
Lecture 6: Sorting Part B

Sorting in Linear Time

• Previous sorting algorithms

– Were based on comparisons, comparison sort
algorithms

– Can sort n numbers in O(n lg n) time

∗ Merge sort and heapsort achieve this up-
per bound in the worst case

∗ Quicksort achieves this upper bound in
the average case

Lower Bounds for Sorting

• Comparison sort algorithms only use compar-
isons to get information about an input sequence
〈a1, a2, . . . , an〉

– One test: ai < aj , ai ≤ aj , ai = aj , ai ≥ aj ,
ai > aj , to determine order

• For the algorithms in this section

– Assume all input elements are distinct

– Comparisons ai = aj are useless

– We only use comparisons of form ai ≤ aj

The Decision-tree Model

• Can view comparison sorts as decision trees

– Decision tree, a full binary tree representing
the comparisons between elements performed
by a particular sorting algorithm, given an in-
put

– Control, data movement, other aspects of al-
gorithm

∗ Ignored in the decision tree

The decision tree for insertion sort operating on three
elements. An internal node annotated by i : j indi-
cates a comparison between ai and aj . A leaf annotated
by the permutation 〉π(1), π(2), . . . , π(n)〈 indicates the
ordering aπ(1) ≤ aπ(2) ≤ . . . ≤ aπ(n). The shaded
path indicates the decisions made when sorting the in-
put sequence 〈a1 = 6, a2 = 8, a3 = 5〉 the permutation
〈3, 1, 2〉 at the leaf indicates that the sorted ordering is
a3 = 5 ≤ a1 = 6 ≤ a2 = 8. There are 3! = 6 possible
permutations of the input elements, and so the decision
tree must have at least 6 leaves.

• Decision-tree Model

– Internal nodes annotated with i : j, 1 ≤ i,
j ≤ n, n is the number of elements in the
input sequence

– Leaf nodes annotated by a permutation
〈π(1), π(2), . . . , π(n)〉

• Execution of the sorting algorithm

– Tracing a simple path from root down to leaf

– Each internal node indicates a comparison
ai ≤ aj

– Left subtree, ai ≤ aj
– Right subtree, ai > aj

– When we reach a leaf, we have found the or-
dering of the elements aπ(1) ≤ aπ(2) ≤ · · · ≤
aπ(n)

– Each of the n! permutations must appear as
a leaf for comparison sort to be correct

– Each leaf (permutation) must be reachable
from the root node

– Theorem 8.1

∗ Any comparison sort algorithm requires
Ω(n lg n) comparisons in the worst case.

– Why?

∗ Has to do with the height of the decision
tree

∗ Permutaions (defining ordering) appear
as reachable leafs

– Corolary 8.2

∗ Heapsort and merge sort are asymptoti-
cally optimal comparison sorts



Counting Sort

• Assume input of n integer elements in a range from
0 to k

• When k = O(n), sorting runs in Θ(n)

• Determine for each input element x, the number of
elements smaller than x

– This is how it positions x in its place in the
output array

– If there are 17 elements smaller than x → x
will be assigned position 18

– Must modify scheme in order to deal with re-
peated numbers

– A[j], element of the original array

– C[A[j]], number of repetitions of number in
A[j]

– B[C[A[j]]], final array, puts the number in its
final position

Counting-Sort(A,B, k)

1. let C[0 . . . k] be a new array

2. for i = 0 to k

3. C[i] = 0

4. for j = 1 to A.length

5. C[A[j]] = C[A[j]] + 1

6. // C[i] now contains the number of ele-
ments less than or equal to i

7. for i = 1 to k

8. C[i] = C[i] + C[i− 1]

9. // C[i] now contains the number of ele-
ments less than or equal to i

10. for j = A.length downto 1

11. B[C[A[j]]] = A[j]

12. C[A[j]] = C[A[j]]− 1

• Lines 2-3 initialize array C to zeros, Θ(k)

• Lines 4-5, sets C[i] to the number of elements equal
to i, Θ(n)

• Lines 7-8, determine for each i = 0, 1, . . . , k, how
many input elements are less than or equal to i,
keeping a running sum of the array C, Θ(k)

• Lines 10-12, places each element A[j] into its cor-
rect sorted position in B, Θ(n)

• Counting sort beats the lower bound of Ω(n lg n)

– It is not a comparison sort

– It uses the values of the elements to index into
an array

– Ω(n lg n) doesn?t apply, it is not a comparison
sort model

• Important property

– Counting sort is stable

– Numbers with the same value appear in the
output array in the same order as they do in
the input array

– Important when satellite data is moved
around with sorted elements

– Used as subroutine of radix sort, important
property for radix sort to be correct

• The operation of COUNTING-SORT on an input
array A[1 . . . 8, where each element of A is a non-
negative integer no larger than k = 5. (a) The
array A and the auxiliary array C after line 5. (b)
The array C after line 8. (c)–(e) The output array
B and the auxiliary array C after one, two, and
three iterations of the loop in lines 10–12, respec-
tively. Only the lightly shaded elements of array
B have been filled in. (f) The final sorted output
array B.



Radix Sort

• Radix Sort was originally used by card-sorting ma-
chines (IBM)

– Cards have 80 columns, each column has 12
places, a machine punches one of those holes

– Card-sorting machines worked with one col-
umn at a time

• Currently, radix sort is used for multi-key sorting
(i.e. year/month/day)

• Considers each digit of the number as an indepen-
dent key

• How do we sort?

– Intuitively, we would sort numbers by the
most significant digit, sort each of the result-
ing bins recursively, then combine the decks
in order

• Problem

– the cards in 9 of the 10 bns must be put aside
to sort each of the bins

– this procedure generates many intermediate
piles of cards

– We would have to keep track of these piles

• How do we sort?

– Radix sort works from the least significant
digit first

– It combines the cards into a single deck

– Cards in the 0 bin precede cards in the 1 bin
which precede the cards in the 2 bin, and so
on

– Then sorts the entire deck again on second
least significant digit and recombines the deck

– Process continues until cards have been sorted
on all d digits

• Radix sort requires d passes

The operation of radix sort on a list of seven 3-
digit numbers. The leftmost column is the input.
The remaining columns show the list after succes-
sive sorts on increasingly significant digit positions.
Shading indicates the digit position sorted on to
produce each list from the previous one.

• d is the number of digits

– Digit 1 is has lowest order

– Digit d has the highest order

Radix-Sort(A, d)

1. for i = 1 to d

2. use a stable sort to sort array A on digit i

• Analysis of Radix Sort

– If each digit is in the range from 1 to k, we
use CountingSort

– Each step for a digit takes Θ(n+ k)

– For d digits Θ(dn+ dk)

– If d is a constant and k = O(n), T (n) = O(n)

– Radix-n means that each digit can differen-
tiate among n different symbols, in previous
examples we used radix-10 (digits from 0 to
9).



Bucket Sort

• Bucket sort runs in linear time when the input
elements are drawn from a uniform distribution,
average-case running time O(n)

• Fast because it assumes something about the input

– (i.e. Counting sort assumes numbers in a
small range)

– Bucket sort assumes numbers randomly gen-
erated and uniformly distributed in a range
[0, 1)

• Divides the interval [0, 1) in n sub-intervals (or
buckets) of the same size

– Numbers distributed in buckets

– Don?t expect many numbers to fall in each
bucket (they are uniformly and independently
distributed over [0, 1))

– To sort the numbers, we sort numbers in each
bucket, then go through buckets in order

Bucket Sort(A)

1. let B[0 . . . n− 1 be a new array

2. n = A.length

3. for i = 0 to n− 1

4. make B[i] an empty list

5. for i = 1 to n

6. insert A[i] into list B[bnA[i]c]
7. for i = 0 to n− 1

8. sort list B[i] with insertion sort

9. concatenate the lists B[0], B[1], . . . B[n−
1] together in order

The operation of BUCKET-SORT for n = 0. (a) The input array A[1 . . . 10]. (b) The array B[0 . . . 9] of sorted lists
(buckets) after line 8 of the algorithm. Bucket i holds values in the half-open interval [i/10, (i+ 1)/10). The sorted
output consists of a concatenation in order of the lists B[0], B[1], . . . B[9]


