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Overview of Candy Bag Example

As described in Russell and Norvig, for Chapter 20 of the 2" edition:

e Five kinds of bags of candies.
— 10% are h;: 100% cherry candies
— 20% are h,: 75% cherry candies + 25% lime candies
— 40% are h;: 50% cherry candies + 50% lime candies
— 20% are h,: 25% cherry candies + 75% lime candies
— 10% are h.: 100% lime candies

e Each bag has an infinite number of candies.

— This way, the ratio of candy types inside a bag does not change as we pick
candies out of the bag.

e We have a bag, and we are picking candies out of it.

e Based on the types of candies we are picking, we want to figure
out what type of bag we have.



Hypotheses and Prior Probabilities

e Five kinds of bags of candies.
— 10% are h,: 100% cherry candies
— 20% are h,: 75% cherry candies + 25% lime candies
— 40% are h;: 50% cherry candies + 50% lime candies
— 20% are h,: 25% cherry candies + 75% lime candies
— 10% are h.: 100% lime candies

e Each h, is called a hypothesis.
e The initial probability that is given for each hypothesis is

called the prior probability for that hypothesis.

— Itis called prior because it is the probability we have before we

have made any observations.
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Observations and Posteriors

Out of our bag, we pick T candies, whose types are:
Q,, Q,, .., Q;

— Each Q; is equal to either C (cherry) or L (“lime”).

— These Q;’s are called the observations.

Based on our observations, we want to answer two
types of questions:

Whatis P(h. | Q,, ..., Q,)?
— Probability of hypothesis i after t observations.
— This is called the posterior probability of h..

What is P(Qt+1 =C | Q,, .. Qt)?
— Similarly, whatis P(Q,,; =L | Q,, ..., Q)
— Probability of observation t+1 after t observations.



Simplifying notation

e Define:
— P,(h)=P(h. | Q, ..., Q)
~P(Q,,,;=C)=P(Q,,=C|Q ..., Q)7
e Special case: t =0 (no observations):
— Po(h;) = P(h))
e P,(h,) is the prior probability of h.

- Po(Q; =C) =P(Q, = C)
e P,(Q, = C) is the probability that the first observation is
equal to C.



Questions We Want to Answer,
Revisited

Using the simplified notation of the previous
slide:

e Whatis P,(h)?

— Posterior probability of hypothesis i after t
observations.

e What is P,(Q,,, = C)?
— Similarly, what is P,(Q,,, = L)

— Probability of observation t+1 after t
observations.



A Special Case of Bayes Rule

e In the solution, we will use the following
special case of Bayes rule:

- P(A|B,C)=P(B|AC)*P(A|C)/P(B]|C).



Computing P,(h.)

e Lett be an integer between 1 and T:

* Ph) =P(h | QL .., Q) 5

P(Q, | hy Qy, s Quy) * PLR | Q-

) Qt-l)

P(Q; | Qg ..., Q)

P(Q: | hy) * Pyy(hy)
P1(Qy)

=> Py(h) =



Computing P,(h.) (continued)

P(Q, | hy) * Pyy(hy)

e The formula P/(h)=
t JH(eN

IS recursive, as it requires
knowing P, ,(h.).
e The base case is Py(h,) = P(h,).

e To compute P.(h,) we also need P, ,(Q,). We
show how to compute that next.



Computing P,,,(Q,)

P (Qt+1) = I:)(O~t+1 | O~1 "0 C)~t) =

z (P(Qt+1 | h) P(h | Ql Q)) =>
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Computing P,(h.) and P.(Q,,,)

e Base case:t=0.

— Py(h;) = P(h;), where P(h;) is known.
5

- Po(Ql) = Z( P(Ql | hi) * P(hi) ), where P(Q, | h) is known.

i=1
e To compute P,(h,) and P,(Q,,,):

e Forj=1,..,t
P(Q; | h) * Ppy(h)

Pj-l(Qj)

— Compute Pi(h) =

5
— Compute P(Q,;) = 2 (P(Qy; | hj) * P(hy))
=1
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Computing P,(h.) and P.(Q,,,)

e Base case:t=0.

— Py(h;) = P(h;), where P(h;) is known.
5

- Po(Q1) = Z( P(Ql | hi) * P(hi) ), where P(Q, | h) is known.
i=1

e To compute P,(h,) and P,(Q,,,):
° Forj — 1’ .. t known computed at previous round

P(Q | hy) )* (Py4(hy)
P.,(Qy)

computed at previous round

— Compute Pj(hi) =

5
— Compute Pj(Qy,1) = 2 (P(Qy | hy ) *(Py(hy)) 12
i=1

known Ccomputed at previous line



