Lecture 6: Sorting Part B

Sorting in Linear Time

e Previous sorting algorithms
— Were based on comparisons, comparison sort
algorithms
— Can sort n numbers in O(nlgn) time

* Merge sort and heapsort achieve this up-
per bound in the worst case

* Quicksort achieves this upper bound in
the average case

Lower Bounds for Sorting

e Comparison sort algorithms only use compar-
isons to get information about an input sequence

(a1, ag,...,an)
— One test: a; < aj, a; < a4, a; = a;, a; > aj,
a; > aj, to determine order

e For the algorithms in this section

— Assume all input elements are distinct
— Comparisons a; = a; are useless

— We only use comparisons of form a; < a;

The Decision-tree Model

e Can view comparison sorts as decision trees

— Decision tree, a full binary tree representing
the comparisons between elements performed
by a particular sorting algorithm, given an in-
put

— Control, data movement, other aspects of al-
gorithm

* Ignored in the decision tree

2,3.1)] (3,2.1))

The decision tree for insertion sort operating on three
elements. An internal node annotated by i : j indi-
cates a comparison between a; and a;. A leaf annotated
by the permutation)7 (1),7(2),...,7(n){ indicates the
ordering a,(1) < ar(2) < ... < ar(n). The shaded
path indicates the decisions made when sorting the in-
put sequence (a3 = 6,a2 = 8,a3 = 5) the permutation
(3,1,2) at the leaf indicates that the sorted ordering is
a3 =5 < a; =6 < as = 8. There are 3! = 6 possible
permutations of the input elements, and so the decision
tree must have at least 6 leaves.

e Decision-tree Model

— Internal nodes annotated with 7 : j, 1 < ¢,
7 < n, n is the number of elements in the
input sequence

— Leaf nodes annotated by a permutation
(m(1),7(2),...,7(n))

e Execution of the sorting algorithm

— Tracing a simple path from root down to leaf

— Each internal node indicates a comparison
a; S Q;

Left subtree, a; < a;

Right subtree, a; > a;

— When we reach a leaf, we have found the or-
dering of the elements ar(1) < ar@) < -+ <
G (n)

— Each of the n! permutations must appear as

a leaf for comparison sort to be correct

— Each leaf (permutation) must be reachable
from the root node

— Theorem 8.1

* Any comparison sort algorithm requires
Q(nlgn) comparisons in the worst case.
— Why?
x Has to do with the height of the decision
tree
* Permutaions (defining ordering) appear
as reachable leafs
— Corolary 8.2

*x Heapsort and merge sort are asymptoti-
cally optimal comparison sorts

Counting Sort

e Assume input of n integer elements in a range from

0tok
e When k& = O(n), sorting runs in O(n)

e Determine for each input element x, the number of

elements smaller than x

This is how it positions x in its
output array

If there are 17 elements smaller
will be assigned position 18

peated numbers

= Q

il

place in the

than ¢ — x

Must modify scheme in order to deal with re-

Alj], element of the original array
[

Alj]], number of repetitions of number in

— B[C[A[j]]], final array, puts the number in its

final position
COUNTING-SORT(A, B, k)

let C[0...k] be a new array
for i =0 to k
Cli]=0
for j =1 to A.length
ClA[]] = ClAGI +1

A A

ments less than or equal to ¢
7. fori=1tok
Cli] =C[i] + C[i — 1]

// C[i] now contains the number of ele-

9. // Cli] now contains the number of ele-

ments less than or equal to ¢

10. for j = A.length downto 1
11. B[C[A[f]]] = Alj]
12. ClA[j]l = ClA[f]] -1

1 2 3 4 5 6 7 8
alz]s[s]o]2]3]0]3]

clz]of2][3]o]1]

(a)

5 [o [T 5 [
c (EE[[s]

(d)

0o 1 2 3

4

5

Lines 2-3 initialize array C to zeros, ©(k)

Lines 4-5, sets C[i] to the number of elements equal

to i, ©(n)

Lines 7-8, determine for each ¢ = 0,1,...,k, how
many input elements are less than or equal to 1,
keeping a running sum of the array C, ©(k)

Lines 10-12, places each element A[j] into its cor-
rect sorted position in B, ©(n)

Counting sort beats the lower bound of Q(nlgn)

— It is not a comparison sort

— It uses the values of the elements to index into
an array

— Q(nlgn) doesn?t apply, it is not a comparison
sort model

Important property

Counting sort is stable

Numbers with the same value appear in the
output array in the same order as they do in
the input array

Important when satellite data is moved
around with sorted elements

Used as subroutine of radix sort, important
property for radix sort to be correct

The operation of COUNTING-SORT on an input
array A[l...8, where each element of A is a non-
negative integer no larger than k& = 5. (a) The
array A and the auxiliary array C' after line 5. (b)
The array C after line 8. (¢)—(e) The output array
B and the auxiliary array C after one, two, and
three iterations of the loop in lines 10-12, respec-
tively. Only the lightly shaded elements of array
B have been filled in. (f) The final sorted output
array B.

cl2]2]4]7]7]8

(b)

1 2 3 4 5 6 7 8
5 [o [T 5 [5 | 2345678

0 1 2 3

4

5

Blofo]2]2]3]3]3]5]

cli][2]4]s]7]8]

(e)

®

Radix Sort

Radix Sort was originally used by card-sorting ma-
chines (IBM)

— Cards have 80 columns, each column has 12
places, a machine punches one of those holes
— Card-sorting machines worked with one col-

umn at a time

Currently, radix sort is used for multi-key sorting
(i.e. year/month/day)

Considers each digit of the number as an indepen-
dent key

How do we sort?

— Intuitively, we would sort numbers by the
most significant digit, sort each of the result-
ing bins recursively, then combine the decks
in order

Problem
— the cards in 9 of the 10 bns must be put aside
to sort each of the bins

— this procedure generates many intermediate
piles of cards

— We would have to keep track of these piles
How do we sort?
— Radix sort works from the least significant
digit first
— It combines the cards into a single deck

— Cards in the 0 bin precede cards in the 1 bin
which precede the cards in the 2 bin, and so
on

— Then sorts the entire deck again on second
least significant digit and recombines the deck

— Process continues until cards have been sorted
on all d digits

e Radix sort requires d passes

329 720 720 329
457 355 329 355
657 436 436 436
839 i 457 i 839 i 457
436 657 355 657
720 329 457 720
355 839 657 839

The operation of radix sort on a list of seven 3-
digit numbers. The leftmost column is the input.
The remaining columns show the list after succes-
sive sorts on increasingly significant digit positions.
Shading indicates the digit position sorted on to
produce each list from the previous one.

d is the number of digits

— Digit 1 is has lowest order

— Digit d has the highest order
RADIX-SORT(A4, d)

1. fori=1tod

2. use a stable sort to sort array A on digit ¢

e Analysis of Radix Sort

— If each digit is in the range from 1 to k, we
use CountingSort

— Each step for a digit takes ©(n + k)
— For d digits ©(dn + dk)
— If d is a constant and k = O(n), T(n) = O(n)

— Radix-n means that each digit can differen-
tiate among n different symbols, in previous
examples we used radix-10 (digits from 0 to
9).

Bucket Sort

e Bucket sort runs in linear time when the input
elements are drawn from a uniform distribution,
average-case running time O(n)

e Fast because it assumes something about the input

— (i.e. Counting sort assumes numbers in a
small range)
— Bucket sort assumes numbers randomly gen-

erated and uniformly distributed in a range
[0,1)

e Divides the interval [0,1) in n sub-intervals (or
buckets) of the same size

— Numbers distributed in buckets

— Don?t expect many numbers to fall in each
bucket (they are uniformly and independently
distributed over [0, 1))

,_.
3
o0

o

To sort the numbers, we sort numbers in each
bucket, then go through buckets in order

BUCKET SORT(A)

© X NS G WD

let B[0...n —1 be a new array
n = A.length
fori=0ton—-1
make B[i] an empty list
fort=1ton
insert Afi] into list B[|nA[d]]]
fori=0ton—1
sort list B[] with insertion sort

concatenate the lists B[0], B[1],... B[n—
1] together in order

,_‘
=5
—_

—>[12] >[17]/]

—>{21] +>{23] +>{.26]./ |

—>[72] —+>{78] /|

oo 1 vy i RkoWwNd
N[\
Ll B
O e 3 kWM

B
ke
G
i
I

=
o
)

B
N

(b)

The operation of BUCKET-SORT for n = 0. (a) The input array A[1...10]. (b) The array B[0...9] of sorted lists
(buckets) after line 8 of the algorithm. Bucket ¢ holds values in the half-open interval [¢/10, (¢ + 1)/10). The sorted
output consists of a concatenation in order of the lists B[0], B[1], ...

B[9]

