Computing Posterior Probabilities

CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Overview of Candy Bag Example

As described in Russell and Norvig, for Chapter 20 of the $2^{\text {nd }}$ edition:

- Five kinds of bags of candies.
- 10% are $h_{1}: 100 \%$ cherry candies
- 20% are $h_{2}: 75 \%$ cherry candies + 25% lime candies
- 40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies
- 20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies
- 10% are h_{5} : 100% lime candies
- Each bag has an infinite number of candies.
- This way, the ratio of candy types inside a bag does not change as we pick candies out of the bag.
- We have a bag, and we are picking candies out of it.
- Based on the types of candies we are picking, we want to figure out what type of bag we have.

Hypotheses and Prior Probabilities

- Five kinds of bags of candies.
- 10% are $h_{1}: 100 \%$ cherry candies
-20% are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies
-40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies
-20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies
- 10% are h_{5} : 100% lime candies
- Each h_{i} is called a hypothesis.
- The initial probability that is given for each hypothesis is called the prior probability for that hypothesis.
- It is called prior because it is the probability we have before we have made any observations.

Observations and Posteriors

- Out of our bag, we pick T candies, whose types are: $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots, \mathrm{Q}_{\mathrm{T}}$.
- Each Q_{j} is equal to either C (cherry) or L ("lime").
- These Q_{j} 's are called the observations.
- Based on our observations, we want to answer two types of questions:
- What is $P\left(h_{i} \mid Q_{1}, \ldots, Q_{t}\right)$?
- Probability of hypothesis i after t observations.
- This is called the posterior probability of h_{i}.
- What is $P\left(\mathrm{Q}_{\mathrm{t}+1}=\mathrm{C} \mid \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{t}}\right)$?
- Similarly, what is $P\left(Q_{t+1}=L \mid Q_{1}, \ldots, Q_{t}\right)$
- Probability of observation $t+1$ after t observations.

Simplifying notation

- Define:

$$
\begin{aligned}
& -P_{t}\left(h_{i}\right)=P\left(h_{i} \mid Q_{1}, \ldots, Q_{t}\right) \\
& -P_{t}\left(Q_{t+1}=C\right)=P\left(Q_{t+1}=C \mid Q_{1}, \ldots, Q_{t}\right) ?
\end{aligned}
$$

- Special case: $t=0$ (no observations):
$-P_{0}\left(h_{i}\right)=P\left(h_{i}\right)$
- $P_{0}\left(h_{i}\right)$ is the prior probability of h_{i}
$-P_{0}\left(Q_{1}=C\right)=P\left(Q_{1}=C\right)$
- $P_{0}\left(Q_{1}=C\right)$ is the probability that the first observation is equal to C.

Questions We Want to Answer, Revisited

Using the simplified notation of the previous slide:

- What is $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$?
- Posterior probability of hypothesis i after t observations.
- What is $P_{t}\left(Q_{t+1}=C\right)$?
- Similarly, what is $P_{t}\left(Q_{t+1}=L\right)$
- Probability of observation $t+1$ after t observations.

A Special Case of Bayes Rule

- In the solution, we will use the following special case of Bayes rule:

$$
-P(A \mid B, C)=P(B \mid A, C) * P(A \mid C) / P(B \mid C) .
$$

Computing $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$

- Let t be an integer between 1 and T :
- $P_{t}\left(h_{i}\right)=P\left(h_{i} \mid Q 1, \ldots, Q_{t}\right)=$
$P\left(Q_{t} \mid h_{i}, Q_{1}, \ldots, Q_{t-1}\right) * P\left(h_{i} \mid Q_{1}, \ldots, Q_{t-1}\right)$
$P\left(Q_{t} \mid Q_{1}, \ldots, Q_{t-1}\right)$

$$
\Rightarrow P_{t}\left(h_{i}\right)=\frac{P\left(Q_{t} \mid h_{i}\right) * P_{t-1}\left(h_{i}\right)}{P_{t-1}\left(Q_{t}\right)}
$$

Computing $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$ (continued)

- The formula $P_{t}\left(h_{i}\right)=\frac{P\left(Q_{t} \mid h_{i}\right) * P_{t-1}\left(h_{i}\right)}{P_{t-1}\left(Q_{t}\right)}$ is recursive, as it requires
knowing $P_{t-1}\left(h_{i}\right)$.
- The base case is $P_{0}\left(h_{i}\right)=P\left(h_{i}\right)$.
- To compute $P_{t}\left(h_{i}\right)$ we also need $P_{t-1}\left(Q_{t}\right)$. We show how to compute that next.

Computing $\mathrm{P}_{\mathrm{t}+1}\left(\mathrm{Q}_{\mathrm{t}}\right)$

- $P_{t}\left(Q_{t+1}\right)=P\left(Q_{t+1} \mid Q_{1}, \ldots, Q_{t}\right)=$

$$
\sum_{i=1}^{5}\left(P\left(Q_{t+1} \mid h_{i}\right) P\left(h_{i} \mid Q_{1}, \ldots, Q_{t}\right)\right)=>
$$

$$
P_{t}\left(Q_{t+1}\right)=\sum_{i=1}^{5}\left(P\left(Q_{t+1} \mid h_{i}\right) P_{t}\left(h_{i}\right)\right)
$$

Computing $P_{t}\left(h_{i}\right)$ and $P_{t}\left(Q_{t+1}\right)$

- Base case: $\mathrm{t}=0$.
$-P_{0}\left(h_{i}\right)=P\left(h_{i}\right)$, where $P\left(h_{i}\right)$ is known.
$-P_{0}\left(Q_{1}\right)=\sum_{i=1}^{5}\left(P\left(Q_{1} \mid h_{i}\right) * P\left(h_{i}\right)\right)$, where $P\left(Q_{1} \mid h_{i}\right)$ is known.
- To compute $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$ and $\mathrm{P}_{\mathrm{t}}\left(\mathrm{Q}_{\mathrm{t}+1}\right)$:
- For $\mathrm{j}=1, \ldots, \mathrm{t}$
- Compute $P_{j}\left(h_{i}\right)=\frac{P\left(Q_{j} \mid h_{i}\right) * P_{j-1}\left(h_{i}\right)}{P_{j-1}\left(Q_{j}\right)}$
- Compute $P_{j}\left(Q_{j+1}\right)=\sum_{i=1}^{5}\left(P\left(Q_{j+1} \mid h_{i}\right) * P_{j}\left(h_{i}\right)\right)$

Computing $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$ and $\mathrm{P}_{\mathrm{t}}\left(\mathrm{Q}_{\mathrm{t}+1}\right)$

- Base case: $\mathrm{t}=0$.
$-P_{0}\left(h_{i}\right)=P\left(h_{i}\right)$, where $P\left(h_{i}\right)$ is known.
$-P_{0}\left(Q_{1}\right)=\sum_{i=1}^{5}\left(P\left(Q_{1} \mid h_{i}\right) * P\left(h_{i}\right)\right)$, where $P\left(Q_{1} \mid h_{i}\right)$ is known.
- To compute $\mathrm{P}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{i}}\right)$ and $\mathrm{P}_{\mathrm{t}}\left(\mathrm{Q}_{\mathrm{t}+1}\right)$:
- For $\mathrm{j}=1, \ldots, \mathrm{t}$
- Compute $P_{j}\left(h_{i}\right)=\frac{P\left(Q_{j} \mid h_{i}\right) * P_{j-1}\left(h_{i}\right)}{P_{j-1}\left(Q_{j}\right)}$
- Compute $P_{j}\left(Q_{j+1}\right)=\sum_{i=1}^{5}(\underbrace{P\left(Q_{j+1} \mid h_{i}\right)}_{\text {known }} * \underbrace{\left.P_{j}\left(h_{i}\right)\right)}_{\text {computed at previous line }}$

