), we denote as $\Omega(g(n))$ to the set of functions such that:
- For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- If we say the running time of an algorithm is $\Omega(g(n))$, we mean:
 - No matter what particular input of size n is chosen for each value of n, the running time on that input is at least a constant times g(n) for sufficiently large n
 - We can also mean best-case times, as in insertion sort is $\Omega(n)$.
- Insertion Sort belongs to both, $\Omega(n)$ and $O(n^2)$
- In $n = O(n^2)$, the = sign means set membership: $n \in O(n^2)$
- When we use asymptotic notation in a formula, we interpret it as representing a function for which we don't care about its name, only its order
 - In $2n^2+3n+1=2n^2+\Theta(n)$ means $2n^2+3n+1=2n^2+f(n)$, where f(n) is a function in the set $\Theta(n)$
- Example: $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$.

Asymptotic Notation in Equations and Inequalities

- Given a function g(n), we denote as O(g(n)) to the set of functions such that:
- We often describe the running time of an algorithm by inspecting the algorithm's overall structure
 - We use O-notation
 - A doubly nested loop structure shows an $O(n^2)$ upper bound on the worst case running time

o-notation

- The upper bound *O*-notation may or may not be asymptotically tight
- $2n^2 = O(n^2)$ is asymptotically tight
- $2n = O(n^2)$ is not asymptotically tight
- We use *o notation* to denote an upper bound that is not asymptotically tight
- We define o(g(n)) and say little-oh of g of n as the set $o(g(n)) = \{f(n) : \text{ for any positive constant}$ c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n) \forall n \ge n_0\}$. Example, $2n = o(n^2)$ but $2n^2 \ne o(n^2)$.

ω -notation

- ω -notation is to Ω -notation as *o*-notation is to *O*-notation
 - Use ω -notation to denote a lower bound that is not asymptotically tight
 - $-f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.
- Formally
 - $-\omega(g(n)) = \{f(n) : \text{ for any positive constant}$ c > 0, there exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n) \forall n \ge n_0\}.$
- $n^2/2 = \omega(n)$
- $n^2/2 \neq \omega(n^2)$

Comparing functions

- Many relational properties of real numbers also apply to asymptotic comparisons
- Properties of Asymptotic Functions: Transitivity, Reflexive, symmetry, Transpose Symmetry
- Analogy between asymptotic comparison of 2 functions f and g and comparison of 2 real numbers aand b:
- Trichotomy: for any 2 real numbers a and b, exactly one of the following must hold: a < b, a = b, or a > b
 - NOT all functions are asymptotically comparable
 - Given 2 functions f(n) and g(n), it could be that neither f(n) = O(g(n)) nor $f(n) = \Omega(g(n))$ holds