
Lecture 4: Divide and Conquer

Divide and Conquer

• Merge sort is an example of a divide-and-conquer al-
gorithm

• Recall the three steps (at each level) to solve a divide-
and-conquer problem recursively

– Divide problem into subproblems

– Conquer problems by solving recursively

– Combine solutions to solve the original problem

• Recursive case: when the subproblems are large
enough to be solved recursively

• Base case: when subproblems are small enough that
we don’t need to use recursion any more, we say that
the recursion bottoms out

Recurrences

• Recurrences are essential for the divide-and-conquer
paradigm

– Give a natural way to characterize the running
times of divide-and-conquer algorithms

• Recurrence

– An equation or inequality

– Describes a function in terms of its value on
smaller inputs

• Worst case running time for MERGE-SORT

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

• This recurrence has solution: T (n) = Θ(n lg n).

• There are many forms of recurrences

– A recursive algorithm dividing subproblems into
unequal sizes, 2/3 to 1/3 split, with divide and
combine times linear

∗ T (n) = T (2n/3) + T (n/3) + Θ(n).

– Linear search, each subproblem has one element
less than the original one

∗ T (n) = T (n− 1) + Θ(1).

• Three method for solving recurrences, for obtaining
asymptotic Θ or O bounds on the solution

– Substitution method

∗ We guess a bound

∗ Then use mathematical induction to prove
our guess correct.

– Recursion-tree method

∗ Converts the recurrence into a tree

∗ Nodes represent costs incurred at levels of
recursion

∗ Use techniques for bounding summations
and solve the recurrence

– Master method

∗ Provides bounds for recurrences of the form
T (n) = aT (n/b) + f(n)

∗ a ≥ 1, b > 1, f(n) is a given function

∗ This is a recurrence that solves a problem
that was divided into a subproblems, each
subproblem is 1/b of the original size, and
divide and conquer and combine take f(n)
time

∗ Has 3 cases, need to memorize

• Sometimes we will use recurrences that are inequalities

– T (n) ≤ 2T (n/2) + Θ(n), to get an upper bound
on T (n), with O-notation

– T (n) ≥ 2T (n/2) + Θ(n), to get a lower bound on
T (n), with Ω-notation

• Some technical details when we state and solve recur-
rences

– In a call to MERGE-SORT with n elements,
when n is odd we use subproblems of size bn/2c
and dn/2e, we ignore this and treat it as if n were
always even

– Boundary conditions are usually ignored

∗ i.e. algorithms for sufficiently small n have
T (n) = Θ(1), then we omit statements on
boundary conditions

We often omit floors, ceilings, and boundary con-
ditions

The Maximum-subarray Problem

• Invest in the Volatile Chemical Corporation

– Stock price is volatile

• Allowed to buy one unit of stock only one time and
then sell it at a alter date

• Allowed to know what the price of the stock will be in
the future

• Goal: maximize profit



• Lowest price at day 7

– Buy at lowest price and sell at highest price?
NOT always

• Highest profit: buy at 7 (day 2) and sell at 10 (day 3)

– Day 2 is not the one with the lowest price, nor
day 3 is the one with the highest price

• A Brute-force Solution

– Try every possible pair of buy and sell dates (buy
precedes sell date)

– Period of n days has
(
n
2

)
pairs of dates

(
n
2

)
is

Θ(n2)

– Best we could hope is to evaluate each pair in
constant time and approach would take Ω(n2)

– Can we do better?

• A Transformation

– Look at the problem in a different way

– Find a sequence of days in which the net change
from the first day to the last one is maximum

– Treat the daily changes as an array A

– Now we look for the nonempty, contiguous sub-
array of A whose values have the largest sum, the
maximum subarray

– Maximum subarray of A[1..16] is A[8..11] with
sum 43

∗ Buy just before day 8 (after day 7) and sell
after day 11, earning profit of $43 per share

– Need to check
(
n−1
2

)
= Θ(n2) subarrays for a pe-

riod of n days

∗ Bruteforce solution still takes Θ(n2)

• A Solution Using Divide-and-conquer

– We have an array A[low..high]

– In divide and conquer we divide the subarray into
2 subarrays of equal size as possible

∗ Find midpoint of the subarray, and get 2 sub-
arrays A[low..mid] and A[mid+ 1..high]

– But any contiguous subarray A[i..j] of
A[low..high] must fall in:

∗ Entirely in subarray A[low..mid], low ≤ i ≤
j ≤ mid

∗ Entirely in subarray A[mid+1..high], mid <
i ≤ j ≤ high

∗ Crossing the midpoint, low ≤ i ≤ mid < j ≤
high.

– A maximum subarray of A[low..high] must have
the greatest sum over all the three cases stated
before

– We can find subarrays of A[low..mid] and
A[mid+ 1..high] recursively

– Not for subarrays crossing the midpoint

∗ We do it without recursion

Information about the price of stock in the Volatile Chemical Corporation after the close of trading over a period of 17
days. The horizontal axis of the chart indicates the day, and the vertical axis shows the price. The bottom row of the
table gives the change in price from the previous day.



(a) Possible locations of subarrays of A[low . . . high] entirely in A[low . . .mid] entirely in A[mid+ 1 . . . high], or crossing
the midpoint mid. (b) Any subarray of A[low . . . high] crossing the midpoint comprises two subarrays A[i . . .mid] and
A[mid+ 1 . . . j], where low ≤ i ≤ mid and mid < j ≤ high.

An example showing that the maximum profit does not always start at the lowest price or end at the highest price. Again,
the horizontal axis indicates the day, and the vertical axis shows the price. Here, the maximum profit of $3 per share
would be earned by buying after day 2 and selling after day 3. The price of $7 after day 2 is not the lowest price overall,
and the price of $10 after day 3 is not the highest price overall.

The change in stock prices as a maximum-subarray problem. Here, the subarray A[8 · · · 11], with sum 43, has the greatest
sum of any contiguous subarray of array A.

Find-Max-Crossing-Subarray(A, low,mid, high)

1. left-sum = −∞
2. sum = 0

3. for i = mid down to low

4. sum = sum+A[i]

5. if sum > left-sum

6. left-sum = sum

7. max− left = i

8. right-sum = −∞
9. sum = 0

10. for j = mid+ 1 to high

11. sum = sum+A[j]

12. if sum > right-sum

13. right-sum = sum

14. max-right = j

15. return(max-left,max-right, left-sum+ right-sum)

• What is its running time?

– Number of iterations:
(mid−low+1)+(high−mid) = high−low+1 = n

• Lines 1,2 is the base case

• Lines 3-11 handle recurssive case

– Line 3 does the divide part, computes mid

– Left subarray A[low..mid], right subarray
A[mid+ 1..high]

– Lines 4 and 5 do the conquer by recursion

– Lines 6 to 11 are the combine part

∗ Line 6 finds max subarray crossing the mid-
point

∗ Line 7 tests if left subarray contains max sum

∗ Line 9 tests if right subarray contains max
sum

∗ Line 11 returns max subarray if crosses mid-
point

FIND-MAXIMUM-SUBARRAY(A, low, high)

1. if high == low

2. return (low, high,A[low]) // base case: only one element

3. else mid = b(low + high)/2c
4. (left-low, left-high, left-sum) =

5. FIND-MAXIMUM-SUBARRAY(A, low,mid)

6. (right-low, right-high, right-sum) =

7. FIND-MAXIMUM-SUBARRAY(A,mid+ 1, high)

8. (cross-low, cross-high; cross-sum) =

9. FIND-MAX-CROSSING-SUBARRAY(A, low,mid, high)

10. if left-sum ≥ right-sum and left-sum ≥ cross− sum
11. return (left-low, left-high, left-sum

12. elseif right-sum ≥ left-sum and right-sum ≥ cross-sum
13. return (right-low, right-high, right-sum)

14. else return (cross-low, cross-high, cross-sum)



Analyzing the Divide-and-conquer Algorithm

• Which recurrence describes the running time of the
FIND-MAXIMUM-SUBARRAY procedure?

• Assumption: the original problem size is a power of 2,
all subproblem sizes are integers

• T (n), denotes running time of FIND-MAXIMUM-
SUBARRAY on subarray of size n

• Line 1, constant time, line 2, constant time, line 3,
constant time

– Base case T (1) = Θ(1).

• Subproblems in recursive part (lines 4, 5) work on sub-
array of size n/2

– We spend T (n/2) time solving each, we solve 2
of them

– We spend 2T (n/2)

• FIND-MAX-CROSSING-SUBARRAY takes Θ(n)

• Lines 7-11 take Θ(1) time

• Then, for the recursive case we have:

– T (n) = Θ(1) + 2T (n/2) + Θ(n) + Θ(1)

– = 2T (n/2) + Θ(n).

• Combining base case and recursive case we have the
recurrence:

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

• The solution to this recurrence is: T (n) = Θ(n lg n).

The Substitution Method

• Now we need to solve recurrences

• Substitution method

– 2 steps

∗ Guess the form of the solution

∗ Use mathematical induction to find the con-
stants and show that the solution works

– Powerful method

– Only applies in cases that the answer is easy to
guess

– To establish upper or lower bounds of a recur-
rence

• The Substitution Method: Example

– For the recurrence T (n) = 2T (bn/2c) + n.

– We guess a solution, upper bound T (n) =
O(n lg n) for c > 0

∗ Assume this holds for m < n, in particular
for m = bn/2c
∗ We prove T (n) ≤ cn lg n for a constant c > 0

– This yields T (bn/2c) ≤ cbn/2c lg(bn/2c).
– We substitute into the recurrence: T (n) ≤

2(cbn/2c lg(bn/2c)) + n

∗ ≤ cn lg(n/2) + n

∗ = cn lg n− cn lg 2 + n

∗ = cn lg n− cn+ n

∗ ≤ cn lg n

∗ the last step holds if c ≥ 1.

• We still need to prove that this solution is true for
boundary conditions

• We do this by showing that boundary conditions are
suitable for base cases of the inductive proof

• Choose constant c large enough for T (n) ≤ cn lg n
works for boundary conditions

• For asymptotic notation we require to prove T (n) ≤
cn lg n for n ≥ n0, we choose n0

• We avoid difficult boundary condition for T (1) = 1 for
the induction test (not the recurrence)

– In the inductive proof with n = 1, T (1) ≤
c1 lg 1 = 0, then it doesn?t correspond with
T (1) = 1, and base case fails.

– But we need to prove T (n) ≤ cn lg n for n ≥ n0
– And we are free to choose n0

– We remove the troublesome boundary by remov-
ing from the recurrence by seting n0 > 3 and in
the inductive proof with n > 1

– And we replace T (1) by T (2) and T (3) as base
cases of the inductive proof

– We make the base cases T (2) and T (3) instead of
T (1)

– Derive from the recurrence, given that T (1) = 1

∗ T (2) = 4

∗ T (3) = 5

– T (2) ≤ c2 lg 2 = 2c, c ≥ 2

– T (3) ≤ c3 lg 3 = 4.75c, c ≥ 2

• Making a Good Guess

– There is no general way to guess correct solutions
to recurrences

– Requires experience and creativity

– Some heuristics

∗ Use recursion trees to generate good initial
values

∗ If a recurrence is similar to another one, use
a similar solution



The Recursion-tree Method

• Visualize the iteration of a recurrence

– Draw a recursion tree and obtain a good initial
solution

– We use the substitution method to proof

• Recursion tree

– Each node represents the cost of a subproblem in
the set of calls to recursive functions

– We sum costs per level and determine the total
cost of all levels of recursion

– Useful when the recurrence describes execution
time of a divide-and-conquer algorithm

• To solve recurrence T (n) = 3T (bn/4c) + Θ(n2)
• We create the recursion tree for T (n) = 3T (n/4)+cn2

– We include the coefficient c > 0

– We assume that n is an exact power of 4

• The size of the problem decreases with the depth of
the tree

– Eventually, we reach the boundary condition

• How far from the root do we get?

– The size of the subproblem for a node at depth i
is n/4i

– The size gets to n = 1 when n/4i = 1, or
i = log4 n

– Then, the tree has log4 n + 1 levels
0, 1, 2, . . . , log4 n)

• After we determine the cost for each level of the tree

– Each level has 3 times more nodes than the pre-
vious level

– The number of nodes at depth i is 3i

– Each node at depth i for i = 0, 1, 2, . . . , log4 n−1
has a cost of c(n/4i)2

– Multiplying, we see that the cost of all nodes at
depth i for i = 0, 1, 2, . . . log4 n−1 is 3ic(n/4i)2 =
(3/16)icn2

– The last level at depth log4n has 3log4 n = nlog43

nodes, each with a cost of T (1) with a total cost
of nlog43T (1) with Θ(nlog43).



Constructing a recursion tree for the recurrence T (n) = 3T (n/4) + cn2 Part (a) shows T (n), which progressively expands
in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height log4 n (it has log4 n+ 1 levels).

• We sum the costs of all levels to get the cost of all the
tree

T (n) = cn2 +
3

16
cn2 + (

3

16
)2cn2 + . . .

· · ·+ (
3

16
)log4n−1cn2 + Θ(nlog43)

=

log4n−1∑
i=0

(
3

16
)icn2 + Θ(nlog43)

=
(3/16)log4n − 1

(3/16)− 1
cn2 + Θ(nlog43).

• We can use an infinite and decreasing geometric series

as upper bound, equation A.6

T (n) =

log4 n−1∑
i=0

(
3

16

)i
cn2 + Θ(nlog4 3)

<

∞∑
i=0

(
3

16

)i
cn2 + Θ(nlog4 3)

=
1

1− (3/16)
cn2 + Θ(nlog4 3)

=
16

13
cn2 + Θ(nlog4 3)

= O(n2)

When the summation is infinite and |x| < 1, we have
the finite decreasing geometric series

∞∑
k=0

xk =
1

1− x

The Master Method

• Master method provides cookbook method for recur-
rences of the form

– T (n) = aT (n/b) + f(n)

– where a ≥ 1 and b > 1 are constants

– f(n) is asymptotically positive

• The recurrence describes the execution time of an al-
gorithm that

– Divides a problem of size n into a subproblems

– Each subproblem of size n/b

– a and b are positive constants

– The a subproblems are solved recursively

∗ In time T (n/b)

– The cost of dividing the problem and combining
the results is given by f(n)

• The master theorem

– Given a ≥ 1 and b > 1 constants, given f(n) a
function

– Given T (n) defined by non-negative integers by
recurrence

– T (n) = aT (n/b) + f(n)

– n/b can be bn/bc or dn/be, then T (n) has the
following asymptotic bounds as:

• The Master Theorem:

– Case 1: If f(n) = O(nlogb a−ε) for some constant
ε > 0 then T (n) = Θ(nlogb a)

– Case 2: If f(n) = Θ(nlogb a), then T (n) =
Θ(nlogb a lgn)

– Case 3: If f(n) = O(nlogb +ε) for some con-
stant ε > 0, and if af(n/b) ≤ cf(n) for some
constant c < 1 and all sufficiently large n, then
T (n) = Θ(nlogb a)

– In all cases we compare f(n) with nlogba

∗ The solution to the recurrence is dominated
by the largest of the 2 functions

∗ Case 1: nlogba is the largest, the solution is
T (n) = Θ(nlogba)

∗ Case 3: f(n) is larger, the solution is T (n) =
Θ(f(n))

∗ Case 2: the two functions are of the same
size, we multiply for a logarithmic factor,
T (n) = Θ(nlogba lg n) = Θ(f(n) lg n)

– Some technical aspects

∗ In case 1:

· f(n) must be polinomically smaller than
nlogba

· Asymptotically smaller than nlogba by a
factor of nε for a constant ε > 0

∗ In case 3:

· f(n) must be polynomically larger than
nlogba

· It should also satisfy the regularity condi-
tion that af(n/b) ≤ cf(n) This condition
is satisfied by most functions polynomi-
cally bounded that we can find.

∗ the 3 cases don’t cover all possibilities of f(n)



Example 1

Solve the recurrence:

g(1) = 10, g(N) = g(N − 1) + 7,

for N ≥ 2 and determine its complexity class.

Solution. For N ≥ 2, we find

g(N) = 7 + g(N − 1) (step 1)
= 7 + 7 + g(N − 2) (step 2)
= 7 + 7 + 7 + g(N − 3) (step 3)
. . .

=
(∑i

k=1 7
)

+ g(N − i) (step i)

. . .

=
(∑N−1

k=1 7
)

+ g(1) (step N − 1)

= 7(N − 1) + 10.

Since the following limit:

lim
N→∞

g(N)

N
= lim
N→∞

7(N − 1) + 10

N
= 7

is a nonzero constant, we find

g(N) = Θ(N).

Example 2

Solve the recurrence:

g(1) = d, g(N) = g(N − 1) + cN,

for N ≥ 2 and determine its complexity class.

Solution. Assume that c and d are constant. For N ≥ 2, we
find

g(N) = cN + g(N − 1) (step 1)

= cN + c(N − 1) + g(N − 2) (step 2)

= cN + c(N − 1) + c(N − 2) + g(N − 3) (step 3)

. . .

= cN +
(∑i−1

k=1 c(N − k)
)

+ g(N − i) (step i)

. . .

= cN +
(∑N−2

k=1 c(N − k)
)

+ g(1) (step N − 1)

= cN + c
(∑N−2

k=1 N
)
− c

(∑N−2
k=1 k

)
+ g(1)

= cN + cN(N − 2)− c(1/2)(N − 2)(N − 1) + d

Since

lim
N→∞

g(N)

N2
= lim
N→∞

(1/2)cN2 + (1/2)cN − c+ d

N2
=

1

2
c

we find g(N) = Θ(N2) whenever c 6= 0 and g(N) = Θ(1)
whenever c = 0.

Example 3

Solve the recurrence:

g(0) = d, g(N) = g(N − 3) + c,

for N ≥ 2 and determine its complexity class.

Solution. Assume that c and d are constant. For simplicity,
we assume that N is a multiple of 3, say N = 3m for some
integer m ≥ 1. Then we find

g(N) = c+ g(N − 3) (step 1)

= c+ c+ g(N − 6) (step 2)

= c+ c+ c+ g(N − 9) (step 3)

. . .

=
(∑i

k=1 c
)

+ g(N − 3i) (step i)

. . .

= (
∑m
k=1 c) + g(0) = cm+ d (step m)

Since

lim
N→∞

g(N)

N
= lim
N→∞

c(N/3) + d

N
= c/3

we find g(N) = Θ(N) whenever c 6= 0 and g(N) = Θ(1)
whenever c = 0.

Example 4

(a) Solve the recurrence:

g(1) = 0, g(N) = g(N/2) +N8

for N ≥ 2.

Solution. For simplicity, assume N is a power of 2, say
N = 2m for some integer m ≥ 1. We find

g(N) = N8 + g(N/2) (step 1)

= N8 + (N/2)8 + g(N/4) (step 2)

= N8 + (N/2)8 + (N/4)8 + g(N/8) (step 3)

. . .

=
(∑i−1

k=0(N/2k)8
)

+ g(N/2i) (step i)

. . .

=
(∑m−1

k=0 (N/2k)8
)

+ g(1) (step m)

= N8
∑m−1
k=0

(
1
28

)k
= N8

(
1−( 1

28
)lg N

1−( 1
28

)

)
= 256

255N
8 − 256

255

Since the following limit is a nonzero constant:

lim
N→∞

g(N)

N8
= lim
N→∞

256
255N

8 − 256
255

N8
=

256

255
(?)

we find g(N) = Θ(N8).



(b) Is there a value of c such that g(N) = Θ(N c)? If so,
what is c equal to?

Solution. Yes, c = 8 as proven in Eq. (?). Therefore,
g is proportional to a polynomial.

(c) Is there a value of d such that g(N) = Θ(dN )? If so,
what is d equal to?

Solution. Clearly, d 6= 1 because Θ(1) 6= Θ(N8). As-
sume there exists a d 6= 1 such that g(N) = Θ(dN ).
Then

lim
N→∞

g(N)

dN

is a nonzero constant L. However we find that

L = lim
N→∞

g(N)

dN

= lim
N→∞

256
255N

8 − 256
255

dN

=

{
0 if d > 1

∞ if 0 < d < 1

(after applying L’Hopital’s rule eight times in the case
d > 1). From this contradiction we conclude that
g(N) is not proportional to any exponential (nor con-
stant).

Example 5

Solve the recurrence:

g(1) = 1, g(N) = (1/α)g(N/2),

for N ≥ 2 where α is a constant and determine its complex-
ity class.

Solution. For simplicity, assume N is a power of 2, say
N = 2m for some integer m ≥ 1 and let β = (1/α). We

find

g(N) = βg(N/2) (step 1)

= β2g(N/4) (step 2)

= β3g(N/8) (step 3)

. . .

= βig(N/2i) (step i)

. . .

= βmg(1) (step m)

= βm

=
(
1
α

)lgN
= N lg(1/α)

Therefore, g(N) = Θ(N lg(1/α)).

Example 6

Solve the recurrence:

g(1) = 10, g(N) = (g(N/2))5

for N ≥ 2.

Solution. For simplicity, assume N is a power of 2, say
N = 2m for some integer m ≥ 1. We find

g(N) = (g(N/2))5 (step 1)

= (g(N/4))25 (step 2)

= (g(N/8))125 (step 3)

. . .

= (g(N/2i))5
i

(step i)

. . .

= (g(1))5
m

(step m)

= 105
lg N

= 10N
lg 5

Therefore, g(N) = Θ(10N
lg 5

).


