Lecture 5: Sorting Part A
Heapsort

e Running time O(nlgn), like merge sort

— Sorts in place (as insertion sort), only con-
stant number of array elements are stored out-
side the input array at any time

— Combines better attributes of these other
sorting algorithms

— Uses an algorithm design technique: using a
data structure, a heap

x Heap also referred as garbage-collected
storage
x As in java and Lisp

e Binary heap data structure

— Array object can be viewed as a nearly com-
plete binary tree

— Each node corresponds to an element of the
array

— Tree completely filled on all levels, except
(possibly) the lowest (Lowest filled from the
left up to a point)

e Binary heap data structure

— An array A represents the heap, an object
with two attributes

x A.length, number of elements in the array

x A.heap — size, how many elements in the
heap are stored within array A

x A[l..A.length] may contain numbers but
only elements in A[l..A.heap — size],
where 0 < A.heap — size < A.lenght, are
valid elements in the heap

— Root of tree is A[1]

..2.\/’/"’ 3
(14 (10)
4/ 5 h/ w:’
o N N L
§s< (7) (9) (3
8 9 1[}/
LA
2 @)

(a)

— Given index 7 of a node, we can compute in-
dices of its parent, left child, and right child

e The values in the nodes satisfy the heap property

— max-heaps
* max-heap property
*x For every node i other than the root,
A[PARENT(i)] > A[i]
x The value of a node is at most the value
of its parent
*x Largest element in a max-heap is stored
at the root
— min-heaps
* min-heap property
x For every node i other than the root,
A[PARENT(i)] < A[i]
x The smallest element in a min-heap is at
the root

e max-heaps are used for the heapsort algorithm
min-heaps implement priority queues

e Viewing heap as a tree

— height of a node in a heap — number of edges
on the longest simple downward path from the
node to a leaf

— height of a heap — the height of its root

e A heap of n elements based on a complete binary
tree (height is 6(logn))

e Basic operations on heaps run in time proportional
to the height of the tree

1 2 3 4 5 6 7 B 9 10

[is]a[10[8 [7[s[3]2[4]1]

(b)

A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is
the value stored at that node. The number above a node is the corresponding index in the array. Above and below
the array are lines showing parent-child relationships; parents are always to the left of their children. The tree has
height three; the node at index 4 (with value 8) has height one.

Maintaining the Heap Property

e MAX-HEAPIFY, runs in O(lgn) time, key to man- x Worst case when bottom level of tree is
tain the max-heap property exactly half full
e MAX-HEAPIFY used to maintain the max-heap B iirclsing time of MAX-HEAPIFY with recur-

property
x T(n) <T(2n/3)+0O6(1)

— Inputs: an array A and an index ¢ item Solution to recurrence by case 2 of mas-

— MAX-HEAPIFY assumes that binary trees ter theorem
rooted at LEFT(I). agd RIGHT(i) are max- + T(n) = O(lgn)
heaps, but that A[i] might be smaller than its
children (violating the max-heap property) MAX-HEAPIFY (A,1)
— MAX-HEAPIFY moves the value A[i] down in 1. 1= left(i)
the max-heap so that subtree rooted at index)]
1 follows the max-heap property 2. r=right(i)
3. if I < A.heap-size and A[l] > A[i]
e Running time of MAX-HEAPIFY on subtree of size
.. 4. largest =1
n at node 7 is
5. else largest =i
— O(1) to fix up relationships among Ali, P .
A[LEFT(i)], and A[RIGHT ()] 6. if r < A.heap-size and A[r] > A[largest]
. 7. largest =r
— Time to run MAX-HEAPIFY on subtree))
rooted at one children of node 1 8. if largest # i
* Children?s subtrees have size at most 9. exchange A[i] with Aflargest]
2n/3 10. MAX-HEAPIFY (A, largest)
1
(16)
2 / 3
(14 (10)

The action of MAX-HEAPIFY (A4, 2), where A.heap — size = 10. (a) The initial configuration, with A[2] at node
1 = 2 violating the max-heap property since it is not larger than both children. The max-heap property is restored
for node 2 in (b) by exchanging A[2] with A[4], which destroys the max-heap property for node 4. The recursive
call MAX-HEAPIFY now has ¢ = 4. After swapping A[4] with A[9], as shown in (c¢), node 4 is fixed up, and the
recursive call MAX-HEAPIFY (A4,9) yields no further change to the data structure.

Building a Heap

e BUILD-MAX-HEAP, linear time, produces a max- e BUILD-MAX-HEAP(A) goes through remaining
heap from an unordered input array nodes of the tree
* Use MAX-HEAPIFY bottom-up — Runs MAX-HEAPIFY on each of them
— Convert array A[l..n], n = A.length, into a
max-heap BUILD-MAX-HEAPIFY (A)

— Elements in the subarray A[(|n/2]+1)..n] are 1. Aheap-size = A.length
the leaves of the tree

— Each of these is a l-element heap to begin 2. for i = | A.length/2] down to 1
with 3. MAX-HEAPIFY (A4, 1)

alal1]3]2]6]9 1014 8] 7]

|

K\ L
(10)

| B

The operation of BUILD-MAX-HEAP, showing the data structure before the call to MAX-HEAPIFY in line
3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the binary tree it represents. The figure shows
that the loop index i refers to node 5 before the call MAX-HEAPIFY (A4,:). (b) The data structure that results.
The loop index i for the next iteration refers to node 4. (c¢)—(e) Subsequent iterations of the for loop in BUILD-
MAX-HEAP. Observe that whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are
both max-heaps. (f) The max-heap after BUILD-MAX-HEAP finishes.

Loop Invariant for BUILD-MAX-HEAP

e Start of each iteration of for loop, lines 2-3, each
node i+ 1,74 2, ..., n is the root of a max-heap

e Loop invariant shows
— This invariant is true prior to first loop itera-
tion
— Each iteration of loop maintains the invariant

— The invariant provides useful property to
show correctness when the loop terminates

e Initialization: Prior to first iteration of loop

—i=[n/2|.
— Each node |n/2|+1, [n/2] 42, ..., nis aleaf
and also the root of a trivial max-heap

e Maintenance: See that each iteration maintains
the loop invariant

— Children of node i numbered higher than i,
they are both roots of max-heaps

— This is required by MAX-HEAPIFY (A4, i) to
make node ¢ a max-heap root

— MAX-HEAPIFY(A,) preserves property
that nodes ¢ + 1, ¢ + 2, ..., n are all roots
of a max-heap

— Decreasing ¢ in for loop update, reestablishes
loop invariant for next iteration

e Termination: at termination i =0

— By loop invariant, each node 1, 2, ..., n is the
root of a max-heap

— In particular, node 1, the root of the tree

Upper Bound for BUILD-MAX-HEAP
e Each call to MAX-HEAPIFY costs O(lgn) time

e BUILD-MAX-HEAP makes O(n) such calls

e Running time is O(nlgn)

This upper bound is correct but not asymptotically
tight

A Tighter Bound for BUILD-MAX-HEAP
— Time for MAX-HEAPIFY to run at a node
varies with height of the node in the tree
— Heights of most nodes are small

— Tighter analysis uses properties that an n-
element heap has height |lgn| and at most
[n/2"*1] nodes of any height h

— Time required by MAX-HEAPIFY when
called on node of height h is O(h)

— Total cost of BUILD-MAX-HEAP:

[lgn] n llgn] I
Y. lgplom =0(n)" &
h=0 h=0

— Evaluating summation by substituting x = %
in formula

—h _ 1/2
2w =1jp

— We bound running time of BUILD-MAX-
HEAP as
llgn]

h = h
o) nZQ—h —O<n22h>—0(n)
h=0

h=0

The Heapsort Algorithm

e HEAPSORT, runs in O(nlgn) time, sorts an array HEAPIFY(A, 1), that leaves a max-heap
because each of n—1 calls to MAX-HEAPIFY take All.n—1]
O(lgn) — The process is repeated for max-heap size n—1
e Starts by using BUILD-MAX-HEAP on input ar- down to a heap of size 2
ray A[l..n], where n = A.length HEAPSORT(A)
— Maximum element of array stored at root 1. BuiLD-MAX-HEAP(4)
A[l], we can put it in its final position, ex- 2. for i = A.length down to 2
changing it by A[n] 3. exchange A[1] with A[i]
— The new root might violate the max-heap 4. A.heap-size = A.heap-size — 1
property, we restore it by calling MAX- 5 MAX-MEAPIFY(A,1)

i @ @
@ (i ® @ ® ®
® PO ©® @ 0@ 0 @ 0@ ©
@® O QO®: @dow

())

® ® @

® @ @ ® @ ®

@ 00 ® @ 00 @ ©® 00 @
00 "Pe® 00

O ® @
@ ® @ W 0 @
© 90 @ ® @00 @ ® 00 ©
...h

)

@ ®
®@ 00 o
...ﬁ

Alr{2]3|a|7]8]9[10[14 16|

) (k)
The operation of HEAPSORT. (a) The max-heap data HEAPSORT(A)
structure just after BUILD-MAX- HEAP has built it in 1. BuiLD-MAX-HEAP(4)
line 1. (b)—(j) The max-heap just after each call of MAX- 2. for i = A.length down to 2
HEAPIFY in line 5, showing the value of ¢ at that time. 3. exchange A[l] with A[i]
Only lightly shaded nodes remain in the heap. (k) The 4. A.heap-size = A.heap-size — 1
resulting sorted array A. 5 MAX-MEAPIFY(A, 1)

Priority Queues

Heapsort is a good sorting algorithm but quicksort
usually beats it in practice

The heap data structure has many uses

A popular application of heaps is an efficient pri-
ority queue

A priority queue can be max-priority or min-
priority

We focus on max-priority queues, based on max-
heaps

A priority queue is a data structure that main-
tains a set S of elements, each with an associated
value called a key. A max-priority queue supports
the following operations.

MAXIMUM(S): returns the element S with the
largest key and runs in ©(1) time

HEAP-MAXIMUM(A)
1. return A[l]
INSERT(S,z): inserts element z into set S,
equivalent to S = SU{z} and runs in O(lgn) time.
MAX-HEAP-INSERT(A, key)

1. A.heap-size = A.heap-ssize + 1
2. A[A.heap-size] = —o0

3. HEAP-INCREAE-KEY (A, A.heap-size, key)

(1 6}

o0& X

Tho)

.f-
w
.

./_\1

|8

M T,

G‘Y\m

TN,

"-x___/“x."/
‘-\.,_ /
\a

(€

¢ EXTRACT-MAX(S): removes and returns the

element of S with the largest key and runs in
O(lgn) time since it performs only a constant
amount of work on top of the O(lgn) time for
MAX-HEAPIFY.

HEAP-EXTRACT-MAX(A)

1. if A.heap-size < 1

2 error “heap underflow”

3. max = A[l]

4. A[1] = A[A.heap-size]

5. A.heap-size = A.heap-size — 1
6. MAX-HEAPIFY(4,1)

7. return max

INCREASE-KEY (S, z, k): increases the value of
element z’s key to new value k, which is assumed to
be as large as x’s current value and runs in O(lgn)
time

HEAP-INCREAE-KEY (A, i, key)

1. if key < Alf]

error “new key is smaller than current key”

2.
3. Ali] = key

4. while i > 1 and Alparent(i)] < A[i]
5. exchange A[i] with A[parent(i)]
6. i = parent(i)

(d)

The operation of HEAP-INCREASE-KEY. (a) The max-heap of the Figure with a node whose index is ¢ heavily
shaded. (b) This node has its key increased to 15. (c) After one iteration of the while loop of lines 4-6, the node

and its parent have exchanged keys, and the index ¢ moves up to the parent.

(d) The max-heap after one more

iteration of the while loop. At this point, A[parent(i) < A[i]]. The max-heap property now holds and the procedure
terminates.

Quicksort

e Worst case O(n?) e Combine: Subarrays are already sorted, no work
e Average case with expected running time of needed to combine them
O(nlgn)

UICKSORT(A, p,r
— A good practical choice, remarkably efficient Q (4,p.7)

on average Lifp<r

— Constant factors hidden in ©(nlgn) are quite 2. q = PARTITION(A4, ¢,7)

— ¢ is computed as part of the partitioning exchange A[i] with A[j]
exchange A[i + 1] with A[r]

return 7 + 1

e Conquer: Sort the two subarrays A[p..q — 1] and
Alg + 1..r] by recursive calls to quicksort

small 3. QUICKSORT(A, q,q — 1)
o 4. QUICKSORT (A, q + 1,7)
e Performs sorting in place
e Works well even in virtual-memory environments e There exist different algorithms for partitioning
e Applies divide-and-conquer to sort a subarray
Alp..r] PARTITION(A4, ¢, 1)
e Divide: Partition array A[p..r] into two subarrays 1. = Alr]
Alp..q — 1] and A[g + 1..r] 2.i=p—1
— Each element of A[p..qg—1] is less than or equal 3. forj=ptor—1
to Alg], which is less or equal to each element 4. if Alj] <=z
of Afg+ 1..7] 5. i=i+1
6.
7.
8.

i pJ T
(1) I2|H|T|I|3|5_6|4|

(b) Ipzll;; | 7 | I | 3 J 516 I; | The operation of PARTITION on a sample array. Array
entry A[r] becomes the pivot element z. Lightly shaded

pi j r array elements are all in the first partition with values no
(© 2 7 | 1 | 3] 56 I 4 | greater than z. Heavily shaded elements are in the sec-
ond partition with values greater than x. The unshaded

pi J T elements have not yet been put in one of the first two par-
(d) 2 1 ‘ 3 ‘ 5|6 I 4 | titions, and the final white element is the pivot z. (a) The
initial array and variable settings. None of the elements

' have been placed in either of the first two partitions. (b)
6 I 4 | The value 2 is “swapped with itself” and put in the par-
tition of smaller values. (¢)—(d) The values 8 and 7 are

p i i
(e) 2|1 J7]8]3 5]

® Z | 0 | ; 317 ; 5 l; | added to the partition of larger values. (e) The values 1
! and 8 are swapped, and the smaller partition grows. (f)
p i jior The values 3 and 7 are swapped, and the smaller parti-
(2) 2 | 1 | 3 Is] | 5 I 3 I 4 | tion grows. (g)—(h) The larger partition grows to include
5 and 6, and the loop terminates. (i) In lines 7-8, the
P i r pivot element is swapped so that it lies between the two

(h) 2[1[3)8[7|5]6]4 partitions.

P i r
@ [2]1][3]+)715]elE]
i J r The four regions maintained by the procedure PARTITION on a subarray

| ' | | | | [I lx Alp...r]. The values in A[p...4] are all less than or equal to x, the values

- 7" in Ali+1...5 — 1] are all greater than z, and A[r] = x. The subarray

sx >x unrestricted Alj...r —1] can take on any values.
i J r The two cases for one iteration of procedure PARTITION. (a) If A[j] > =z,
| l | | | | [I I.r the only action is to increment j, which maintains the loop invariant. (b)

—_— " If A[j] £ z, index i is incremented, A[i] and A[j] are swapped, and then j

sx - unrestricted is incremented. Again, the loop invariant is maintained.

Performance of Quicksort

e Dependson ...
— Whether the partition is or not balanced
— What element was used to partition
— Balanced partition (Fast as MergeSort)
— Unbalanced (Slow as InsertionSort)

e Worst case partitioning (previously ordered input)
— when partitioning produces 1 region with n—1

elements and the other with 0 elements

— Assumes that this happens in each step of the
algorithm

— Cost to partition O(n)

— Recursive call on array size 0 just returns,
T(0)=06(1) T(1) = 6(1)
— Recurrence T'(n) = T'(n — 1) + O(n)

— If we sum costs at each level of the recursion
we get an arithmetic series (eq. A.2) that eval-
uates to O(n?)

— T(n) =T(n—1) 4 O(n) has solution T(n) =
O(n?)
— Y k=in(n+1) =06(n?

e Best case in partition

— Regions of size n/2
— Recurrence T'(n) = 2T (n/2) + O(n)

e Average case closer to the best case than to the
worst case

— Suppose a split in proportion 9-1 < looks too
unbalanced

— Recurrence T'(n) = T'(9n/10) + T'(n/10) + n

— See recursion tree, balanced split case
e Balanced partitioning

Each level has cost n

Boundary condition at depth log,,n =
O(Ign) (Levels have a cost at most n)

Recursion ends at depth log;,9n = ©(lgn)

Total cost of QuickSort < = O(nlgn) (For
each split with constant proportion)

e Intuition for the average case

Partition produces good and bad splits
Randomly distributed

Suppose good and bad splits alternate (in the
tree)

x Good — splits of the best case
*x Bad — splits of the worst case

— Running time is still ©(nlgn)
* With larger constant hidden by the O-

— Case 2. master theorem «+ T'(n) = O(nlen) notation
Fl sesssssrsssssssssssesssasasans ssssnsnsnaans ssnnennransnaenarafle- cn
[A / \
10 n 10 n h ch
logy 7 / / \
L n 2 n 2 n El . - ch
100 100 100 1
I\ AR / S \
log, N / - ; /
B1o/s / S, 19, ——
Yy 1 1000 1000 ch
AN ;N
ETTTILE E cH
A}
L l HU E cH
O(nlgn)

A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split, yielding a running time
of O(nlgn). Nodes show subproblem sizes, with per-level costs on the right. The per-level costs include the constant

¢ implicit in the ©(n) term.

