
Planning

1

CSE 4308/5360 – Artificial Intelligence I
University of Texas at Arlington

What is Planning

• The goal in artificial intelligence is to emulate
intelligent/rational behavior.

• An important part of rational behavior is making
plans:

– Constructing a sequence of actions that achieves a certain
goal.

2

Planning and Search

• The definition of the planning problem (constructing
a sequence of actions that achieves a goal) sounds
very similar to the definition of the search problem.

• In general, the planning problem is a special case of
the search problem.

• However, planning problems often have properties
that allow for far more efficient solutions.

3

Defining a Planning Problem

• To define a planning problem, we need to specify the
same elements that define a search problem:

– States.

– Actions.

– Goals.

• In planning, we describe states, actions, and goals
using logic.

• We use a language called PDDL (Planning Domain
Definition Language).

• PDDL uses a limited version of first-order logic.

– Limitations allow for efficient inference.
4

Representing States with PDDL

• A state is a conjunction of “ground, functionless atoms”.
– To understand this, we need to understand each of the three terms:

ground, functionless, atom.

• In PDDL, an atom is an application of a predicate to some
arguments. For example:

At(Plane1, JFK)
Airport(JFK)
Airplane(Plane1)
Have(Milk)

• “Functionless” means that no functions are used.
– For example: At(Father(George), JFK) is illegal, because it uses

function Father.

• “Ground” means that no variables are used.
– For example: At(x, y) is illegal, because it uses variables x, y.

5

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

not(Poor(George))

6

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

not(Poor(George))

• No, it uses a negation. In a conjunction of ground,
functionless atoms there is no room for negations.

7

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Boss(George))

8

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Boss(George))

• No, it uses a function (Boss).

9

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Liz)

10

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Liz)

• Yes, it is a conjunction of ground, functionless atoms.

– No negations, variables, functions.

11

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Liz) and At(George, x)

12

Practice with State Descriptions

• To determine if a state is legal, we simply have to
determine if it is a conjunction of “ground,
functionless atoms”.

• Is this state description legal?

Poor(George) and Rich(Liz) and At(George, x)

• No, it uses variable x.

13

The Closed World Assumption

• PDDL makes two very specific assumptions, when interpreting
state descriptions:

• The first such assumption is the closed world assumption:
Any atom that is not mentioned in the state description is
false.

• For example, suppose that we have this state description:

At(Plane1, JFK)
Airport(JFK)
Airplane(Plane1)

• How can we prove that Plane1 is not an airport?

14

The Closed World Assumption

• PDDL makes two very specific assumptions, when interpreting
state descriptions:

• The first such assumption is the closed world assumption:
Any atom that is not mentioned in the state description is
false.

• For example, suppose that we have this state description:

At(Plane1, JFK)
Airport(JFK)
Airplane(Plane1)

• How can we prove that Plane1 is not an airport?

• Since the state description does not mention Airport(Plane1),
Airport(Plane1) is false.

15

The Unique Names Assumption

• PDDL makes also a second assumption in interpreting states: the
unique names assumption: if two constants have different
names, they are not equal to each other.

• We used that assumption implicitly in our previous example:

At(Plane1, JFK)
Airport(JFK)
Airplane(Plane1)

• We said that since Airport(Plane1) is not mentioned,
Airport(Plane1) is false.

• Note that Airport(JFK) is mentioned. However, we assume that
JFK != Plane1, since these two constants have different names.
Thus, Airport(JFK) cannot possibly imply Airport(Plane1).

16

Representing Actions with PDDL

• An action is defined using this syntax:

Action(Name(var1, …, vark),
 PRECOND: atom1 AND … AND atomm,
 EFFECT: literal1 AND … AND literaln)

• In other words:
– An action has a name.

– An action is applied to k arguments.

– An action can only be applied if certain preconditions are met. Symbol
m stands for the number of preconditions.

– An action has certain effects. Symbol n stands for the number of
effects.

17

Preconditions and Effects

• An action is defined using this syntax:

Action(Name(var1, …, vark),
 PRECOND: atom1 AND … AND atomm,
 EFFECT: literal1 AND … AND literaln)

• Preconditions and effects are conjunctions of functionless
literals.

• Note that here we use term literals, whereas for state
representations we use the term atoms.

• What is a literal?

18

Preconditions and Effects

• An action is defined using this syntax:

Action(Name(var1, …, vark),
 PRECOND: atom1 AND … AND atomm,
 EFFECT: literal1 AND … AND literaln)

• Preconditions and effects are conjunctions of functionless
literals.

• Note that here we use term literals, whereas for state
representations we use the term atoms.

• What is a literal? A literal is either an atom or a negation of an
atom.

• In short, preconditions and effects are allowed to include
negations.

19

Preconditions and Effects

• An action is defined using this syntax:

Action(Name(var1, …, vark),
 PRECOND: atom1 AND … AND atomm,
 EFFECT: literal1 AND … AND literaln)

• Preconditions and effects are conjunctions of functionless
literals.
– Pretty much, functions are not allowed at all in PDDL.

• However, these literals can include variables.

• They can ONLY include variables var1, …, vark, no other variable
is allowed.

• In summary, state descriptions must be ground (cannot include
variables), but preconditions can include variables.

20

The Blocks World

• The blocks world is
a classic toy problem
that is used for introducing
planning concepts.

• We have cubic blocks, called A, B, C, …
– Often only three blocks are used.

• These blocks can be stacked on top of each other, or just be
placed on the table.

• You can move a block only if it is Clear, meaning that it has no
other block on top of it.

• You can move a block on top of another block only if that
other block is also Clear.

• You can always place a clear block directly on the table.
21

A

B C

The Blocks World in PDDL

• To represent the blocks world using PDDL, we need
to define states and actions.

• To define states and actions, we need to specify
constants and predicates.

• What are our constants?

22

A

B C

The Blocks World in PDDL

• To represent the blocks world using PDDL, we need
to define states and actions.

• To define states and actions, we need to specify
constants and predicates.

• What are our constants? A, B, C, Table.

• What are our predicates?

23

A

B C

The Blocks World in PDDL

• To represent the blocks world using PDDL, we need
to define states and actions.

• To define states and actions, we need to specify
constants and predicates.

• What are our constants? A, B, C, Table.

• What are our predicates?

– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a
block on top of it).

24

A

B C

Representing States

• Constants: A, B, C, Table.

• Predicates:

– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a
block on top of it).

• How can we represent the state that is shown
above?

25

A

B C

Representing States

• Constants: A, B, C, Table.

• Predicates:

– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a
block on top of it).

• How can we represent the state that is shown
above?

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

26

A

B C

Note: it seems reasonable to also include
a statement for Clear(Table), but we will
see later that such a statement is not needed.

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• How can we define actions for this domain?

27

A

B C

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• How can we define actions for this domain?

• First (incorrect) attempt: define a single action Move.

Action(Move(block, from, to),
 PRECOND: On(block, from) AND Clear(block) AND Clear(to)
 EFFECT: On(block, to)

• What is wrong with this?

28

A

B C

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• How can we define actions for this domain?

• First (incorrect) attempt: define a single action Move.

Action(Move(block, from, to),
 PRECOND: On(block, from) AND Clear(block) AND Clear(to)
 EFFECT: On(block, to)

• It fails to mention additional effects, like Clear(from).

29

A

B C

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• Second (incorrect) attempt: define a single action Move.

Action(Move(block, from, to),
 PRECOND: On(block, from) AND Clear(block) AND Clear(to)
 EFFECT: On(block, to) AND NOT(On(block, from)) AND
 Clear(from) AND NOT(Clear(to))

• What is wrong with this attempt?

30

A

B C

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• Second (incorrect) attempt: define a single action Move.

Action(Move(block, from, to),
 PRECOND: On(block, from) AND Clear(block) AND Clear(to)
 EFFECT: On(block, to) AND NOT(On(block, from)) AND
 Clear(from) AND NOT(Clear(to))

• This definition does not capture the fact that the table is always
clear (you can always place a block directly on the table).

31

A

B C

Representing Actions

• Constants: A, B, C, Table.

• Predicates:
– On(x, y) is true if block x is on top of y.

– Clear(x) is true if x is clear (and therefore you can place a block on top of it).

• Third (correct) attempt: define a separate action MoveToTable.

Action(Move(block, from, to),
 PRECOND: On(block, from) AND Clear(block) AND Clear(to)
 EFFECT: On(block, to) AND NOT(On(block, from)) AND
 Clear(from) AND NOT(Clear(to))

Action(MoveToTable(block, from),
 PRECOND: On(block, from) AND Clear(block)
 EFFECT: On(block, Table) AND NOT(On(block, from)) AND Clear(from)

 32

A

B C

Blocks World in PDDL

• Suppose we have
this state:

• What knowledge base
represents this state?
(We have seen this in previous slides).

A

B C

33

Blocks World in PDDL

• Suppose we have
this state:

• What knowledge base
represents this state?
(We have seen this in previous slides).

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

A

B C

34

Blocks World in PDDL

• Suppose we have
this state:

• What knowledge base
represents this state?
(We have seen this in previous slides).

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

• How can we prove that B is not clear?

A

B C

35

Blocks World in PDDL

• Suppose we have
this state:

• What knowledge base
represents this state?
(We have seen this in previous slides).

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

• How can we prove that B is not clear?

• Using the closed-world assumption.
– The KB does not include Clear(B), therefore B is not clear.

A

B C

36

Blocks World in First-Order Logic

• Suppose we have
this state:

• What knowledge base
represents this state if we use first-order logic?

A

B C

37

Blocks World in First-Order Logic

• Suppose we have
this state:

• What knowledge base
represents this state if we use first-order logic?

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

A

B C

38

The knowledge base is identical
to the PDDL version.

Blocks World in First-Order Logic

• Suppose we have
this state:

• What knowledge base
represents this state if we use first-order logic?

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

• How can we prove that B is not clear?

A

B C

39

The knowledge base is identical
to the PDDL version.

Blocks World in First-Order Logic

• Suppose we have
this state:

• What knowledge base
represents this state if we use first-order logic?

On(A, B)
On(B, Table)
On(C, Table)
Clear(A)
Clear(C)

• How can we prove that B is not clear?

• We can’t, without introducing an additional rule in the
knowledge base:
∀ x, y, On(x, y) => not(Clear(y))

A

B C

40

The knowledge base is identical
to the PDDL version.

PDDL vs. First-Order Logic

• PDDL is a restricted form of first-order logic.

– No functions.

– No universal and existential quantifiers (∀, ∃).

– States are conjunctions of groundless atoms.

• Disadvantages of PDDL:

41

PDDL vs. First-Order Logic

• PDDL is a restricted form of first-order logic.

– No functions.

– No universal and existential quantifiers (∀, ∃).

– States are conjunctions of groundless atoms.

• Disadvantages of PDDL:

– Not using functions makes it impossible to express certain
facts, such as properties of integers.

– Not using quantifiers makes it impossible to express rules (like
stating that “when a block X has something on it, then block X
is not clear”.

42

PDDL vs. First-Order Logic

• Advantages of PDDL compared to first-order logic:

43

PDDL vs. First-Order Logic

• Advantages of PDDL compared to first-order logic:

– Inference is very fast.

– How can we prove that an atom is true? For example, how can
we prove that On(A, B) is true?

44

PDDL vs. First-Order Logic

• Advantages of PDDL compared to first-order logic:

– Inference is very fast.

– How can we prove that an atom is true? For example, how can
we prove that On(A, B) is true?

– If the knowledge base includes On(A, B), then it is true.

45

PDDL vs. First-Order Logic

• Advantages of PDDL compared to first-order logic:

– Inference is very fast.

– How can we prove that an atom is true? For example, how can
we prove that On(A, B) is true?

– If the knowledge base includes On(A, B), then it is true.

– How can we prove that an atom is false? For example, how
can we prove that On(A, B) is false?

46

PDDL vs. First-Order Logic

• Advantages of PDDL compared to first-order logic:

– Inference is very fast.

– How can we prove that an atom is true? For example, how can
we prove that On(A, B) is true?

– If the knowledge base includes On(A, B), then it is true.

– How can we prove that an atom is false? For example, how
can we prove that On(A, B) is false?

– If the knowledge base does not include On(A, B), then it is
false.

• Suppose that alpha is a conjunction of literals. How can
we

47

Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, how can we infer if alpha is true or false in a state?
– Remember, a state is simply a knowledge base that contains functionless

grounded atoms.

48

Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, how can we infer if alpha is true or false in a state?
– Remember, a state is simply a knowledge base that contains functionless

grounded atoms.

• Any literal that is an atom is true if it is included in the knowledge
base, false otherwise.

• Any literal that is the negation of an atom is true if it is not
included in the knowledge base, false otherwise.

• So, to check if alpha is true we just need to check if each of its
literals is true.

49

Complexity of Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, what is the time complexity of inferring if alpha is true or
false in a state?

50

Complexity of Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, what is the time complexity of inferring if alpha is true or
false in a state?

• We need to check if each literal is true.

• To check each literal, we need to compare it with each of the
statements in the knowledge base.

• With n literals in alpha and m statements in the knowledge base,
the complexity of a naïve implementation is O(nm).
– How can this be made even faster?

51

Complexity of Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, what is the time complexity of inferring if alpha is true or
false in a state?

• We need to check if each literal is true.

• To check each literal, we need to compare it with each of the
statements in the knowledge base.

• With n literals in alpha and m statements in the knowledge base,
the complexity of a naïve implementation is O(nm).
– How can this be made even faster?

– We can use a hash table for storing the statements of the knowledge base.
Then, we can check for every literal if it is true or false in constant time.

52

Complexity of Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, the time complexity of inferring if alpha is true or false in
a state is O(nm) or O(n), depending on the implementation.

• If we use first-order logic, what is the corresponding time
complexity?

53

Complexity of Inference in PDDL

• Suppose that alpha is a conjunction of literals.

alpha = literal1 AND … AND literaln

• In PDDL, the time complexity of inferring if alpha is true or false in
a state is O(nm) or O(n), depending on the implementation.

• If we use first-order logic, what is the corresponding time
complexity?

• In the worst case, infinity!!!
– Exponential time if the state entails alpha.

– Infinite time if the state does not entail alpha.

• So, the restrictions of PDDL reduce the time complexity of
inference from infinity to linear!!!
– Now you can see why PDDL is a popular choice for planning.

54

Planning as Search

• To define a planning problem as a search problem we need to
define:
– An initial state.

– A state successor function, that defines what actions are applicable at
each state.

– A goal.

• How do we represent an initial state?

55

Planning as Search

• To define a planning problem as a search problem we need to
define:
– An initial state.

– A state successor function, that defines what actions are applicable at
each state.

– A goal.

• How do we represent an initial state?
– We have already covered this, the initial state (like any other state) is

a conjunction of atoms in PDDL.

56

Planning as Search

• How do we represent the state successor function?

57

Planning as Search

• How do we represent the state successor function?
– By defining actions as discussed earlier, specifying for each action its

arguments, preconditions and effects.

58

Planning as Search

• How do we represent the state successor function?
– By defining actions as discussed earlier, specifying for each action its

arguments, preconditions and effects.

• The definition of an action is used in two different ways:

• First, to determine, given a state, if an action is applicable in
that state.
– How is that determined?

59

Planning as Search

• How do we represent the state successor function?
– By defining actions as discussed earlier, specifying for each action its

arguments, preconditions and effects.

• The definition of an action is used in two different ways:

• First, to determine, given a state, if an action is applicable in
that state.
– An action A is applicable in state S if the preconditions of A are true in

S.

60

Planning as Search

• How do we represent the state successor function?
– By defining actions as discussed earlier, specifying for each action its

arguments, preconditions and effects.

• The definition of an action is used in two different ways:

• First, to determine, given a state, if an action is applicable in
that state.
– An action A is applicable in state S if the preconditions of A are true in

S.

• Second, to produce the result state S’ that is obtained by
applying function A to state S.
– How do we produce S’?

61

Planning as Search

• How do we represent the state successor function?
– By defining actions as discussed earlier, specifying for each action its

arguments, preconditions and effects.

• The definition of an action is used in two different ways:

• First, to determine, given a state, if an action is applicable in
that state.
– An action A is applicable in state S if the preconditions of A are true in

S.

• Second, to produce the result state S’ that is obtained by
applying function A to state S.
– We produce S’ by adding to S all the positive effects of A, and

removing all the negative effects of A.

62

Planning as Search

• How do we represent the goal?

• The goal is a conjunction of literals. Example:

on(A, B) AND on(B, C)

• We have reached the goal if we have reached a state that
entails the goal.

63

Planning as Search

• Since planning can be viewed as a search problem,
any of the search algorithms we already know can be
used for planning.

– For example, IDS.

• Problem: standard search algorithms can be horribly
slow, even for planning problems that to a human
seem trivial.

64

Example: Ordering 10 Books

• We want to order 10 books from Amazon: book3, book7, book13,
book17, book20, book25, book30, book35, book40, book50.

• Initial state:
has(Amazon, book1)

has(Amaxon, book2)

…

has(Amazon, book1000000) // Amazon sells lots of book titles…

• Action(buy(person, book, store),
– PRECOND: has(store, book),

– EFFECT: owns(person, book))

• Goal:
owns(me, book3) ∧ owns(me, book7) ∧ owns(me, book13) ∧ owns(me,
book17) ∧ owns(me, book20) ∧ owns(me, book25) ∧ owns(me, book30) ∧
owns(me, book35) ∧ owns(me, book40) ∧ owns(me, book50)

65

Example: Ordering 10 Books

• Solution (one of many):

buy(me, book3, Amazon)

buy(me, book7, Amazon)

buy(me, book13, Amazon)

buy(me, book17, Amazon)

buy(me, book20, Amazon)

buy(me, book25, Amazon)

buy(me, book30, Amazon)

buy(me, book35, Amazon)

buy(me, book40, Amazon)

buy(me, book50, Amazon)

• Coming up with such a plan is trivial for humans, far from
being an intellectually challenging task.

66

Example: Ordering 10 Books

• Viewed as a traditional search problem, coming up
with a plan to order these 10 books is a horrendously
challenging task:

– branching factor: 1,000,000

– depth of solution: 10

– would require visiting about 1,000,00010 nodes to find a
solution.

– Computationally infeasible!!!

• This example should explain why we are studying
planning as a topic of its own in this course.

– Standard search algorithms can fail even on trivial
problems.

67

Heuristics for Planning

• As we just saw, standard search algorithms can fail
even on trivial problems.

• The solution is to use informed search, with
appropriate heuristics.

• One can always try to come up with heuristics for a
specific planning task.

• However, there are more general techniques, that
can be applied to ANY planning task to obtain
reasonable heuristics.

• We will study such a general technique, called a
planning graph.

68

Towards a Heuristic

• In general, a useful way to come up with heuristics is by
relaxing our assumptions, imagining scenarios where illegal
actions could actually happen.

• For example:
– The h1 heuristic for the 8-puzzle (number of misplaced tiles) is

obtained by imagining a scenario where pieces are allowed to move to
any position, regardless of whether that position is adjacent or empty.

– The h2 heuristic for the 8-puzzle (sum of Manhattan distances) is
obtained by imagining a scenario where pieces are allowed to move to
any adjacent position, regardless of whether that position is empty.

• In planning graphs, we obtain heuristics by imagining a
scenario where multiple actions can be taken at the same
time.

69

Planning Graph

• A planning graph is a directed graph, organized into levels.

• The following is an incomplete description of how planning
graphs are constructed (complete details in a few slides…)

• The initial level is level S0, and corresponds to the initial state.
– Level S0 contains one node for each literal that is true at the initial

state.

• The next level is level A0, corresponding to actions that are
applicable to the initial state.
– Level A0 contains one node for each action that can be applied to the

initial state.

70

Planning Graph

• The next level is level S1, that contains one node for every
possible literal that could become true by applying an action
in A0.

• The next level is level A1, that contains one node for every
possible action whose preconditions are satisfied by literals
in S1.

• And so on…
– Level Si contains one node for every literal that is an effect of an

action in Ai-1.

– Level Ai contains one node for every possible action whose
preconditions are satisfied by literals in Si.

71

Planning Graph Example

Consider the Cake problem:

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• What is the solution to this problem?

72

Planning Graph Example

Consider the Cake problem:

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• What is the solution to this problem? Not that hard:
– Eat(Cake)

– Bake(Cake)
73

Planning Graph Example

Consider the Cake problem:

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• This is a very simple example, that we can use to see how to
build planning graphs.

74

Planning Graph for the Cake Problem

75

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The initial level is level
S0, and corresponds to
the initial state.
– Level S0 contains one

node for each literal
that is true at the
initial state.

– What literals are true
in the initial state?

– Note that a literal can
also be a negation of
an atom.

Planning Graph for the Cake Problem

76

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The initial level is level
S0, and corresponds to
the initial state.
– Level S0 contains one

node for each literal
that is true at the
initial state.

– Above you see the two
nodes of level S0,
showing the two
literals that are true at
the initial state.

Planning Graph for the Cake Problem

77

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The next level is level A0,
corresponding to actions that
are applicable to the initial
state.
– Level A0 contains one node for

each action that can be applied
to the initial state.

– What actions do we put here?

Planning Graph for the Cake Problem

78

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Bake(Cake) is not applicable,
because ¬Have(Cake) is not
part of S0.

• The only action that is
applicable is Eat(Cake).

Eat(Cake)

Planning Graph for the Cake Problem

79

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• For each literal C at S0, we
include a “persistence”
action, indicated as P.

• The persistence action for
literal C has precondition C
and effect C.
– A persistence action just means

that we do nothing and thus
the literal is preserved.

Eat(Cake) P P

Planning Graph for the Cake Problem

80

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Each action at A0 is linked to
its preconditions at S0.

• What edges do we need to
include?

Eat(Cake) P P

Planning Graph for the Cake Problem

81

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Each action at A0 is linked to
its preconditions at S0.

• These edges are now shown.

Eat(Cake) P P

Planning Graph for the Cake Problem

82

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We also need to insert
mutual exclusion edges (also
called mutex edges).

• Mutual exclusion edges link
actions that cannot happen
at the same time.

Eat(Cake) P P

Planning Graph for the Cake Problem

83

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 1: Inconsistent preconditions: one
precondition of one action is the
negation of a precondition of the
other action.

– Any examples here?

Eat(Cake) P P

Planning Graph for the Cake Problem

84

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 1: Inconsistent preconditions: one
precondition of one action is the
negation of a precondition of the
other action.

– Any examples here? No

Eat(Cake) P P

Planning Graph for the Cake Problem

85

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 2: Inconsistent effects: one effect
of one action negates an effect of
the other action.

– Any examples here?

Eat(Cake) P P

Planning Graph for the Cake Problem

86

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 2: Inconsistent effects: one effect
of one action negates an effect of
the other action.

– Any examples here?

– The effects of Eat(Cake) negate
the effects of both persistence
actions.

Eat(Cake) P P

Planning Graph for the Cake Problem

87

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 3: Interference: One of the effects
of one action is the negation of a
precondition of the other action.

– Any examples here?

Eat(Cake) P P

Planning Graph for the Cake Problem

88

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 3: Interference: One of the effects
of one action is the negation of a
precondition of the other action.

– Any examples here?

– One effect of Eat(Cake) negates
the precondition of the
persistence action for
Have(Cake). Edge already there.

Eat(Cake) P P

Planning Graph for the Cake Problem

89

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• Mutex edges between actions are
caused by four things:

• 4: Only one “real” action can be
performed at a time.

– Persistence actions are not
“real” actions.

– Any pair of real actions is
mutually exclusive.

• Only one real action here, so no
such conflict occurs.

Eat(Cake) P P

Planning Graph for the Cake Problem

90

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The next level is level S1, that
contains one node for every
possible literal that could become
true by applying an action in A0.

• What literals do we need to include
here?

Eat(Cake) P P

Planning Graph for the Cake Problem

91

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The next level is level S1, that
contains one node for every
possible literal that could become
true by applying an action in A0.

• What literals do we need to include
here?

• Every literal is now possible.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

92

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We add edges connecting each
literal to each action at the
previous level that has that literal
as an effect.

• What edges do we need to add?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

93

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We add edges connecting each
literal to each action at the
previous level that has that literal
as an effect.

• What edges do we need to add?

– The edges are now shown.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

94

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We also add mutex edges between
literals at the same level, in two
cases:

• 1: one literal is the negation of the
other literal.

– What edges do we need to add
for this case?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

95

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We also add mutex edges between
literals at the same level, in two
cases:

• 1: one literal is the negation of the
other literal.

– What edges do we need to add
for this case?

– The edges are now shown.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

96

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We also add mutex edges between
literals at the same level, in two
cases:

• 2: Each possible pair of actions
achieving those two literals is
mutually exclusive.

– Edges for this case?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

97

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• We also add mutex edges between
literals at the same level, in two
cases:

• 2: Each possible pair of actions
achieving those two literals is
mutually exclusive.
Have(Cake) and Eaten(Cake).
¬ Have(Cake) and ¬ Eaten(Cake).

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

98

¬ Eaten(Cake) Have(Cake)

• Initial state: Have(Cake)

• Goal: Have(Cake) ∧ Eaten(Cake)

• Action(Eat(Cake),
 PRECOND: Have(Cake)
 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

• Action(Bake(Cake),
 PRECOND: ¬Have(Cake)
 EFFECT: Have(Cake))

• The next level is level A1, that
contains one node for every
possible action whose
preconditions are satisfied by
literals in S1.

• What actions do we include in A1?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Planning Graph for the Cake Problem

99

¬ Eaten(Cake) Have(Cake)

• The next level is level A1, that contains one node for every possible action
whose preconditions are satisfied by literals in S1.

• What actions do we include in A1? Eat(Cake), Bake(Cake), and persistence
actions.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

100

¬ Eaten(Cake) Have(Cake)

• Mutexes for inconsistent preconditions Have(Cake) and ¬ Have(Cake)?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

101

¬ Eaten(Cake) Have(Cake)

• Have(Cake) is a precondition for its persistence and for Eat(Cake).

• ¬ Have(Cake) is a precondition for its persistence and for Bake(Cake).

• Thus, we need to add four mutex links based on these conflicts.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

102

¬ Eaten(Cake) Have(Cake)

• Mutexes for inconsistent preconditions Eaten(Cake) and ¬ Eaten(Cake)?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

103

¬ Eaten(Cake) Have(Cake)

• Eaten(Cake) is a precondition for its persistence.

• ¬ Eaten(Cake) is a precondition for its persistence.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

104

¬ Eaten(Cake) Have(Cake)

• Additional mutexes for inconsistent effects?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

105

¬ Eaten(Cake) Have(Cake)

• Additional mutexes for inconsistent effects?

• Eat(Cake) negates both Have(Cake) and ¬ Eaten(Cake).

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

106

¬ Eaten(Cake) Have(Cake)

• Additional mutexes for interference?

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

107

¬ Eaten(Cake) Have(Cake)

• Also, Bake(Cake) and Eat(Cake) are mutually exclusive because they are
both real actions, but they have a mutex edge already, so no new edge is
added.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

108

¬ Eaten(Cake) Have(Cake)

• Additional mutexes for interference? No.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

109

¬ Eaten(Cake) Have(Cake)

• Next: level S2. Shown on next slide, with all mutex edges added.

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

Planning Graph for the Cake Problem

110

¬ Eaten(Cake) Have(Cake)

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Eat(Cake) Bake(Cake) P P P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Stopping Criterion

• We can stop the planning graph when we reach a
level Sk that satisfies these requirements:

– Sk includes all the goal literals.

– There are no mutex edges connecting any pair of goal
literals.

• In our Cake example, the goals are Have(Cake) and
Eaten(Cake).

• Consider the planning graph of the previous slide.
Does level S1 satisfy the requirements?

111

Stopping Criterion

• We can stop the planning graph when we reach a
level Sk that satisfies these requirements:

– Sk includes all the goal literals.

– There are no mutex edges connecting any pair of goal
literals.

• In our Cake example, the goals are Have(Cake) and
Eaten(Cake).

• Consider the planning graph of the previous slide.
Does level S1 satisfy the requirements?

• No! Have(Cake) and Eaten(Cake) are mutually
exclusive.

 112

Stopping Criterion

• We can stop the planning graph when we reach a
level Sk that satisfies these requirements:

– Sk includes all the goal literals.

– There are no mutex edges connecting any pair of goal
literals.

• In our Cake example, the goals are Have(Cake) and
Eaten(Cake).

• Does level S2 satisfy the requirements?

113

Stopping Criterion

• We can stop the planning graph when we reach a
level Sk that satisfies these requirements:

– Sk includes all the goal literals.

– There are no mutex edges connecting any pair of goal
literals.

• In our Cake example, the goals are Have(Cake) and
Eaten(Cake).

• Does level S2 satisfy the requirements?

• Yes, Have(Cake) and Eaten(Cake) are both present
and NOT mutually exclusive at level S2.

114

Level Costs

• The level cost of a goal literal gk is simply the first level where
gk appears in the graph.

• What are the level costs for the four literals in the Cake
problem?

115

¬ Eaten(Cake) Have(Cake)

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Level Costs

• The level cost of a goal literal gk is simply the first level where
gk appears in the graph.

• What are the level costs for the four literals in the Cake
problem?
– 0 for Have(Cake) and ¬ Eaten(Cake).

– 1 for ¬ Have(Cake) and Eaten(Cake).

116

¬ Eaten(Cake) Have(Cake)

Eat(Cake) P P

¬ Eaten(Cake) Have(Cake) Eaten(Cake) ¬ Have(Cake)

Level Costs

• The level cost of a goal literal gk is simply the first level where
gk appears in the graph.

• What are the level costs for the four literals in the Cake
problem?
– 0 for Have(Cake) and ¬ Eaten(Cake).

– 1 for ¬ Have(Cake) and Eaten(Cake).

• This is the million dollar question (and the reason we
construct graphing plans):
What does the level cost of gk tell us about gk?

117

Level Costs

• The level cost of a goal literal gk is simply the first level where
gk appears in the graph.

• What are the level costs for the four literals in the Cake
problem?
– 0 for Have(Cake) and ¬ Eaten(Cake).

– 1 for ¬ Have(Cake) and Eaten(Cake).

• This is the million dollar question (and the reason we
construct graphing plans):
What does the level cost of gk tell us about gk?
– To achieve gk we need at least as many actions as the level cost of gk.

118

Defining Heuristics

• What heuristics can we define using a planning
graph?

119

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

120

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

121

A

B C

A

B C

initial
state goal

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

• Both clear(B) and on(A, C) have level cost 1.

122

A

B C

A

B C

initial
state goal

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

• Both clear(B) and on(A, C) have level cost 1.

– What is the level sum value?

123

A

B C

A

B C

initial
state goal

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

• Both clear(B) and on(A, C) have level cost 1.

– What is the level sum value? 2.

124

A

B C

A

B C

initial
state goal

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

• Both clear(B) and on(A, C) have level cost 1.

– What is the level sum value? 2.

– How many actions are needed to solve the problem?

125

A

B C

A

B C

initial
state goal

The Level Sum Heuristic

• The level sum heuristic is the sum of the level costs of the
goal literals.

• Is this admissible?

• No. Here is a counter-example from the block world.
– The initial state is shown on the left.

– The goal is clear(B) and on(A, C).

– What is the level cost of the two goal literals?

• Both clear(B) and on(A, C) have level cost 1.

– What is the level sum value? 2

– How many actions are needed to solve the problem? 1.

• It can still be a useful heuristic, even if not admissible.

126

A

B C

A

B C

initial
state goal

The Max-Level Heuristic

• The max-level heuristic is simply the maximum level
cost of any of the goal literals.

– Is this admissible?

127

The Max-Level Heuristic

• The max-level heuristic is simply the maximum level
cost of any of the goal literals.

– Is this admissible?

– Yes. We need at least max-level actions to achieve the goal
literal that has max-level as its level cost.

128

The Set-Level Heuristic

• The set-level heuristic is the first level where:

– All the goal literals appear.

– No pair of the goal literals is mutually exclusive.

• Is this admissible?

129

The Set-Level Heuristic

• The set-level heuristic is the first level where:

– All the goal literals appear.

– No pair of the goal literals is mutually exclusive.

• Is this admissible?

– Yes.

130

The Set-Level Heuristic

• The set-level heuristic is the first level where:

– All the goal literals appear.

– No pair of the goal literals is mutually exclusive.

• Is this admissible?

– Yes.

• How does it compare to the max-level heuristic?

131

The Set-Level Heuristic

• The set-level heuristic is the first level where:

– All the goal literals appear.

– No pair of the goal literals is mutually exclusive.

• Is this admissible?

– Yes.

• How does it compare to the max-level heuristic?

– The set-level heuristic dominates the max-level heuristic.

– So, the set-level is a better, more accurate heuristic than
the max-level heuristic.

132

POP Planner

• POP stands for partial-order planning.

• It is a different approach to planning than what we
have seen so far.

• So far we have seen methods that produce a
sequential plan, where actions are explicitly ordered,
from first to last.

– We search through states of the world, looking for actions
that take us to a goal state.

• POP, instead, searches through plans.

– It starts with the empty plan.

– It keeps adding actions.

– It stops when it has a plan that achieves the goal.
133

Example: Ordering 10 Books

• We want to order 10 books from Amazon:

– book3, book7, book13, book17, book20, book25, book30,
book35, book40, book50.

• Facts in the knowledge base:
has(Amazon, book1)

has(Amaxon, book2)

…

has(Amazon, book1000000) // Amazon sells lots of book titles…

• Action buy(book, store)

– preconds: has(store, book)

134

Example: Ordering 10 Books
• POP starts with an empty plan, listing the initial state and the goal literals.

• Red indicates literals that the current plan does not yet achieve. These are
called open preconditions.

135

START

FINISH

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50)

Example: Ordering 10 Books
• POP picks an action that achieves one of the open preconditions.

136

START

FINISH

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50)

buy(book13, Amazon)

has(Amazon, book13)

Example: Ordering 10 Books
• POP picks another action that achieves one of the open preconditions.

137

START

FINISH

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50)

buy(book13, Amazon)

has(Amazon, book13)

buy(book3, Amazon)

has(Amazon, book3)

Example: Ordering 10 Books
• POP picks another action that achieves one of the open preconditions.

138

START

FINISH

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50)

buy(book13, Amazon)

has(Amazon, book13)

buy(book3, Amazon)

has(Amazon, book3)

buy(book50, Amazon)

has(Amazon, book50)

Example: Ordering 10 Books
• POP picks another action that achieves one of the open preconditions.

139

START

FINISH

has(Amazon, book1), has(Amazon, book2), …, has(Amazon, book1000000),

we_have(book3), we_have(book7), we_have(book13), …, we_have(book50)

buy(book13, Amazon)

has(Amazon, book13)

buy(book3, Amazon)

has(Amazon, book3)

buy(book7, Amazon)

has(Amazon, book7)

buy(book50, Amazon)

has(Amazon, book50)

POP Planner

• It is still a search algorithm.

• However, there is an important difference from a linear
planner: the meaning of a search state:

• Linear planner:
– A search state is a possible state of the world.

– The initial search state is the initial state of the world.

– The goal state is a state that satisfies goal conditions.

• POP planner:
– A search state is a partial plan.

– The initial state is the empty plan, with specified initial conditions and
goal conditions.

– The goal state is a complete plan, with no open preconditions.

140

POP Planner Pitfalls

• In cases like the book-ordering problem, where the
goal literals are independent of each other, POP does
really well.
– It actually takes very little time to find the correct solution.

• However, there are more complicated cases, where
satisfying one open precondition messes up another
one.

– There are ways for POP to deal with such cases, but we
will not cover them in this class.

• Planning overall takes exponential time.

– We can always find problems where both sequential
planners and POP are too slow to be useful.

141

