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What is Planning 

• The goal in artificial intelligence is to emulate 
intelligent/rational behavior. 

• An important part of rational behavior is making 
plans: 

– Constructing a sequence of actions that achieves a certain 
goal. 
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Planning and Search 

• The definition of the planning problem (constructing 
a sequence of actions that achieves a goal) sounds 
very similar to the definition of the search problem. 

• In general, the planning problem is a special case of 
the search problem. 

• However, planning problems often have properties 
that allow for far more efficient solutions. 
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Defining a Planning Problem 

• To define a planning problem, we need to specify the 
same elements that define a search problem: 

– States. 

– Actions. 

– Goals. 

• In planning, we describe states, actions, and goals 
using logic. 

• We use a language called PDDL (Planning Domain 
Definition Language). 

• PDDL uses a limited version of first-order logic. 

– Limitations allow for efficient inference. 
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Representing States with PDDL 

• A state is a conjunction of “ground, functionless atoms”. 
– To understand this, we need to understand each of the three terms: 

ground, functionless, atom. 

• In PDDL, an atom is an application of a predicate to some 
arguments. For example: 
 

At(Plane1, JFK) 
Airport(JFK) 
Airplane(Plane1) 
Have(Milk) 
 

• “Functionless” means that no functions are used. 
– For example: At(Father(George), JFK) is illegal, because it uses 

function Father. 

• “Ground” means that no variables are used. 
– For example: At(x, y) is illegal, because it uses variables x, y. 

5 



Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
not(Poor(George)) 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
not(Poor(George)) 

 

• No, it uses a negation. In a conjunction of ground, 
functionless atoms there is no room for negations. 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Boss(George)) 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Boss(George)) 

 

• No, it uses a function (Boss). 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Liz) 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Liz) 

 

• Yes, it is a conjunction of ground, functionless atoms. 

– No negations, variables, functions. 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Liz) and At(George, x) 
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Practice with State Descriptions 

• To determine if a state is legal, we simply have to 
determine if it is a conjunction of “ground, 
functionless atoms”. 

 

• Is this state description legal? 
 
Poor(George) and Rich(Liz) and At(George, x) 

 

• No, it uses variable x. 
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The Closed World Assumption 

• PDDL makes two very specific assumptions, when interpreting 
state descriptions: 

• The first such assumption is the closed world assumption: 
Any atom that is not mentioned in the state description is 
false. 

• For example, suppose that we have this state description:  
 
At(Plane1, JFK) 
Airport(JFK) 
Airplane(Plane1) 
 

• How can we prove that Plane1 is not an airport? 
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The Closed World Assumption 

• PDDL makes two very specific assumptions, when interpreting 
state descriptions: 

• The first such assumption is the closed world assumption: 
Any atom that is not mentioned in the state description is 
false. 

• For example, suppose that we have this state description:  
 
At(Plane1, JFK) 
Airport(JFK) 
Airplane(Plane1) 
 

• How can we prove that Plane1 is not an airport? 

• Since the state description does not mention Airport(Plane1), 
Airport(Plane1) is false. 
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The Unique Names Assumption 

• PDDL makes also a second assumption in interpreting states:  the 
unique names assumption: if two constants have different 
names, they are not equal to each other. 

• We used that assumption implicitly in our previous example: 
 
At(Plane1, JFK) 
Airport(JFK) 
Airplane(Plane1) 
 

• We said that since Airport(Plane1) is not mentioned, 
Airport(Plane1) is false. 

• Note that Airport(JFK) is mentioned. However, we assume that  
JFK != Plane1, since these two constants have different names. 
Thus, Airport(JFK) cannot possibly imply Airport(Plane1). 
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Representing Actions with PDDL 

• An action is defined using this syntax: 
 

Action(Name(var1, …, vark), 
    PRECOND: atom1 AND … AND atomm, 
    EFFECT: literal1 AND … AND literaln) 

 

• In other words:  
– An action has a name. 

– An action is applied to k arguments. 

– An action can only be applied if certain preconditions are met. Symbol 
m stands for the number of preconditions. 

– An action has certain effects. Symbol n stands for the number of 
effects. 

17 



Preconditions and Effects 

• An action is defined using this syntax: 
 

Action(Name(var1, …, vark), 
    PRECOND: atom1 AND … AND atomm, 
    EFFECT: literal1 AND … AND literaln) 

 

• Preconditions and effects are conjunctions of functionless 
literals. 

• Note that here we use term literals, whereas for state 
representations we use the term atoms. 

• What is a literal?  
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Preconditions and Effects 

• An action is defined using this syntax: 
 

Action(Name(var1, …, vark), 
    PRECOND: atom1 AND … AND atomm, 
    EFFECT: literal1 AND … AND literaln) 

 

• Preconditions and effects are conjunctions of functionless 
literals. 

• Note that here we use term literals, whereas for state 
representations we use the term atoms. 

• What is a literal? A literal is either an atom or a negation of an 
atom.  

• In short, preconditions and effects are allowed to include 
negations. 
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Preconditions and Effects 

• An action is defined using this syntax: 
 

Action(Name(var1, …, vark), 
    PRECOND: atom1 AND … AND atomm, 
    EFFECT: literal1 AND … AND literaln) 

 

• Preconditions and effects are conjunctions of functionless 
literals. 
– Pretty much, functions are not allowed at all in PDDL. 

• However, these literals can include variables. 

• They can ONLY include variables var1, …, vark, no other variable 
is allowed. 

• In summary, state descriptions must be ground (cannot include 
variables), but preconditions can include variables. 

20 



The Blocks World 

• The blocks world is  
a classic toy problem 
that is used for introducing  
planning concepts. 

• We have cubic blocks, called A, B, C, …  
– Often only three blocks are used. 

• These blocks can be stacked on top of each other, or just be 
placed on the table. 

• You can move a block only if it is Clear, meaning that it has no 
other block on top of it. 

• You can move a block on top of another block only if that 
other block is also Clear. 

• You can always place a clear block directly on the table. 
21 

A 

B C 



The Blocks World in PDDL 

• To represent the blocks world using PDDL, we need 
to define states and actions. 

• To define states and actions, we need to specify 
constants and predicates. 

• What are our constants?  
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The Blocks World in PDDL 

• To represent the blocks world using PDDL, we need 
to define states and actions. 

• To define states and actions, we need to specify 
constants and predicates. 

• What are our constants? A, B, C, Table. 

• What are our predicates?  
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The Blocks World in PDDL 

• To represent the blocks world using PDDL, we need 
to define states and actions. 

• To define states and actions, we need to specify 
constants and predicates. 

• What are our constants? A, B, C, Table. 

• What are our predicates?  

– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a 
block on top of it). 

 

24 

A 

B C 



Representing States 

• Constants: A, B, C, Table. 

• Predicates:  

– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a 
block on top of it). 

• How can we represent the state that is shown 
above? 
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Representing States 

• Constants: A, B, C, Table. 

• Predicates:  

– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a 
block on top of it). 

• How can we represent the state that is shown 
above? 
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
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Note: it seems reasonable to also include 
a statement for Clear(Table), but we will 
see later that such a statement is not needed. 



Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• How can we define actions for this domain? 
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Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• How can we define actions for this domain? 

• First (incorrect) attempt: define a single action Move. 
 

Action(Move(block, from, to), 
    PRECOND: On(block, from) AND Clear(block) AND Clear(to) 
    EFFECT: On(block, to) 
 

• What is wrong with this? 
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Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• How can we define actions for this domain? 

• First (incorrect) attempt: define a single action Move. 
 

Action(Move(block, from, to), 
    PRECOND: On(block, from) AND Clear(block) AND Clear(to) 
    EFFECT: On(block, to) 
 

• It fails to mention additional effects, like Clear(from). 
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Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• Second (incorrect) attempt: define a single action Move. 
 

Action(Move(block, from, to), 
    PRECOND: On(block, from) AND Clear(block) AND Clear(to) 
    EFFECT: On(block, to) AND NOT(On(block, from)) AND 
                   Clear(from) AND NOT(Clear(to)) 
 

• What is wrong with this attempt? 
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Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• Second (incorrect) attempt: define a single action Move. 
 

Action(Move(block, from, to), 
    PRECOND: On(block, from) AND Clear(block) AND Clear(to) 
    EFFECT: On(block, to) AND NOT(On(block, from)) AND 
                   Clear(from) AND NOT(Clear(to)) 
 

• This definition does not capture the fact that the table is always 
clear (you can always place a block directly on the table). 
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Representing Actions 

• Constants: A, B, C, Table. 

• Predicates:  
– On(x, y) is true if block x is on top of y. 

– Clear(x) is true if x is clear (and therefore you can place a block on top of it). 

• Third (correct) attempt: define a separate action MoveToTable. 
 

Action(Move(block, from, to), 
    PRECOND: On(block, from) AND Clear(block) AND Clear(to) 
    EFFECT: On(block, to) AND NOT(On(block, from)) AND 
                   Clear(from) AND NOT(Clear(to)) 
 

Action(MoveToTable(block, from), 
    PRECOND: On(block, from) AND Clear(block) 
    EFFECT: On(block, Table) AND NOT(On(block, from)) AND Clear(from) 
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Blocks World in PDDL 

• Suppose we have 
this state: 

• What knowledge base 
represents this state?  
(We have seen this in previous slides). 
 
 

A 

B C 
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Blocks World in PDDL 

• Suppose we have 
this state: 

• What knowledge base 
represents this state?  
(We have seen this in previous slides). 
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
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Blocks World in PDDL 

• Suppose we have 
this state: 

• What knowledge base 
represents this state?  
(We have seen this in previous slides). 
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
 

• How can we prove that B is not clear? 

 

A 

B C 
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Blocks World in PDDL 

• Suppose we have 
this state: 

• What knowledge base 
represents this state?  
(We have seen this in previous slides). 
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
 

• How can we prove that B is not clear? 

• Using the closed-world assumption. 
– The KB does not include Clear(B), therefore B is not clear. 

 

A 

B C 
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Blocks World in First-Order Logic 

• Suppose we have 
this state: 

• What knowledge base 
represents this state if we use first-order logic?  
 

 

A 

B C 
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Blocks World in First-Order Logic 

• Suppose we have 
this state: 

• What knowledge base 
represents this state if we use first-order logic?  
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
 

A 

B C 
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The knowledge base is identical  
to the PDDL version. 



Blocks World in First-Order Logic 

• Suppose we have 
this state: 

• What knowledge base 
represents this state if we use first-order logic?  
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
 

• How can we prove that B is not clear? 

A 

B C 
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The knowledge base is identical  
to the PDDL version. 



Blocks World in First-Order Logic 

• Suppose we have 
this state: 

• What knowledge base 
represents this state if we use first-order logic?  
 

On(A, B) 
On(B, Table) 
On(C, Table) 
Clear(A) 
Clear(C) 
 

• How can we prove that B is not clear? 

• We can’t, without introducing an additional rule in the 
knowledge base: 
∀ x, y, On(x, y) => not(Clear(y)) 

A 

B C 
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The knowledge base is identical  
to the PDDL version. 



PDDL vs. First-Order Logic 

• PDDL is a restricted form of first-order logic. 

– No functions. 

– No universal and existential quantifiers (∀, ∃). 

– States are conjunctions of groundless atoms. 

• Disadvantages of PDDL: 
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PDDL vs. First-Order Logic 

• PDDL is a restricted form of first-order logic. 

– No functions. 

– No universal and existential quantifiers (∀, ∃). 

– States are conjunctions of groundless atoms. 

• Disadvantages of PDDL: 

– Not using functions makes it impossible to express certain 
facts, such as properties of integers. 

– Not using quantifiers makes it impossible to express rules (like 
stating that “when a block X has something on it, then block X 
is not clear”. 
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PDDL vs. First-Order Logic 

• Advantages of PDDL compared to first-order logic: 
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PDDL vs. First-Order Logic 

• Advantages of PDDL compared to first-order logic: 

– Inference is very fast. 

– How can we prove that an atom is true? For example, how can 
we prove that On(A, B) is true? 

44 



PDDL vs. First-Order Logic 

• Advantages of PDDL compared to first-order logic: 

– Inference is very fast. 

– How can we prove that an atom is true? For example, how can 
we prove that On(A, B) is true? 

– If the knowledge base includes On(A, B), then it is true. 
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PDDL vs. First-Order Logic 

• Advantages of PDDL compared to first-order logic: 

– Inference is very fast. 

– How can we prove that an atom is true? For example, how can 
we prove that On(A, B) is true? 

– If the knowledge base includes On(A, B), then it is true. 

– How can we prove that an atom is false? For example, how 
can we prove that On(A, B) is false? 
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PDDL vs. First-Order Logic 

• Advantages of PDDL compared to first-order logic: 

– Inference is very fast. 

– How can we prove that an atom is true? For example, how can 
we prove that On(A, B) is true? 

– If the knowledge base includes On(A, B), then it is true. 

– How can we prove that an atom is false? For example, how 
can we prove that On(A, B) is false? 

– If the knowledge base does not include On(A, B), then it is 
false. 

• Suppose that alpha is a conjunction of literals. How can 
we  
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Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, how can we infer if alpha is true or false in a state? 
– Remember, a state is simply a knowledge base that contains functionless 

grounded atoms. 
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Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, how can we infer if alpha is true or false in a state? 
– Remember, a state is simply a knowledge base that contains functionless 

grounded atoms. 

• Any literal that is an atom is true if it is included in the knowledge 
base, false otherwise. 

• Any literal that is the negation of an atom is true if it is not 
included in the knowledge base, false otherwise. 

• So, to check if alpha is true we just need to check if each of its 
literals is true. 
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Complexity of Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, what is the time complexity of inferring if alpha is true or 
false in a state? 
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Complexity of Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, what is the time complexity of inferring if alpha is true or 
false in a state? 

• We need to check if each literal is true. 

• To check each literal, we need to compare it with each of the 
statements in the knowledge base. 

• With n literals in alpha and m statements in the knowledge base, 
the complexity of a naïve implementation is O(nm). 
– How can this be made even faster? 
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Complexity of Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, what is the time complexity of inferring if alpha is true or 
false in a state? 

• We need to check if each literal is true. 

• To check each literal, we need to compare it with each of the 
statements in the knowledge base. 

• With n literals in alpha and m statements in the knowledge base, 
the complexity of a naïve implementation is O(nm). 
– How can this be made even faster? 

– We can use a hash table for storing the statements of the knowledge base. 
Then, we can check for every literal if it is true or false in constant time. 
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Complexity of Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, the time complexity of inferring if alpha is true or false in 
a state is O(nm) or O(n), depending on the implementation. 

• If we use first-order logic, what is the corresponding time 
complexity? 
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Complexity of Inference in PDDL 

• Suppose that alpha is a conjunction of literals.  
 

alpha = literal1 AND … AND literaln 
 

• In PDDL, the time complexity of inferring if alpha is true or false in 
a state is O(nm) or O(n), depending on the implementation. 

• If we use first-order logic, what is the corresponding time 
complexity? 

• In the worst case, infinity!!! 
– Exponential time if the state entails alpha. 

– Infinite time if the state does not entail alpha. 

• So, the restrictions of PDDL reduce the time complexity of 
inference from infinity to linear!!! 
– Now you can see why PDDL is a popular choice for planning. 

54 



Planning as Search 

• To define a planning problem as a search problem we need to 
define: 
– An initial state. 

– A state successor function,  that defines what actions are applicable at 
each state. 

– A goal. 

• How do we represent an initial state?  
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Planning as Search 

• To define a planning problem as a search problem we need to 
define: 
– An initial state. 

– A state successor function,  that defines what actions are applicable at 
each state. 

– A goal. 

• How do we represent an initial state?  
– We have already covered this, the initial state (like any other state) is 

a conjunction of atoms in PDDL. 
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Planning as Search 

• How do we represent the state successor function? 
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Planning as Search 

• How do we represent the state successor function? 
– By defining actions as discussed earlier, specifying for each action its 

arguments, preconditions and effects. 
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Planning as Search 

• How do we represent the state successor function? 
– By defining actions as discussed earlier, specifying for each action its 

arguments, preconditions and effects. 

• The definition of an action is used in two different ways: 

• First, to determine, given a state, if an action is applicable in 
that state.  
– How is that determined? 
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Planning as Search 

• How do we represent the state successor function? 
– By defining actions as discussed earlier, specifying for each action its 

arguments, preconditions and effects. 

• The definition of an action is used in two different ways: 

• First, to determine, given a state, if an action is applicable in 
that state.  
– An action A is applicable in state S if the preconditions of A are true in 

S. 
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Planning as Search 

• How do we represent the state successor function? 
– By defining actions as discussed earlier, specifying for each action its 

arguments, preconditions and effects. 

• The definition of an action is used in two different ways: 

• First, to determine, given a state, if an action is applicable in 
that state.  
– An action A is applicable in state S if the preconditions of A are true in 

S. 

• Second, to produce the result state S’ that is obtained by 
applying function A to state S. 
– How do we produce S’? 
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Planning as Search 

• How do we represent the state successor function? 
– By defining actions as discussed earlier, specifying for each action its 

arguments, preconditions and effects. 

• The definition of an action is used in two different ways: 

• First, to determine, given a state, if an action is applicable in 
that state.  
– An action A is applicable in state S if the preconditions of A are true in 

S. 

• Second, to produce the result state S’ that is obtained by 
applying function A to state S. 
– We produce S’ by adding to S all the positive effects of A, and 

removing all the negative effects of A. 
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Planning as Search 

• How do we represent the goal? 

• The goal is a conjunction of literals. Example: 
 
on(A, B) AND on(B, C) 
 

• We have reached the goal if we have reached a state that 
entails the goal. 
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Planning as Search 

• Since planning can be viewed as a search problem, 
any of the search algorithms we already know can be 
used for planning. 

– For example, IDS. 

• Problem: standard search algorithms can be horribly 
slow, even for planning problems that to a human 
seem trivial. 
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Example: Ordering 10 Books 

• We want to order 10 books from Amazon: book3, book7, book13, 
book17, book20, book25, book30, book35, book40, book50. 

• Initial state: 
has(Amazon, book1) 

has(Amaxon, book2) 

… 

has(Amazon, book1000000)       // Amazon sells lots of book titles… 

• Action(buy(person, book, store), 
– PRECOND: has(store, book), 

– EFFECT: owns(person, book)) 

• Goal:  
owns(me, book3) ∧ owns(me, book7 ) ∧ owns(me, book13) ∧ owns(me, 
book17) ∧ owns(me, book20) ∧ owns(me, book25) ∧ owns(me, book30) ∧ 
owns(me, book35) ∧ owns(me, book40) ∧ owns(me, book50) 
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Example: Ordering 10 Books 

• Solution (one of many): 
 

buy(me, book3, Amazon) 

buy(me, book7, Amazon) 

buy(me, book13, Amazon) 

buy(me, book17, Amazon) 

buy(me, book20, Amazon) 

buy(me, book25, Amazon) 

buy(me, book30, Amazon) 

buy(me, book35, Amazon) 

buy(me, book40, Amazon) 

buy(me, book50, Amazon) 
 

• Coming up with such a plan is trivial for humans, far from 
being an intellectually challenging task. 
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Example: Ordering 10 Books 

• Viewed as a traditional search problem, coming up 
with a plan to order these 10 books is a horrendously 
challenging task: 

– branching factor: 1,000,000 

– depth of solution: 10 

– would require visiting about 1,000,00010 nodes to find a 
solution. 

– Computationally infeasible!!! 

• This example should explain why we are studying 
planning as a topic of its own in this course. 

– Standard search algorithms can fail even on trivial 
problems. 
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Heuristics for Planning 

• As we just saw, standard search algorithms can fail 
even on trivial problems. 

• The solution is to use informed search, with 
appropriate heuristics. 

• One can always try to come up with heuristics for a 
specific planning task. 

• However, there are more general techniques, that 
can be applied to ANY planning task to obtain 
reasonable heuristics. 

• We will study such a general technique, called a 
planning graph. 
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Towards a Heuristic 

• In general, a useful way to come up with heuristics is by 
relaxing our assumptions, imagining scenarios where illegal 
actions could actually happen. 

• For example: 
– The h1 heuristic for the 8-puzzle (number of misplaced tiles) is 

obtained by imagining a scenario where pieces are allowed to move to 
any position, regardless of whether that position is adjacent or empty. 

– The h2 heuristic for the 8-puzzle (sum of Manhattan distances) is 
obtained by imagining a scenario where pieces are allowed to move to 
any adjacent position, regardless of whether that position is empty. 

• In planning graphs, we obtain heuristics by imagining a 
scenario where multiple actions can be taken at the same 
time. 
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Planning Graph 

• A planning graph is a directed graph, organized into levels. 

• The following is an incomplete description of how planning 
graphs are constructed (complete details in a few slides…) 

• The initial level is level S0, and corresponds to the initial state.  
– Level S0 contains one node for each literal that is true at the initial 

state. 

• The next level is level A0, corresponding to actions that are 
applicable to the initial state. 
– Level A0 contains one node for each action that can be applied to the 

initial state. 
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• The next level is level S1, that contains one node for every 
possible literal that could become true by applying an action 
in A0. 

• The next level is level A1, that contains one node for every 
possible action whose preconditions are satisfied by literals 
in S1. 

• And so on…  
– Level Si contains one node for every literal that is an effect of an 

action in Ai-1. 

– Level Ai contains one node for every possible action whose 
preconditions are satisfied by literals in Si. 
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Planning Graph Example 

Consider the Cake problem: 
 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 
 

• What is the solution to this problem? 
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Planning Graph Example 

Consider the Cake problem: 
 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 
 

• What is the solution to this problem? Not that hard: 
– Eat(Cake) 

– Bake(Cake) 
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Planning Graph Example 

Consider the Cake problem: 
 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 
 

• This is a very simple example, that we can use to see how to 
build planning graphs. 
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• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The initial level is level 
S0, and corresponds to 
the initial state.  
– Level S0 contains one 

node for each literal 
that is true at the 
initial state. 

– What literals are true 
in the initial state? 

– Note that a literal can 
also be a negation of 
an atom. 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The initial level is level 
S0, and corresponds to 
the initial state.  
– Level S0 contains one 

node for each literal 
that is true at the 
initial state. 

– Above you see the two 
nodes of level S0, 
showing the two 
literals that are true at 
the initial state. 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The next level is level A0, 
corresponding to actions that 
are applicable to the initial 
state. 
– Level A0 contains one node for 

each action that can be applied 
to the initial state. 

– What actions do we put here? 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Bake(Cake) is not applicable, 
because ¬Have(Cake) is not 
part of S0. 

• The only action that is 
applicable is Eat(Cake). 

Eat(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• For each literal C at S0, we 
include a “persistence” 
action, indicated as P. 

• The persistence action for 
literal C has precondition C 
and effect C. 
– A persistence action just means 

that we do nothing and thus 
the literal is preserved. 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Each action at A0 is linked to 
its preconditions at S0. 

• What edges do we need to 
include? 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Each action at A0 is linked to 
its preconditions at S0. 

• These edges are now shown. 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We also need to insert 
mutual exclusion edges (also 
called mutex edges). 

• Mutual exclusion edges link 
actions that cannot happen 
at the same time. 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 1: Inconsistent preconditions: one 
precondition of one action is the 
negation of a precondition of the 
other action. 

– Any examples here? 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 1: Inconsistent preconditions: one 
precondition of one action is the 
negation of a precondition of the 
other action. 

– Any examples here? No 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 2: Inconsistent effects: one effect 
of one action negates an effect of 
the other action. 

– Any examples here? 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 2: Inconsistent effects: one effect 
of one action negates an effect of 
the other action. 

– Any examples here? 

– The effects of Eat(Cake) negate 
the effects of both persistence 
actions. 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 3: Interference: One of the effects 
of one action is the negation of a 
precondition of the other action. 

– Any examples here? 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 3: Interference: One of the effects 
of one action is the negation of a 
precondition of the other action. 

– Any examples here? 

– One effect of Eat(Cake) negates 
the precondition of the 
persistence action for 
Have(Cake). Edge already there. 

 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• Mutex edges between actions are 
caused by four things: 

• 4: Only one “real” action can be 
performed at a time. 

– Persistence actions are not 
“real” actions. 

– Any pair of real actions is 
mutually exclusive. 

• Only one real action here, so no 
such conflict occurs. 

 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The next level is level S1, that 
contains one node for every 
possible literal that could become 
true by applying an action in A0. 

• What literals do we need to include 
here? 

 

Eat(Cake) P P 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The next level is level S1, that 
contains one node for every 
possible literal that could become 
true by applying an action in A0. 

• What literals do we need to include 
here? 

• Every literal is now possible. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We add edges connecting each 
literal to each action at the 
previous level that has that literal 
as an effect. 

• What edges do we need to add? 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We add edges connecting each 
literal to each action at the 
previous level that has that literal 
as an effect. 

• What edges do we need to add? 

– The edges are now shown. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We also add mutex edges between 
literals at the same level, in two 
cases: 

• 1: one literal is the negation of the 
other literal. 

– What edges do we need to add 
for this case? 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 



Planning Graph for the Cake Problem 

95 

¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We also add mutex edges between 
literals at the same level, in two 
cases: 

• 1: one literal is the negation of the 
other literal. 

– What edges do we need to add 
for this case? 

– The edges are now shown. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We also add mutex edges between 
literals at the same level, in two 
cases: 

• 2: Each possible pair of actions 
achieving those two literals is 
mutually exclusive. 

– Edges for this case? 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• We also add mutex edges between 
literals at the same level, in two 
cases: 

• 2: Each possible pair of actions 
achieving those two literals is 
mutually exclusive. 
Have(Cake) and Eaten(Cake). 
¬ Have(Cake) and ¬ Eaten(Cake). 
 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• Initial state: Have(Cake) 

• Goal: Have(Cake) ∧ Eaten(Cake) 

• Action(Eat(Cake), 
    PRECOND: Have(Cake) 
    EFFECT: ¬Have(Cake) ∧ Eaten(Cake)) 

• Action(Bake(Cake), 
    PRECOND: ¬Have(Cake) 
    EFFECT: Have(Cake)) 

• The next level is level A1, that 
contains one node for every 
possible action whose 
preconditions are satisfied by 
literals in S1. 

• What actions do we include in A1? 

 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 
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¬ Eaten(Cake) Have(Cake) 

• The next level is level A1, that contains one node for every possible action 
whose preconditions are satisfied by literals in S1. 

• What actions do we include in A1? Eat(Cake), Bake(Cake), and persistence 
actions. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 



Planning Graph for the Cake Problem 

100 

¬ Eaten(Cake) Have(Cake) 

• Mutexes for inconsistent preconditions Have(Cake) and ¬ Have(Cake)?  

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Have(Cake) is a precondition for its persistence and for Eat(Cake). 

• ¬ Have(Cake) is a precondition for its persistence and for Bake(Cake). 

• Thus, we need to add four mutex links based on these conflicts. 

 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Mutexes for inconsistent preconditions Eaten(Cake) and ¬ Eaten(Cake)?  

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Eaten(Cake) is a precondition for its persistence. 

• ¬ Eaten(Cake) is a precondition for its persistence.  

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Additional mutexes for inconsistent effects? 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Additional mutexes for inconsistent effects? 

• Eat(Cake) negates both Have(Cake) and ¬ Eaten(Cake). 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Additional mutexes for interference? 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Also, Bake(Cake) and Eat(Cake) are mutually exclusive because they are 
both real actions, but they have a mutex edge already, so no new edge is 
added. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Additional mutexes for interference? No. 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

• Next: level S2. Shown on next slide, with all mutex edges added.  

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 
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¬ Eaten(Cake) Have(Cake) 

Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 

Eat(Cake) Bake(Cake) P P P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 



Stopping Criterion 

• We can stop the planning graph when we reach a 
level Sk that satisfies these requirements: 

– Sk  includes all the goal literals. 

– There are no mutex edges connecting any pair of goal 
literals. 

• In our Cake example, the goals are Have(Cake) and 
Eaten(Cake). 

• Consider the planning graph of the previous slide. 
Does level S1 satisfy the requirements? 
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Stopping Criterion 

• We can stop the planning graph when we reach a 
level Sk that satisfies these requirements: 

– Sk  includes all the goal literals. 

– There are no mutex edges connecting any pair of goal 
literals. 

• In our Cake example, the goals are Have(Cake) and 
Eaten(Cake). 

• Consider the planning graph of the previous slide. 
Does level S1 satisfy the requirements? 

• No! Have(Cake) and Eaten(Cake) are mutually 
exclusive. 
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Stopping Criterion 

• We can stop the planning graph when we reach a 
level Sk that satisfies these requirements: 

– Sk  includes all the goal literals. 

– There are no mutex edges connecting any pair of goal 
literals. 

• In our Cake example, the goals are Have(Cake) and 
Eaten(Cake). 

• Does level S2 satisfy the requirements? 
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Stopping Criterion 

• We can stop the planning graph when we reach a 
level Sk that satisfies these requirements: 

– Sk  includes all the goal literals. 

– There are no mutex edges connecting any pair of goal 
literals. 

• In our Cake example, the goals are Have(Cake) and 
Eaten(Cake). 

• Does level S2 satisfy the requirements? 

• Yes, Have(Cake) and Eaten(Cake) are both present 
and NOT mutually exclusive at level S2. 
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Level Costs 

• The level cost of a goal literal gk is simply the first level where 
gk appears in the graph. 

• What are the level costs for the four literals in the Cake 
problem? 
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Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 



Level Costs 

• The level cost of a goal literal gk is simply the first level where 
gk appears in the graph. 

• What are the level costs for the four literals in the Cake 
problem? 
– 0 for Have(Cake) and ¬ Eaten(Cake). 

– 1 for ¬ Have(Cake) and Eaten(Cake). 
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Eat(Cake) P P 

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake) 



Level Costs 

• The level cost of a goal literal gk is simply the first level where 
gk appears in the graph. 

• What are the level costs for the four literals in the Cake 
problem? 
– 0 for Have(Cake) and ¬ Eaten(Cake). 

– 1 for ¬ Have(Cake) and Eaten(Cake). 

• This is the million dollar question (and the reason we 
construct graphing plans):  
What does the level cost of gk tell us about gk? 
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Level Costs 

• The level cost of a goal literal gk is simply the first level where 
gk appears in the graph. 

• What are the level costs for the four literals in the Cake 
problem? 
– 0 for Have(Cake) and ¬ Eaten(Cake). 

– 1 for ¬ Have(Cake) and Eaten(Cake). 

• This is the million dollar question (and the reason we 
construct graphing plans):  
What does the level cost of gk tell us about gk? 
– To achieve gk we need at least as many actions as the level cost of gk. 
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Defining Heuristics 

• What heuristics can we define using a planning 
graph? 
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 

• Both clear(B) and on(A, C) have level cost 1. 
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 

• Both clear(B) and on(A, C) have level cost 1. 

– What is the level sum value?  
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 

• Both clear(B) and on(A, C) have level cost 1. 

– What is the level sum value? 2. 
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 

• Both clear(B) and on(A, C) have level cost 1. 

– What is the level sum value? 2. 

– How many actions are needed to solve the problem?  
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The Level Sum Heuristic 

• The level sum heuristic is the sum of the level costs of the 
goal literals. 

• Is this admissible? 

• No. Here is a counter-example from the block world. 
– The initial state is shown on the left. 

– The goal is clear(B) and on(A, C). 

– What is the level cost of the two goal literals? 

• Both clear(B) and on(A, C) have level cost 1. 

– What is the level sum value? 2 

– How many actions are needed to solve the problem? 1. 

• It can still be a useful heuristic, even if not admissible. 
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The Max-Level Heuristic 

• The max-level heuristic is simply the maximum level 
cost of any of the goal literals. 

– Is this admissible? 
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The Max-Level Heuristic 

• The max-level heuristic is simply the maximum level 
cost of any of the goal literals. 

– Is this admissible? 

– Yes. We need at least max-level actions to achieve the goal 
literal that has max-level as its level cost. 

128 



The Set-Level Heuristic 

• The set-level heuristic is the first level where: 

– All the goal literals appear. 

– No pair of the goal literals is mutually exclusive. 

• Is this admissible? 
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The Set-Level Heuristic 

• The set-level heuristic is the first level where: 

– All the goal literals appear. 

– No pair of the goal literals is mutually exclusive. 

• Is this admissible? 

– Yes. 
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The Set-Level Heuristic 

• The set-level heuristic is the first level where: 

– All the goal literals appear. 

– No pair of the goal literals is mutually exclusive. 

• Is this admissible? 

– Yes. 

• How does it compare to the max-level heuristic? 
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The Set-Level Heuristic 

• The set-level heuristic is the first level where: 

– All the goal literals appear. 

– No pair of the goal literals is mutually exclusive. 

• Is this admissible? 

– Yes. 

• How does it compare to the max-level heuristic? 

– The set-level heuristic dominates the max-level heuristic. 

– So, the set-level is a better, more accurate heuristic than 
the max-level heuristic. 
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POP Planner 

• POP stands for partial-order planning. 

• It is a different approach to planning than what we 
have seen so far. 

• So far we have seen methods that produce a 
sequential plan, where actions are explicitly ordered, 
from first to last. 

– We search through states of the world, looking for actions 
that take us to a goal state. 

• POP, instead, searches through plans. 

– It starts with the empty plan. 

– It keeps adding actions. 

– It stops when it has a plan that achieves the goal. 
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Example: Ordering 10 Books 

• We want to order 10 books from Amazon: 

– book3, book7, book13, book17, book20, book25, book30, 
book35, book40, book50. 

• Facts in the knowledge base: 
has(Amazon, book1) 

has(Amaxon, book2) 

… 

has(Amazon, book1000000)       // Amazon sells lots of book titles… 

• Action buy(book, store) 

– preconds: has(store, book) 
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Example: Ordering 10 Books 
• POP starts with an empty plan, listing the initial state and the goal literals. 

• Red indicates literals that the current plan does not yet achieve. These are 
called open preconditions. 
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START 

FINISH 

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),  

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50) 



Example: Ordering 10 Books 
• POP picks an action that achieves one of the open preconditions. 

136 

START 

FINISH 

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),  

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50) 

buy(book13, Amazon) 

has(Amazon, book13) 



Example: Ordering 10 Books 
• POP picks another action that achieves one of the open preconditions. 
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START 

FINISH 

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),  

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50) 

buy(book13, Amazon) 

has(Amazon, book13) 

buy(book3, Amazon) 

has(Amazon, book3) 



Example: Ordering 10 Books 
• POP picks another action that achieves one of the open preconditions. 
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START 

FINISH 

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),  

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50) 

buy(book13, Amazon) 

has(Amazon, book13) 

buy(book3, Amazon) 

has(Amazon, book3) 

buy(book50, Amazon) 

has(Amazon, book50) 



Example: Ordering 10 Books 
• POP picks another action that achieves one of the open preconditions. 
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START 

FINISH 

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),  

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50) 

buy(book13, Amazon) 

has(Amazon, book13) 

buy(book3, Amazon) 

has(Amazon, book3) 

buy(book7, Amazon) 

has(Amazon, book7) 

buy(book50, Amazon) 

has(Amazon, book50) 



POP Planner 

• It is still a search algorithm. 

• However, there is an important difference from a linear 
planner: the meaning of a search state: 

• Linear planner:  
– A search state is a possible state of the world. 

– The initial search state is the initial state of the world. 

– The goal state is a state that satisfies goal conditions. 

• POP planner:  
– A search state is a partial plan. 

– The initial state is the empty plan, with specified initial conditions and 
goal conditions. 

– The goal state is a complete plan, with no open preconditions. 
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POP Planner Pitfalls 

• In cases like the book-ordering problem, where the 
goal literals are independent of each other, POP does 
really well. 
– It actually takes very little time to find the correct solution. 

• However, there are more complicated cases, where 
satisfying one open precondition messes up another 
one. 

– There are ways for POP to deal with such cases, but we 
will not cover them in this class. 

• Planning overall takes exponential time. 

– We can always find problems where both sequential 
planners and POP are too slow to be useful. 
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