
Practical Issues with
Decision Trees

CSE 4308/5360: Artificial Intelligence I

University of Texas at Arlington

1

Programming Assignment

• The next programming assignment asks you to
implement decision trees, as well as a variation
called “decision forests”.

• There are several concepts that you will need to
implement, that we have not addressed yet.

• These concepts are discussed in these slides.

2

Data

• The assignment provides three datasets to play with.

• For each dataset, you are given:

– a training file, that you use to learn decision trees.

– a test file, that you use to apply decision trees and
measure their accuracy.

• All three datasets follow the same format:

– Each line is an object.

– Each column is an attribute, except:

– The last column is the class label.

3

Data

• Values are separated by whitespace.

• The attribute values are real numbers (doubles).

– They are integers in some datasets, just treat those as
doubles.

• The class labels are integers, ranging from 0 to the
number of classes – 1.

4

Class Labels Are Not Attributes

• A classic mistake is to forget that the last column
contains class labels.

• What happens if you include the last column in your
attributes?

5

Class Labels Are Not Attributes

• A classic mistake is to forget that the last column
contains class labels.

• What happens if you include the last column in your
attributes?

• You get perfect classification accuracy.

• The decision tree will be using class labels to predict
class labels.

– Not very hard to do.

• So, make sure that, when you load the data, you
separate the last column from the rest of the
columns.
 6

Dealing with Continuous Values

• Our previous discussion on decision trees assumed
that each attribute takes a few discrete values.

• Instead, in these datasets the attributes take
continuous values.

• There are several ways to discretize continuous values.

• For the assignment, we will discretize using thresholds.

– The test that you will be choosing for each node will be
specified using both an attribute and a threshold.

– Objects whose value at that attribute is LESS THAN the
threshold go to the left child.

– Objects whose value at that attribute is GREATER THAN OR
EQUAL TO the threshold go to the right child.

7

Dealing with Continuous Values

• For example: supposed that the test that is chosen for
a node N uses attribute 5 and a threshold 30.7.

• Then:

– Objects whose value at attribute 5 is LESS THAN 30.7 go to
the left child of N.

– Objects whose value at attribute 5 is GREATER THAN OR
EQUAL TO 30.7 go to the right child.

• Please stick to these specs.

• Do not use LESS THAN OR EQUAL instead of LESS
THAN.

8

Dealing with Continuous Values

• Using thresholds as described, what is the maximum
number of children for a node?

9

Dealing with Continuous Values

• Using thresholds as described, what is the maximum
number of children for a node?

• Two. Your decision trees will be binary.

10

Choosing a Threshold

• How can you choose a threshold?

– What makes a threshold better than another threshold?

• Remember, once you have chosen a threshold, you
get a binary version of your attribute.

– Essentially, you get an attribute with two discrete values.

• You know all you need to know to compute the
information gain of this binary attribute.

• Given an attribute A, different thresholds applied to
A produce different values for information gain.

• The best threshold is which one?

11

Choosing a Threshold

• How can you choose a threshold?

– What makes a threshold better than another threshold?

• Remember, once you have chosen a threshold, you
get a binary version of your attribute.

– Essentially, you get an attribute with two discrete values.

• You know all you need to know to compute the
information gain of this binary attribute.

• Given an attribute A, different thresholds applied to
A produce different values for information gain.

• The best threshold is which one?

– The one leading to the highest information gain.

 12

Searching Thresholds

• Given a node N, and given an attribute A with continuous
values, you should check various thresholds, to see which one
gives you the highest information gain for attribute A at node N.

• How many thresholds should you try?

• There are (again) many different approaches.

• For the assignment, you should try 50 thresholds, chosen as
follows:
– Let L be the smallest value of attribute A among the training objects at

node N.

– Let M be the smallest value of attribute A among the training objects at
node N.

– Then, try thresholds: L + (M-L)/51, L + 2*(M-L)/51, …, L + 50*(M-L)/51.

– Overall, you try all thresholds of the form L + K*(M-L)/51, for K = 1, …, 50.

13

Review: Decision Tree Learning

• Above you see the decision tree learning pseudocode that we
have reviewed previously, slightly modified, to account for
the assigment requirements:

14

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Review: Decision Tree Learning

• Above you see the decision tree learning pseudocode that we
have reviewed previously, slightly modified, to account for
the assigment requirements:
– CHOOSE-ATTRIBUTE needs to pick both an attribute and a threshold.

15

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Review: Decision Tree Learning

• How are these DTL recursive calls different than before?

16

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Review: Decision Tree Learning

• How are these DTL recursive calls different than before?
– Before, we were passing attributes – best_attribute.

– Now we are passing attributes, without removing best_attribute.

– Why?
17

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Review: Decision Tree Learning

• How are these DTL recursive calls different than before?
– Before, we were passing attributes – best_attribute.

– Now we are passing attributes, without removing best_attribute.

– The best attribute may still be useful later, with a different threshold.
18

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Using an Attribute Twice in a Path

• When we were using attributes with a few discrete values, it
was useless to have the same attribute appear twice in a path
from the root.
– The second time, the information gain is 0, because all training

examples go to the same child.

19

Patrons?

None
Some

Full

Raining?

No Yes

Patrons?

None
Some

Full

Using an Attribute Twice in a Path

• When we use attributes with continuous values, together
with a threshold, it may be useful to have the same attribute
appear twice in a path from the root.
– The second time, the information gain does not have to be 0, because

we are using a different threshold.

– The second time, all our training examples have values >= 0.7 for
attribute 4.

– Some of those values may be < 0.9, some may be >= 0.9.
20

attribute = 4, threshold = 0.7

< thr
>= thr

attribute = 4, threshold = 0.9

< thr >= thr

Review: Decision Tree Learning

• How are these DTL recursive calls different than before?
– There is one more different, in addition to not removing

best_attribute from attributes.

21

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Review: Decision Tree Learning

• How are these DTL recursive calls different than before?
– Instead of calling MODE(examples), we call DISTRIBUTION(examples).

– More details on that later in these slides, when we discuss decision
forests.

22

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Search for Best Test

• In this code, where do we search for the combination of
attribute and threshold that give the highest information
gain?

23

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Search for Best Test

• The search for the best combination of attribute and
threshold happens in the CHOOSE-ATTRIBUTE function.

24

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

25

• Note: in the assignment, use this CHOOSE-ATTRIBUTE version when the
“optimized” option is provided on the command line. More details in a bit.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

26

• examples is the training data. It is a matrix, where each row is a training
object, each column is an attribute, the last row contains class labels.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

27

• To fit with this pseudocode, attributes can simply be an array, containing
values 0, 1, …, up to the number of attributes – 1.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

28

• The function returns the combination of attribute and threshold that
produce the highest information gain.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

29

• These variables will keep track of the attribute and threshold that have
produced the highest information gain so far.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

30

• Obviously, to find the best attribute, we must loop over all attributes.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

31

• attribute _values is the array containing the values of all examples for
attribute A.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

32

• We find the minimum and maximum value of attribute A among the
examples, so that we can try 50 threshold values between the min and max.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

threshold = L + K*(M-L)/51

gain = INFORMATION-GAIN(examples, A, threshold)

if gain > max_gain then

max_gain = gain

best_attribute = A

best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

33

• Loop over the 50 thresholds.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

34

• For each threshold, measure the information gain attained on these
examples using that combination of attribute A and threshold.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

35

• If we found the best combination of attribute and threshold so far, keep
track of it.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_attribute = best_threshold = -1

 for each attribute A of attributes do

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_attribute = A

 best_threshold = threshold

 return (best_attribute, best_threshold)

CHOOSE-ATTRIBUTE, Optimized

36

• Return the best combination of attribute and threshold that we have
found.

Using Many Different Tests

• When we have continuous-valued attributes, the
number of possible tests (combinations of attribute
and threshold) can be huge.

• There are also many applications where the number
of attributes is itself huge (thousands, or millions).

• Can a single decision tree apply that millions of tests
to an object?

• In theory yes, but to learn such a tree, we would
need a humongous amount of training data, more
than we can handle with today’s computers.

37

Decision Forests

• When we have too many combinations of attributes
and thresholds to fit into a single tree, we can learn
multiple different trees.

• Question: how do we learn multiple different trees?

– Will our DTL algorithm work?

• No. The version we have seen is deterministic.

• Given the same training examples, it will always
come up with the same tree.

– Unless there are ties, where multiple combinations of
attributes and thresholds tie for best, and we let DTL
choose randomly among them.

38

Decision Forests

• To learn multiple different trees, we need to force
the algorithm to make some random choices, so that
each time it is called it produces a different tree.

• There are different approaches as to what to
randomize.

• We will follow a simple approach:

– CHOOSE-ATTRIBUTE chooses an attribute randomly.

– For that attribute that is chosen randomly, we still need to
find the best threshold.

39

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_threshold = -1

 A = RANDOM-ELEMENT(attributes)

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_threshold = threshold

 return (A, best_threshold)

CHOOSE-ATTRIBUTE, Randomized

40

• Here is the randomized version of CHOOSE-ATTRIBUTE.

• Main modification: Now we pick a random attribute.

function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold)

 max_gain = best_threshold = -1

 A = RANDOM-ELEMENT(attributes)

 attribute_values = SELECT-COLUMN(examples, A)

 L = min(attribute_values)

 M = max(attribute_values)

 for K = 1; K <= 50; K++

 threshold = L + K*(M-L)/51

 gain = INFORMATION-GAIN(examples, A, threshold)

 if gain > max_gain then

 max_gain = gain

 best_threshold = threshold

 return (A, best_threshold)

CHOOSE-ATTRIBUTE, Randomized

41

• We still search to find the best threshold for that attribute, so as to
maximize information gain.

Choosing CHOOSE-ATTRIBUTE Version

• So, we have now two different CHOOSE-ATTRIBUTE versions.

• Question: which one do you use in the assignment?

• Answer: both.

• The third command line argument determines which version you
use.

• The third command line argument can have four possible values:
– optimized - use the first CHOOSE-ATTRIBUTE version, that finds the best

combination of attribute and threshold, learn a single tree.

– randomized - use the second CHOOSE-ATTRIBUTE version, learn a single
randomized tree.

– forest3 - use the second CHOOSE-ATTRIBUTE version, learn three
randomized trees.

– forest15 - use the second CHOOSE-ATTRIBUTE version, learn fifteen
randomized trees.

42

Classification with Random Forests

• When we apply multiple decision trees to the same object,
obviously the trees may provide different answers.

• How can we combine those answers into a single best
answer?

• Solution: the answer of each tree will be a probability
distribution, assigning a probability to each class.

• To classify an object using a decision forest, consisting of
multiple decision trees:
– First, apply each tree to the object, to obtain from that tree a

probability distribution.

– Then, compute the average of those probability distributions. For each
class, simply compute the average of its probabilities.

– Finally, identify and output the class with the highest average
probability.

43

Storing Probability Distributions

• This is why we have replaced the MODE function with a DISTRIBUTION
function.

• Suppose you have N classes, and your class labels are from 0 to N-1.

• Then, the DISTRIBUTION function simply returns an array, whose i-th
position is the probability of the i-th class. 44

function DTL(examples, attributes, default) returns a decision tree

 if examples is empty then return default

 else if all examples have the same class then return the class

 else

 (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes)

 tree = a new decision tree with root test (best_attribute, best_threshold)

 examples_left = {elements of examples with best_attribute < threshold}

 examples_right = {elements of examples with best_attribute < threshold}

 tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples))

 tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples))

 return tree

Example
• Suppose we have five classes.

• Suppose that we are at a node in the decision tree where:
– 35 training examples are from class 0.

– 22 training examples are from class 1.

– 15 training examples are from class 2.

– 37 training examples are from class 3.

– 12 training examples are from class 4.

• What does DISTRIBUTION(examples) return here?

45

Example
• Suppose we have five classes.

• Suppose that we are at a node in the decision tree where:
– 35 training examples are from class 0.

– 22 training examples are from class 1.

– 15 training examples are from class 2.

– 37 training examples are from class 3.

– 12 training examples are from class 4.

• What does DISTRIBUTION(examples) return here?
– P(class 0) = 35 / 121 = 0.2893

– P(class 1) = 22 / 121 = 0.1818

– P(class 2) = 15 / 121 = 0.1240

– P(class 3) = 37 / 121 = 0.3058

– P(class 4) = 12 / 121 = 0.0992

– DISTRIBUTION(examples) returns this array:
 [0.2893, 0.1818, 0.1240, 0.3058, 0.0992]. 46

Classification Using a Decision Forest

• Suppose that we want to classify a test object using a decision
forest of 3 trees, and there are five classes.

• The first tree outputs distribution
[0.2893, 0.1818, 0.1240, 0.3058, 0.0992].

• The second tree outputs distribution
[0.1289, 0.1724, 0.3579, 0.1733, 0.1675].

• The first tree outputs distribution
[0.2823, 0.1098, 0.2037, 0.0680, 0.3362].

• The average distribution is:
[0.2195, 0.1675, 0.2356, 0.2150, 0.1623]

• So, what is the predicted class for the test object?

47

Classification Using a Decision Forest

• Suppose that we want to classify a test object using a decision
forest of 3 trees, and there are five classes.

• The first tree outputs distribution
[0.2893, 0.1818, 0.1240, 0.3058, 0.0992].

• The second tree outputs distribution
[0.1289, 0.1724, 0.3579, 0.1733, 0.1675].

• The first tree outputs distribution
[0.2823, 0.1098, 0.2037, 0.0680, 0.3362].

• The average distribution is:
[0.2195, 0.1675, 0.2356, 0.2150, 0.1623]

• So, what is the predicted class for the test object?
– Class 2, since it has the highest probability among all five classes.

48

Ties

• Suppose that the average distribution computed
from the decision forest is:
[0.3, 0.1, 0.2, 0.3, 0.1]

• What is the predicted class?

• Class 0 and class 3 are tied with probability 0.3.

• Here, your program should pick one of these classes
randomly.

49

Pruning

• Typically, leaf nodes that contain very few examples
are not very reliable.

• The distribution of classes among those few
examples may depend more on luck than on any
pattern among training examples.

• One approach to handle this case is pruning.

• Pruning means that we eliminate some leaf nodes
that contain few examples and are not reliable.

50

Pruning

• For the assignment, you will have to do pruning.

• We will use a very simple rune:

– If at any point you have a leaf node with fewer than 50
training objects, delete that node and its siblings, and
make the parent of that node a leaf node.

• This way, your leaf nodes will never have fewer than
50 training objects.

• So, for all the trees that your program produces, you
should make sure that this rule is followed.

• Your trees should never have a leaf node with fewer
than 50 training objects.

51

Get Started Early

• Even if these slides made sense today, you may find
that they don’t make sense when you actually start
writing code.

• It will probably be more useful for you if you identify
what does not make sense before the next lecture,
and you ask questions.

• This will give you more time to incorporate the
answers into your code.

52

