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Abstract

Many existing rule learning systems are
computationally expensive on large noisy
datasets� In this paper we evaluate the
recently	proposed rule learning algorithm
IREP on a large and diverse collection of
benchmark problems� We show that while
IREP is extremely e
cient� it frequently
gives error rates higher than those of C���
and C���rules� We then propose a num	
ber of modi�cations resulting in an algo	
rithm RIPPERk that is very competitive
with C���rules with respect to error rates�
but much more e
cient on large samples�
RIPPERk obtains error rates lower than or
equivalent to C���rules on  of �� bench	
mark problems� scales nearly linearly with
the number of training examples� and can
e
ciently process noisy datasets containing
hundreds of thousands of examples�

� INTRODUCTION

Systems that learn sets of rules have a number of de	
sirable properties� Rule sets are relatively easy for
people to understand �Catlett� ������ and rule learn	
ing systems outperform decision tree learners on many
problems �Pagallo and Haussler� ����� Quinlan� �����
Weiss and Indurkhya� ������ Rule sets have a nat	
ural and familiar �rst order version� namely Prolog
predicates� and techniques for learning propositional
rule sets can often be extended to the �rst	order case
�Quinlan� ����� Quinlan and Cameron	Jones� ������
Certain types of prior knowledge can also be easily
communicated to rule learning systems �Cohen� �����
Pazzani and Kibler� �����

One weakness with rule learning systems is that they
often scale relatively poorly with the sample size� par	
ticularly on noisy data �Cohen� ������ Given the preva	
lence of large noisy datasets in real	world applications�

this problem is of critical importance� The goal of this
paper is to develop propositional rule learning algo	
rithms that perform e
ciently on large noisy datasets�
that extend naturally to �rst	order representations�
and that are competitive in generalization performance
with more mature symbolic learning methods� such
as decision trees� The end product of this e�ort is
the algorithm RIPPERk� which is competitive with
C���rules with respect to error rates� scales nearly lin	
early with the number of training examples� and can
e
ciently process noisy datasets containing hundreds
of thousands of examples�

� PREVIOUS WORK

��� COMPLEXITY OF RULE PRUNING

Many of the techniques used in modern rule learn	
ers have been adapted from decision tree learning�
Most widely	used decision tree learning systems use an
over�t�and�simplify learning strategy to handle noisy
data� a hypothesis is formed by �rst growing a com	
plex tree which �over�ts� the data� and then sim	
plifying or pruning the complex tree �Quinlan� �����
Mingers� ������ Usually �but not always� such pruning
strategies improve error rates on unseen data when the
training data is noisy �Quinlan� ����� Mingers� �����
Scha�er� ����� A variety of methods have been
proposed to prune trees� but one e�ective technique
is reduced error pruning �REP�� REP can be easily
adapted to rule learning systems �Pagallo and Haus	
sler� ����� Brunk and Pazzani� ������

In REP for rules� the training data is split into a grow�
ing set and a pruning set � First� an initial rule set
is formed that over�ts the growing set� using some
heuristic method� This overlarge rule set is then re	
peatedly simpli�ed by applying one of a set of pruning
operators� typical pruning operators would be to delete
any single condition or any single rule� At each stage
of simpli�cation� the pruning operator chosen is the
one that yields the greatest reduction of error on the



pruning set� Simpli�cation ends when applying any
pruning operator would increase error on the pruning
set�

REP for rules usually does improve generalization per	
formance on noisy data �Pagallo and Haussler� �����
Brunk and Pazzani� ����� Weiss and Indurkhya� �����
Cohen� ����� F�urnkranz and Widmer� ������ however�
it is computationally expensive for large datasets� In
previous work �Cohen� ����� we showed that REP re	
quires O�n�� time� given su
ciently noisy data� in fact�
even the initial phase of over�tting the training data
requires O�n�� time� We then proposed an alterna	
tive over�t	and	simplify method called Grow that is
competitive with REP with respect to error rates� and
was an order of magnitude faster on a set of benchmark
problems�

We also showed that Grow was asymptotically faster
than REP on random data�if one assumes that
Grow�s hypothesis is approximately the same size as
the target concept� However� Cameron	Jones ������

later showed that Grow systematically over�ts the tar	
get concept on noisy data� This has an adverse e�ect
on Grow�s time complexity and as a result Grow also
requires O�n�� time asymptotically�

In another response to the ine
ciency of REP�
F�urnkranz and Widmer ������ proposed a novel learn	
ing algorithm called incremental reduced error pruning
�IREP�� IREP was shown experimentally to be com	
petitive with both REP and Grow with respect to error
rates� and much faster than either� in fact� on �� of �
benchmark problems� IREP was faster than the initial
step of over�tting the data�

In this paper� we will take as our point of departure
the promising results obtained by F�urnkranz and Wid	
mer with the IREP algorithm� Our initial goal was
simply to replicate their results� to evaluate IREP on
a broader set of benchmarks� and to compare IREP
to more mature tree and rule induction methods� In
the course of doing this� we discovered that IREP�s
generalization performance could be considerably im	
proved� without greatly a�ecting its computational ef	
�ciency� In the remainder of the paper we will describe
our implementation of the original IREP algorithm�
and give evidence that it a�ords room for improve	
ment� We will then outline three modi�cations� a new
metric for guiding its pruning phase� a new stopping
condition� and a technique for �optimizing� the rules
learned by IREP� Taken together these modi�cations
give generalization performance that is comparable to
C��� and C���rules �Quinlan� ����� on a large set of di	
verse benchmarks� The modi�ed learning algorithm�
however� still scales well with the number of training

procedure IREP�Pos�Neg�
begin

Ruleset �� �
while Pos�� � do

�� grow and prune a new rule ��
split �Pos�Neg� into �GrowPos�GrowNeg�
and �PrunePos�PruneNeg�
Rule �� GrowRule�GrowPos�GrowNeg�
Rule �� PruneRule�Rule�PrunePos�PruneNeg�
if the error rate of Rule on
�PrunePos�PruneNeg� exceeds ��� then

return Ruleset
else

add Rule to Ruleset
remove examples covered by Rule
from �Pos�Neg�

endif

endwhile

return Ruleset
end

Figure �� The IREP algorithm

examples� The current implementation can e
ciently
handle training sets of several hundred thousand ex	
amples�

��� INCREMENTAL REDUCED ERROR

PRUNING

The IREP rule	learning algorithm is described in de	
tail by F�urnkranz andWidmer ������� but we will sum	
marize it below� IREP tightly integrates reduced error
pruning with a separate	and	conquer rule learning al	
gorithm� Figure � presents a two	class version of this
algorithm� �In the two	class Boolean case a �rule� is
simply a conjunction of features� and a �rule set� is a
DNF formula�� Like a standard separate	and	conquer
algorithm� IREP builds up a rule set in a greedy fash	
ion� one rule at a time� After a rule is found� all exam	
ples covered by the rule �both positive and negative�
are deleted� This process is repeated until there are
no positive examples� or until the rule found by IREP
has an unacceptably large error rate�

In order to build a rule� IREP uses the following strat	
egy� First� the uncovered examples are randomly par	
titioned into two subsets� a growing set and a pruning
set � In our implementation� the growing set contains
�� of the examples�

Next� a rule is �grown�� Our implementation of
GrowRule is a propositional version of FOIL �Quinlan�



����� Quinlan and Cameron	Jones� ������ It begins
with an empty conjunction of conditions� and consid	
ers adding to this any condition of the form An � v�
Ac � �� or Ac � �� where An is a nominal attribute
and v is a legal value for An� or Ac is a continuous
variable and � is some value for Ac that occurs in the
training data� GrowRule repeatedly adds the condi	
tion that maximizes FOIL�s information gain criterion
until the rule covers no negative examples from the
growing dataset�

After growing a rule� the rule is immediately pruned�
To prune a rule� our implementation considers deleting
any �nal sequence of conditions from the rule� and
chooses the deletion that maximizes the function

v�Rule�PrunePos�PruneNeg � �
p �N � n�

P  N
���

where P �respectively N � is the total number of exam	
ples in PrunePos �PruneNeg� and p �n� is the number
of examples in PrunePos �PruneNeg� covered by Rule�
This process is repeated until no deletion improves the
value of v�

The IREP algorithm described above is for two	class
learning problems� Our implementation handles mul	
tiple classes as follows� First� the classes are ordered�
In the experiments described below the ordering is al	
ways in increasing order of prevalence�i�e�� the order	
ing is C�� � � � � Ck where C� is the least prevalent class
and Ck is the most prevalent� Then� IREP is used to
�nd a rule set that separates C� from the remaining
classes� this is done with a single call to IREP where
PosData contains the examples labeled C� and Neg�
Data contains the examples labeled C�� C�� � � � � or
Ck� Next� all instances covered by the learned rule set
are removed from the dataset� and IREP is used to
separate C� from classes C�� � � � � Ck� This process is
repeated until a single class Ck remains� this class will
be used as the default class�

We also extended the rule learning algorithm to handle
missing attributes as follows� all tests involving the
attribute A are de�ned to fail on instances for which
the value of A is missing� This encourages the learner
to separate out the positive examples using tests that
are known to succeed�

��� DIFFERENCES FROM F�URNKRANZ

AND WIDMER�S IREP

This implementation di�ers from F�urnkranz and Wid	
mer�s in several details� In pruning rules� our imple	
mentation allows deletions of any �nal sequence of con	
ditions� whereas F�urnkranz and Widmer�s implemen	
tation allows only deletions of a single �nal condition�

Our implementation also stops adding rules to a rule
set when a rule is learned that has error rate greater
than ���� whereas F�urnkranz and Widmer�s imple	
mentation stops when the accuracy of the rule is less
than the accuracy of the empty rule��

More importantly� our implementation supports miss	
ing attributes� numerical variables and multiple
classes� This makes it applicable to a wider range of
benchmark problems�

� EXPERIMENTS WITH IREP

Experiments with IREP showed that it is indeed fast�
Results for one representative arti�cial problem� are
summarized in the �rst graph in Figure � the CPU
time needed by C���rules is also shown�� The results
are shown on a log	log scale� recall that polynomials
appear as lines on such a plot� with the slope of the line
indicating its degree� C���rules scales roughly as the
cube of the number of examples� whereas IREP scales
almost linearly� Extrapolating the curves suggests that
it would require about �� CPU years for C���rules to
process the ������� example dataset� which IREP han	
dles in around seven CPU minutes�

Although we have used an arti�cial concept with an ex	
tremely large number of training examples to demon	
strate these issues� similar performance issues also
arise on natural datasets� as the two smaller graphs
of Figure  demonstrate�

For reference� the �rst graph in Figure  also shows
the curves kx� and y � kx log� x� F�urnkranz and Wid	
mer�s formal analysis of IREP predicts a running time
ofO�m log�m�� wherem is the number of examples� on

�Actually� F	urnkranz and Widmer described two prun

ing algorithms� The �rst� which they called IREP� prunes
according to Equation � and stops when p��p� n� �
N��P �N�� The second� which they called IREP�� prunes
according to the metric v�Rule�PrunePos�PruneNeg� �
p

p�n
and stops when p��p� n� � ��� Our experiments

con�rmed the conclusion of F	urnkranz and Widmer that
IREP generally outperforms IREP�� however� we also dis

covered that IREP�s performance was noticibly improved
by adopting IREP��s stopping condition�

�The concept ab � bcd � defg with � irrelevant bi

nary attributes� ��� classi�cation noise� and uniformly
distributed examples� CPU time was measured on a MIPS
Irix �� con�gured with � �� MHz R���� processors and
Gb of memory� Since IREP is a randomized algorithm
�because of its random partitioning of the examples� the
curve for IREP is the average of � trials�

�The time for C���rules ignores the time needed to
run C���� However� C��� is generally much faster than
C���rules� on this problem� C��� requires less than ���
CPU seconds to handle the ������� example dataset� The
run
time of C��� is generally comparable to that of IREP�
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Figure � CPU times for C���rules� IREP� and RIPPER

any dataset that contains a �xed percentage of classi	
�cation noise� Our results are consistent with this pre	
diction� Analysis similar to F�urnkranz and Widmer�s
also predicts the cubic behavior shown by C���rules�

Although IREP is e
cient� experiments on real	world
datasets showed that the generalization performance
of IREP o�ered substantial room for improvement� We
compared IREP to C��� and C���rules on a diverse
set of benchmark problems� summarized in Table ��
Where a test set associated with the benchmark is indi	
cated� we ran C��� and C���rules once� and ran IREP
�� times and averaged� Where no test set is indicated�
we ran �� di�erent ��	fold cross	validations for all the
algorithms and averaged the results� Due to space con	
siderations we will focus on comparisons to C���rules�
since it also learns rule sets� however� the performance
of C��� and C���rules on these datasets was similar�

We used C��� Release � �Quinlan� ������ and the most
recent version of C���rules �Quinlan� ������

The left	hand graph of Figure � contains one point for
each benchmark problem� positioned so that IREP�s
error rate is the x	axis position and C���rules� error
rate is the y	axis position� Thus for points below the
line y � x IREP�s performance is inferior to C���rules�
and for points above the line IREP�s performance is
better� From the graph one can readily see that IREP
does worse than C���rules more often than it does bet	
ter� speci�cally� IREP�s error rate is higher � times�
lower �� times� and the same � times�

Of course� it may be that IREP is in fact as likely
to outperform C���rules as the converse on problems
from this test suite� and that the won	lost	tie ratio of
��	�	� is due to random variation in the error esti	



Table �� The �� benchmark problems used in the experiments� with size of training and testing sets� number of
classes� number of nominal �n� and continuous �c� attributes� and a brief description� Starred problems are from
the UC�Irvine Repository�

Name Train Test Classes Attributes Description
AP�	�� ��� �  ��	���n text categorization ��� problems�
audiology� � � � ��n medical diagnosis
bridges�	�� ��� � 	� �n �c mech� engineering �� problems�
iris� ��� � � �c !ower classi�cation
labor� �� �  �n �c labor negotiations
promoters� ��� �  ��n DNA promoter sequences
sonar� �� �  ��c sonar signal classi�cation
ticket�	� ��� �  ��n text categorization �� problems�
ui ��� � �� ��n text	to	speech subproblem
coding�� ���� �����  ��n DNA coding sequences
�re �� ��� � ��c risk of forest �res
market ���� ����  �n �c market analysis
mushroom� ���� ����  n random split of mushroom data
netwk� ��� ����  ��c predict equipment failure
netwk ��� ��  ��c predict equipment failure
ocr ���� ����  ���n image classi�cation
segment� ���� ���� � ��n image analysis
splice� ���� ���� � ��n split of DNA splice	junction data
thyroid� ��� ��� � n �c medical diagnosis
vidgame ���� ����  ��n decide if game moves are random
voting� ��� ���  ��n congressional voting records
weather ���� ����  ��c weather prediction

mates� Using a nonparametric sign test �Mendenhall
et al�� ����� page ����� one can determine that the
probability of observing a ratio this one	sided would
be just under ���� if IREP had a ����� chance of bet	
tering C���rules on problems in this test suite� We
can thus conclude with ��� con�dence that C���rules
outperforms IREP on this test suite��

It is also evident from the graph that IREP seldom
does much better than C���rules� and not infrequently
does much worse� It is not obvious how to best aggre	
gate measurements across learning problems� but one
method is to consider the average value of the ratio

error rate of IREP

error rate of C��	rules

For this set of problems the average of this ratio is
����� if one discounts a single extreme outlier� thus on
average IREP�s error rates are about ��� higher than
those of C���rules� �This average is ��� if one includes

�More precisely� we can conclude that C���rules outper

forms IREP in this sense� if a problem is drawn at random
from this test suite and its error rate is measured as de

scribed above� then with probability greater than ���� the
measured error rate of C���rules will be lower than that of
IREP�

the mushroom dataset�on this benchmark C���rules
obtains an error of ��� to IREP�s ������

As an additional point of reference� we also ran propo	
sitional FOIL without any pruning mechanism� The
ratio of the error rate of the hypothesis obtained by
�over�tting� the data with propositional FOIL to the
error rate of C���rules is ���� excluding the mush�
room dataset� and ���� overall� Finally� we ran IREP
�also described by F�urnkranz and Widmer ������� and
IREP with F�urnkranz and Widmer�s stopping condi	
tion� The average ratio for IREP was ���� with	
out the mushroom dataset� and ���� overall� For
IREP with the more restrictive F�urnkranz and Wid	
mer stopping condition� the average ratio was ����
without mushroom and ��� overall� The best won	
loss	tied record of any of these three systems relative to
C���rules was ��	�	�� achieved by propositional FOIL
without pruning� To summarize� on average� all of
the IREP variants performed substantially worse than
C���rules� and none of the IREP variants performed
substantially better than simply over�tting the data�

There is also evidence that IREP fails to converge
on some natural datasets� One example is the well	
known KRK	illegal problem �Muggleton et al�� �����
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Figure �� Comparison of generalization performances� C���rules vs� IREP and RIPPER�

Quinlan� ������ We encoded a propositional version
of this problem� and implemented a data generator��

Without noise� IREP reliably learns an approximate
theory with an error rate of ���� from as few as ���
examples� however� IREP does not improve this error
rate even if as many as ������� examples are given�
In contrast C���rules reliably produces a perfect the	
ory from only ���� examples� Arti�cial examples can
also be constructed which show non	convergence to a
greater extent� for example� IREP obtains an error of
���� given anywhere between ��� and ������� noise	
free examples of the concept ab�ac�ade� This is wor	
risome behavior for an algorithm whose main strength
is that it e
ciently handles very large numbers of ex	
amples�

� IMPROVEMENTS TO IREP

Based on our experiments with IREP� we implemented
three modi�cations to the algorithm� an alternative
metric for assessing the value of rules in the pruning
phase of IREP� a new heuristic for determining when
to stop adding rules to a rule set� and a postpass that
�optimizes� a rule set in an attempt to more closely
approximate conventional �i�e�� non	incremental� re	
duced error pruning�

��� THE RULE�VALUE METRIC

The occasional failure of IREP to converge as the num	
ber of examples increases can be readily traced to the
metric used to guide pruning �given above in Equa	

�Our propositional encoding is the one that would be
constructed by LINUS �D�zeroski and Lavrac� ���� and
we used a uniform distribution to generate KRK positions�

tion ��� The preferences encoded in this metric are
sometimes highly unintuitive� for instance �assuming
that P and N are �xed� the metric prefers a rule R�

that covers p� � ��� positive examples and n� � ����
negative examples to a rule R� that covers p� � ����
examples and n� � � negative example� note� however�
that R� is highly predictive and R� is not� We thus
replaced IREP�s metric with

v��Rule�PrunePos�PruneNeg� �
p� n

p n

which seems to have more intuitively satisfying behav	
ior�

��� THE STOPPING CONDITION

Our implementation of IREP stops greedily adding
rules to a rule set when the last rule constructed has an
error exceeding ��� on the pruning data� This heuris	
tic often stops too soon given moderate	sized samples�
this is especially true when learning a concept con	
taining many low	coverage rules� Our assessment of
the problem is that for low	coverage rules� the esti	
mate of error a�orded by the pruning data has high
variance� thus in learning a series of small rules� there
is a good chance that one of the rules in the series will
have its error rate incorrectly assessed at more than
���� causing IREP to stop prematurely� Put another
way� IREP seemed to be unduly sensitive to the �small
disjunct problem� �Holte et al�� ������

Our solution to this problem is the following� After
each rule is added� the total description length of the
rule set and the examples is computed� The new ver	
sion of IREP stops adding rules when this description
length is more than d bits larger than the smallest de	



scription length obtained so far� or when there are no
more positive examples� In the experiments of this
paper we used d � ��� The rule set is then simpli�ed
by examining each rule in turn �starting with the last
rule added� and deleting rules so as to reduce total
description length��

Together� the revised rule	value metric and stopping
heuristic substantially improve IREP�s generalization
performance� Unlike the original IREP� the modi�ed
version of IREP �henceforth IREP�� converges KRK�
illegal and the arti�cial concept ab�ac�ade� IREP��s
won	lost	tied record against IREP is �	�	�� thus with
high con�dence �p � ����� one can state that IREP�
outperforms IREP on problems from this test suite�
The error ratio to C���rules is also reduced from ����
�or ���� including mushroom� to ���� �or ����� includ	
ing mushroom�� IREP��s won	lost	tied record against
C���rules is ��	�	��

��� RULE OPTIMIZATION

The repeated grow	and	simplify approach used in
IREP can produce results quite di�erent from con	
ventional �non	incremental� reduced error pruning�
One way to possibly improve IREP��s incremental ap	
proach is to postprocess the rules produced by IREP�
so as to more closely approximate the e�ect of conven	
tional reduced error pruning� For instance� one could
re	prune each rule so as to minimize the error of the
complete rule set�

After some experimentation we developed the follow	
ing method for �optimizing� a rule set R�� � � � � Rk�
Each rule is considered in turn� �rst R�� then R��
etc� in the order in which they were learned� For each
rule Ri� two alternative rules are constructed� The re�
placement for Ri is formed by growing and then prun	
ing a rule R�

i
� where pruning is guided so as to mini	

�To brie�y summarize our MDL encoding scheme� the
method used for encoding a set of examples given a theory
is the same as that used in the latest version of C���rules
�Quinlan� ����� One part of this encoding scheme allows
one to identify a subset of k elements of a known set of n
elements using

S�n� k� p� � k log�


p
� �n� k� log�



� p

bits� where p is known by the recipient of the message�
Thus we allow jjkjj� S�n� k� k�n� bits to send a rule with
k conditions� where n is the number of possible conditions
that could appear in a rule and jjkjj is the number of bits
needed to send the integer k� As in C���rules �Quinlan�
���� page ��� the estimated number of bits required to
send the theory is multiplied by ��� to adjust for possible
redundancy in the attributes�

Table � Summary of generalization results
won	loss	tied error ratio
vs C���rules to C���rulesa

IREPb �	�	� ��� ���� ����
IREP ��	�	� ���� ���� ��
IREPc ��	�	� ���� ���� ���
IREP� ��	�	� ���� ���� ����
RIPPER �	��	 ���� ���� ����
RIPPER �	��	� ���� ���� ����

aFormat� all datasets� all datasets except mushroom� all
datasesets except mushroom and weighting similar datasets
together�

bUsing F	urnkranz and Widmer�s stopping criterion�
cAs described in Section ����

mize error of the entire rule set R�� � � � � R
�

i
� � � � � Rk on

the pruning data� The revision of Ri is formed anal	
ogously� except that the revision is grown by greedily
adding conditions to Ri� rather than the empty rule�
Finally a decision is made as to whether the �nal the	
ory should include the revised rule� the replacement
rule� or the original rule� This decision is made us	
ing the MDL heuristic�� Optimization is integrated
with IREP� as follows� First� IREP� is used to ob	
tain an initial rule set� This rule set is next optimized
as described above� Finally rules are added to cover
any remaining positive examples using IREP�� Be	
low� we will call this algorithmRIPPER �for Repeated
Incremental Pruning to Produce Error Reduction���

Optimization can also be iterated by optimizing the
rule set output by RIPPER and then adding addi	
tional rules using IREP�� we will call this algorithm
RIPPER� and in general use RIPPERk for the algo	
rithm that repeatedly optimizes k times�

��� GENERALIZATION PERFORMANCE

RIPPER noticibly improves generalization perfor	
mance over IREP�� Its won	lost	tied record against
IREP� is �	�	� a signi�cant improvement �p �

�������� The error ratio to C���rules is also reduced�
excluding mushroom� the error ratio is ���� for IREP�
and ���� for RIPPER� and including mushroom� the
error ratio is ���� for IREP� and ���� for RIPPER�
RIPPER�s won	lost	tied record against C���rules is �	
��	�

One additional stage of optimization gives some fur	

�More precisely� a variant of Ri is evaluated by inserting
it into the rule set and then deleting rules that increase the
total description length of the rules and examples� The
total description length of the examples and the simpli�ed
rule set is then used to compare variants of Ri�



ther bene�t� RIPPER reduces the error ratio to
C���rules to ����� excluding mushroom� or �����
including mushroom� and RIPPER�s won	lost	tied
against C���rules is improved to �	��	�� RIPPER
is not statistically signi�cantly better than C���rules�
however� RIPPER is certainly quite competitive on
the problems in this test suite� To make this concrete�
let q be the probability that RIPPER�s measured er	
ror rate will be less than or equal to that of C���rules
on a problem taken at random from the test suite� The
won	lost	tied record of �	��	 means we can be ���
con�dent that q is at least ���� ��� con�dent that q
is at least ������ and ��� con�dent that q is at least
������

The right	hand graph in Figure � gives a more de	
tailed comparison of the error rates of RIPPER and
C���rules� and Table  summarizes some of the gener	
alization results given in this section�

One problem with averaging error ratios is that when
the actual error rates are very small� ratios tend to
have extreme values� �This is the reason why we have
reported all averages with and without the mushroom
dataset� for this dataset the actual error rates range
from ���� to ���� and the ratios range from ��� to
������ The following remarks may help reassure read	
ers of the stability of our comparison�

	 If groups of similar datasets are weighted
together�� then the average ratio of RIPPER to
C���rules is ������ If mushroom is excluded� then
the weighted average ratio is ������

	 If the two largest and the two smallest ratios are
excluded� then the average ratio of RIPPER to
C���rules is ������ �The ratio formushroom is one
of the four extreme values��

	 The average di�erence between RIPPER�s error
rate and C���rules� error rate is 	�����

	 The won	loss	tied record of RIPPER to the C���
decision tree learner �with pruning� is �	�	�
The average ratio of RIPPER to C��� with prun	
ing is ����� with mushroom� and ����� without�

��	 EFFICIENCY OF RIPPERk

Importantly� none of the modi�cations we have de	
scribed have a major e�ect on computational e
	
ciency� Figure  also shows how RIPPER scales with

	�Weighting similar datasets together� means that the
ratios for the ten AP datasets� the �ve bridges datasets� the
three ticket datasets and the two network datasets are each
averaged together before being averaged with the ratios for
the remaining seventeed datasets�

the number of examples on three concepts� one arti�	
cial concept� and two of the larger and noisier natural
datasets in our test suite� The fact that the lines for
RIPPER and IREP are parallel shows that the mod	
i�cations we have introduced a�ect only the constant
factors� and not the asymptotic complexity of the al	
gorithm� The constant factors for RIPPER are also
still reasonably low� RIPPER requires only �� CPU
minutes to process ������� examples of the arti�cial
concept of Figure � RIPPERk is also quite space e
	
cient� as it requires no data structures larger than the
dataset�

In previous work �Cohen� ����� we sought formal ex	
planations for the e
ciency or ine
ciencies of REP
and other rule	pruning algorithms� While space does
not permit such an analysis here� we would like to
present some of the intuitions as to why RIPPERk is
so much faster on large noisy datasets�

The basic strategy used by RIPPERk to �nd a rule	
set that models the data is to �rst use IREP� to �nd
an initial model� and then to iteratively improve that
model� using the �optimization� procedure described
in ���� This process is e
cient because building the
initial model is e
cient� because the initial model does
not tend to be large relative to the target concept� and
because the optimization steps only require time linear
in the number of examples and the size of the initial
model�

C���rules also constructs an initial model and then
iteratively improves it� However� for C���rules� the
initial model is a subset of rules extracted from a un	
pruned decision tree� and the improvement process
greedily deletes or adds single rules in an e�ort to re	
duce description length� C���rules repeats this process
for several di�erent	sized subsets of the total pool of
extracted rules and uses the best ruleset found as its
hypothesis� the subsets it uses are the empty ruleset�
the complete ruleset� and randomly	chosen subsets of
���� ��� � � � � and ��� of the rules�

Unfortunately� for noisy datasets� the number of rules
extracted from the unpruned decision tree grows as m�
the number of examples� This means that each initial
model �save the empty model� will also be of size pro	
portional to m� and hence if m is su
ciently large�
all of the initial models will be much larger than the
target hypothesis� This means that to build a theory
about the same size as the target concept always re	
quires many �on the order of m� changes to the initial
model� and at each step in the optimization� many �on
the order of m� changes are possible� The improve	
ment process is thus expensive� since it is a greedy
search� it is also potentially quite likely to miss �nding



the best ruleset�	

In summary� both RIPPERk and C���rules start with
an initial model and iteratively improve it using heuris	
tic techniques� However� for large noisy datasets�
RIPPERk generally seems to start with an initial
model that is about the right size� while C���rules
starts with an over	large initial model� This means
that RIPPERk�s search is more e
cient� We conjec	
ture also that RIPPERk�s search is also more e�ective
on large noisy datasets� �RIPPER generally seems
to do better compared to C���rules on larger datasets�
in particular for datasets with no more than ��� ex	
amples� the average ratio of RIPPER to C���rules is
������ and for datasets with more than ��� examples�
the average ratio of RIPPER to C���rules is �������

� CONCLUSIONS

Incremental reduced error pruning �IREP� is a recent
rule learning algorithmthat can e
ciently handle large
noisy datasets� In this paper we have presented some
experiments on a large collection of benchmark prob	
lems with an extended implementation of IREP which
allows continuous variables and multiple classes� We
showed that IREP does not perform as well as the
more mature �but also more expensive� rule learning
algorithm C���rules�

We also proposed a series of improvements to IREP
that make it extremely competitive with C���rules�
without seriously a�ecting its e
ciency� IREP� in	
corporates a new metric to guide rule pruning and an
MDL	based heuristic for determining how many rules
should be learned� RIPPERk adds to this k iterations
of an optimization step that more closely mimics the
e�ect of non	incremental reduced error pruning�

IREP� and RIPPERk were shown statistically to be
clear improvements over IREP on problems from our
test suite� RIPPER is also extremely competitive
with C���rules� in fact on  of �� problems in the
test suite RIPPER achieves error rates lower than or
equivalent to those of C���rules�

However� on noisy datasets� RIPPERk is much more
e
cient than C���rules� It scales nearly linearly with
the number of examples in a dataset� in contrast
C���rules scales as the cube of the number of examples�
This asymptotic improvement translates to speedups
of several orders of magnitude on problems of modest


This situation should be contrasted to decision tree
pruning� in which even a large tree can be pruned e�ciently
and� in certain senses� optimally� for instance� the pruned
tree with the lowest error on a pruning set can be found in
linear time�

size �up to a few thousand examples�� and the ability
to e�ectively process datasets containing several hun	
dreds of thousands of noisy examples�
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