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Programming Assignment 

• The next programming assignment asks you to 
implement decision trees, as well as a variation 
called “decision forests”. 

• There are several concepts that you will need to 
implement, that we have not addressed yet. 

• These concepts are discussed in these slides. 
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Data 

• The assignment provides three datasets to play with. 

• For each dataset, you are given: 

–  a training file, that you use to learn decision trees. 

– a test file, that you use to apply decision trees and 
measure their accuracy. 

• All three datasets follow the same format: 

– Each line is an object. 

– Each column is an attribute, except: 

– The last column is the class label. 

 

3 



Data 

• Values are separated by whitespace. 

• The attribute values are real numbers (doubles). 

– They are integers in some datasets, just treat those as 
doubles. 

• The class labels are integers, ranging from 0 to the 
number of classes – 1. 
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Class Labels Are Not Attributes 

• A classic mistake is to forget that the last column 
contains class labels. 

• What happens if you include the last column in your 
attributes? 
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Class Labels Are Not Attributes 

• A classic mistake is to forget that the last column 
contains class labels. 

• What happens if you include the last column in your 
attributes? 

• You get perfect classification accuracy. 

• The decision tree will be using class labels to predict 
class labels. 

– Not very hard to do. 

• So, make sure that, when you load the data, you 
separate the last column from the rest of the 
columns. 
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Dealing with Continuous Values 

• Our previous discussion on decision trees assumed 
that each attribute takes a few discrete values. 

• Instead, in these datasets the attributes take 
continuous values. 

• There are several ways to discretize continuous values. 

• For the assignment, we will discretize using thresholds. 

– The test that you will be choosing for each node will be 
specified using both an attribute and a threshold. 

– Objects whose value at that attribute is LESS THAN the 
threshold go to the left child. 

– Objects whose value at that attribute is GREATER THAN OR 
EQUAL TO the threshold go to the right child. 
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Dealing with Continuous Values 

• For example: supposed that the test that is chosen for 
a node N uses attribute 5 and a threshold 30.7.  

• Then: 

– Objects whose value at attribute 5 is LESS THAN 30.7 go to 
the left child of N. 

– Objects whose value at attribute 5 is GREATER THAN OR 
EQUAL TO 30.7 go to the right child. 

 

• Please stick to these specs.  

• Do not use LESS THAN OR EQUAL instead of LESS 
THAN. 
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Dealing with Continuous Values 

• Using thresholds as described, what is the maximum 
number of children for a node? 
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Dealing with Continuous Values 

• Using thresholds as described, what is the maximum 
number of children for a node? 

• Two. Your decision trees will be binary. 
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Choosing a Threshold 

• How can you choose a threshold? 

– What makes a threshold better than another threshold? 

• Remember, once you have chosen a threshold, you 
get a binary version of your attribute. 

– Essentially, you get an attribute with two discrete values. 

• You know all you need to know to compute the 
information gain of this binary attribute. 

• Given an attribute A, different thresholds applied to 
A produce different values for information gain. 

• The best threshold is which one? 
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Choosing a Threshold 

• How can you choose a threshold? 

– What makes a threshold better than another threshold? 

• Remember, once you have chosen a threshold, you 
get a binary version of your attribute. 

– Essentially, you get an attribute with two discrete values. 

• You know all you need to know to compute the 
information gain of this binary attribute. 

• Given an attribute A, different thresholds applied to 
A produce different values for information gain. 

• The best threshold is which one? 

– The one leading to the highest information gain. 
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Searching Thresholds 

• Given a node N, and given an attribute A with continuous 
values, you should check various thresholds, to see which one 
gives you the highest information gain for attribute A at node N. 

• How many thresholds should you try? 

• There are (again) many different approaches. 

• For the assignment, you should try 50 thresholds, chosen as 
follows: 
– Let L be the smallest value of attribute A among the training objects at 

node N. 

– Let M be the smallest value of attribute A among the training objects at 
node N. 

– Then, try thresholds: L + (M-L)/51, L + 2*(M-L)/51, …, L + 50*(M-L)/51. 

– Overall, you try all thresholds of the form L + K*(M-L)/51, for K = 1, …, 50. 
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Review: Decision Tree Learning 

• Above you see the decision tree learning pseudocode that we
have reviewed previously, slightly modified, to account for
the assigment requirements:
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Review: Decision Tree Learning 

• Above you see the decision tree learning pseudocode that we 
have reviewed previously, slightly modified, to account for 
the assigment requirements: 
– CHOOSE-ATTRIBUTE needs to pick both an attribute and a threshold. 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Review: Decision Tree Learning 

• How are these DTL recursive calls different than before? 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Review: Decision Tree Learning 

• How are these DTL recursive calls different than before? 
– Before, we were passing attributes – best_attribute. 

– Now we are passing attributes, without removing best_attribute. 

– Why? 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Review: Decision Tree Learning 

• How are these DTL recursive calls different than before? 
– Before, we were passing attributes – best_attribute. 

– Now we are passing attributes, without removing best_attribute. 

– The best attribute may still be useful later, with a different threshold. 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Using an Attribute Twice in a Path 

• When we were using attributes with a few discrete values, it
was useless to have the same attribute appear twice in a path
from the root.
– The second time, the information gain is 0, because all training

examples go to the same child.
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Using an Attribute Twice in a Path 

• When we use attributes with continuous values, together 
with a threshold, it may be useful to have the same attribute 
appear twice in a path from the root. 
– The second time, the information gain does not have to be 0, because 

we are using a different threshold. 

– The second time, all our training examples have values >= 0.7 for 
attribute 4. 

– Some of those values may be < 0.9, some may be >= 0.9. 
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Review: Decision Tree Learning 

• How are these DTL recursive calls different than before? 
– There is one more different, in addition to not removing 

best_attribute from attributes. 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Review: Decision Tree Learning 

• How are these DTL recursive calls different than before? 
– Instead of calling MODE(examples), we call DISTRIBUTION(examples). 

– More details on that later in these slides, when we discuss decision 
forests. 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Search for Best Test 

• In this code, where do we search for the combination of 
attribute and threshold that give the  highest information 
gain? 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Search for Best Test 

• The search for the best combination of attribute and 
threshold happens in the CHOOSE-ATTRIBUTE function. 
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function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• Note: in the assignment, use this CHOOSE-ATTRIBUTE version when the 
“optimized” option is provided on the command line. More details in a bit. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• examples is the training data. It is a matrix, where each row is a training 
object, each column is an attribute, the last row contains class labels. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• To fit with this pseudocode, attributes can simply be an array, containing 
values 0, 1, …, up to the number of attributes – 1. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• The function returns the combination of attribute and threshold that 
produce the highest information gain. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 

29 

• These variables will keep track of the attribute and threshold that have 
produced the highest information gain so far.  



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• Obviously, to find the best attribute, we must loop over all attributes. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• attribute _values is the array containing the values of all examples for 
attribute A. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• We find the minimum and maximum value of attribute A among the 
examples, so that we can try 50 threshold values between the min and max. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++ 

threshold = L + K*(M-L)/51 

gain = INFORMATION-GAIN(examples, A, threshold) 

if gain > max_gain then 

max_gain = gain 

best_attribute = A 

best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• Loop over the 50 thresholds.



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• For each threshold, measure the information gain attained on these 
examples using that combination of attribute A and threshold. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• If we found the best combination of attribute and threshold so far, keep 
track of it. 



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_attribute = best_threshold = -1 

      for each attribute A of attributes do 

             attribute_values = SELECT-COLUMN(examples, A) 

             L = min(attribute_values) 

             M = max(attribute_values) 

            for K = 1; K <= 50; K++  

                  threshold = L + K*(M-L)/51                   

                  gain = INFORMATION-GAIN(examples, A, threshold) 

                  if gain > max_gain then 

                        max_gain = gain 

                        best_attribute = A 

                        best_threshold = threshold 

      return (best_attribute, best_threshold) 

CHOOSE-ATTRIBUTE, Optimized 
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• Return the best combination of attribute and threshold that we have 
found. 



Using Many Different Tests 

• When we have continuous-valued attributes, the 
number of possible tests (combinations of attribute 
and threshold) can be huge. 

• There are also many applications where the number 
of attributes is itself huge (thousands, or millions). 

• Can a single decision tree apply that millions of tests 
to an object? 

• In theory yes, but to learn such a tree, we would 
need a humongous amount of training data, more 
than we can handle with today’s computers. 
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Decision Forests 

• When we have too many combinations of attributes 
and thresholds to fit into a single tree, we can learn 
multiple different trees. 

• Question: how do we learn multiple different trees? 

– Will our DTL algorithm work? 

• No. The version we have seen is deterministic. 

• Given the same training examples, it will always 
come up with the same tree. 

– Unless there are ties, where multiple combinations of 
attributes and thresholds tie for best, and we let DTL 
choose randomly among them. 
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Decision Forests 

• To learn multiple different trees, we need to force
the algorithm to make some random choices, so that
each time it is called it produces a different tree.

• There are different approaches as to what to
randomize.

• We will follow a simple approach:

– CHOOSE-ATTRIBUTE chooses an attribute randomly.

– For that attribute that is chosen randomly, we still need to
find the best threshold.
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function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_threshold = -1 

      A = RANDOM-ELEMENT(attributes) 

      attribute_values = SELECT-COLUMN(examples, A) 

      L = min(attribute_values) 

      M = max(attribute_values) 

      for K = 1; K <= 50; K++  

            threshold = L + K*(M-L)/51                   

            gain = INFORMATION-GAIN(examples, A, threshold) 

            if gain > max_gain then 

                  max_gain = gain 

                  best_threshold = threshold 

      return (A, best_threshold) 

CHOOSE-ATTRIBUTE, Randomized 
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• Here is the randomized version of CHOOSE-ATTRIBUTE. 

• Main modification: Now we pick a random attribute.  



function CHOOSE-ATTRIBUTE(examples, attributes) returns (attribute, threshold) 

      max_gain = best_threshold = -1 

      A = RANDOM-ELEMENT(attributes) 

      attribute_values = SELECT-COLUMN(examples, A) 

      L = min(attribute_values) 

      M = max(attribute_values) 

      for K = 1; K <= 50; K++  

            threshold = L + K*(M-L)/51                   

            gain = INFORMATION-GAIN(examples, A, threshold) 

            if gain > max_gain then 

                  max_gain = gain 

                  best_threshold = threshold 

      return (A, best_threshold) 

CHOOSE-ATTRIBUTE, Randomized 
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• We still search to find the best threshold for that attribute, so as to 
maximize information gain. 



Choosing CHOOSE-ATTRIBUTE Version 

• So, we have now two different CHOOSE-ATTRIBUTE versions. 

• Question: which one do you use in the assignment? 

• Answer: both. 

• The third command line argument determines which version you 
use. 

• The third command line argument can have four possible values: 
– optimized - use the first CHOOSE-ATTRIBUTE version, that finds the best 

combination of attribute and threshold, learn a single tree. 

– randomized - use the second CHOOSE-ATTRIBUTE version, learn a single 
randomized tree. 

– forest3 - use the second CHOOSE-ATTRIBUTE version, learn three 
randomized trees. 

– forest15 - use the second CHOOSE-ATTRIBUTE version, learn fifteen 
randomized trees. 
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Classification with Random Forests 

• When we apply multiple decision trees to the same object, 
obviously the trees may provide different answers. 

• How can we combine those answers into a single best 
answer? 

• Solution: the answer of each tree will be a probability 
distribution, assigning a probability to each class. 

• To classify an object using a decision forest, consisting of 
multiple decision trees: 
– First, apply each tree to the object, to obtain from that tree a 

probability distribution. 

– Then, compute the average of those probability distributions. For each 
class, simply compute the average of its probabilities. 

– Finally, identify and output the class with the highest average 
probability. 
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Storing Probability Distributions 

• This is why we have replaced the MODE function with a DISTRIBUTION 
function. 

• Suppose you have N classes, and your class labels are from 0 to N-1. 

• Then, the DISTRIBUTION function simply returns an array, whose i-th 
position is the probability of the i-th class. 44 

function DTL(examples, attributes, default) returns a decision tree 

      if examples is empty then return default 

      else if all examples have the same class then return the class 

      else 

            (best_attribute, best_threshold) = CHOOSE-ATTRIBUTE(examples, attributes) 

            tree = a new decision tree with root test (best_attribute, best_threshold) 

            examples_left = {elements of examples with best_attribute < threshold} 

            examples_right = {elements of examples with best_attribute < threshold} 

            tree.left_child = DTL(examples_left, attributes, DISTRIBUTION(examples)) 

            tree.right_child = DTL(examples_right, attributes, DISTRIBUTION(examples)) 

            return tree 



Example 
• Suppose we have five classes. 

• Suppose that we are at a node in the decision tree where: 
– 35 training examples are from class 0. 

– 22 training examples are from class 1. 

– 15 training examples are from class 2. 

– 37 training examples are from class 3. 

– 12 training examples are from class 4. 

• What does DISTRIBUTION(examples) return here? 

45 



Example 
• Suppose we have five classes.

• Suppose that we are at a node in the decision tree where:
– 35 training examples are from class 0.

– 22 training examples are from class 1.

– 15 training examples are from class 2.

– 37 training examples are from class 3.

– 12 training examples are from class 4.

• What does DISTRIBUTION(examples) return here?
– P(class 0) = 35 / 121 = 0.2893

– P(class 1) = 22 / 121 = 0.1818

– P(class 2) = 15 / 121 = 0.1240

– P(class 3) = 37 / 121 = 0.3058

– P(class 4) = 12 / 121 = 0.0992

– DISTRIBUTION(examples) returns this array:
 [0.2893, 0.1818, 0.1240, 0.3058, 0.0992]. 46 



Classification Using a Decision Forest 

• Suppose that we want to classify a test object using a decision 
forest of 3 trees, and there are five classes. 

• The first tree outputs distribution  
[0.2893, 0.1818, 0.1240, 0.3058, 0.0992]. 

• The second tree outputs distribution  
[0.1289, 0.1724, 0.3579, 0.1733, 0.1675]. 

• The first tree outputs distribution  
[0.2823, 0.1098, 0.2037, 0.0680, 0.3362]. 

• The average distribution is: 
[0.2195, 0.1675, 0.2356, 0.2150, 0.1623] 

• So, what is the predicted class for the test object? 
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Classification Using a Decision Forest 

• Suppose that we want to classify a test object using a decision 
forest of 3 trees, and there are five classes. 

• The first tree outputs distribution  
[0.2893, 0.1818, 0.1240, 0.3058, 0.0992]. 

• The second tree outputs distribution  
[0.1289, 0.1724, 0.3579, 0.1733, 0.1675]. 

• The first tree outputs distribution  
[0.2823, 0.1098, 0.2037, 0.0680, 0.3362]. 

• The average distribution is: 
[0.2195, 0.1675, 0.2356, 0.2150, 0.1623] 

• So, what is the predicted class for the test object? 
– Class 2, since it has the highest probability among all five classes. 
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Ties 

• Suppose that the average distribution computed 
from the decision forest is: 
[0.3, 0.1, 0.2, 0.3, 0.1] 

• What is the predicted class? 

• Class 0 and class 3 are tied with probability 0.3. 

• Here, your program should pick one of these classes 
randomly. 
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Pruning 

• Typically, leaf nodes that contain very few examples 
are not very reliable. 

• The distribution of classes among those few 
examples may depend more on luck than on any 
pattern among training examples. 

• One approach to handle this case is pruning. 

• Pruning means that we eliminate some leaf nodes 
that contain few examples and are not reliable. 
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Pruning 

• For the assignment, you will have to do pruning. 

• We will use a very simple rune: 

– If at any point you have a leaf node with fewer than 50 
training objects, delete that node and its siblings, and 
make the parent of that node a leaf node. 

• This way, your leaf nodes will never have fewer than 
50 training objects. 

• So, for all the trees that your program produces, you 
should make sure that this rule is followed. 

• Your trees should never have a leaf node with fewer 
than 50 training objects. 
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Get Started Early 

• Even if these slides made sense today, you may find 
that they don’t make sense when you actually start 
writing code. 

• It will probably be more useful for you if you identify 
what does not make sense before the next lecture, 
and you ask questions. 

• This will give you more time to incorporate the 
answers into your code. 
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