Nearest Neighbor Classifiers

CSE 4308/5360: Artificial Intelligence |
University of Texas at Arlington

The Nearest Neighbor Classifier

e Let X be the space of all possible patterns for some
classification problem.

e Let F be a distance function defined in X.
— F assigns a distance to every pair v,, v, of objects in X.

e Examples of such a distance function F?

The Nearest Neighbor Classifier

e Let X be the space of all possible patterns for some
classification problem.

e Let F be a distance function defined in X.
— F assigns a distance to every pair v,, v, of objects in X.

e Examples of such a distance function F?

— The L, distance (also known as — The L, distance (Manhattan
Euclidean distance, straight-line distance) for vector spaces.
distance) for vector spaces. 5

b , Li(v1,v3) = Z|V1,i — Vg,
L, (171, Vz) — 2(771,1' — UZ,i) i=1
\ =1

The Nearest Neighbor Classifier

Let F be a distance function defined in X.
— F assigns a distance to every pair v,, v, of objects in X.

Let x4, ..., X, be training examples.
The nearest neighbor classifier classifies any pattern v

as follows:

— Find the training example NN(v) that is the nearest neighbor
of v (has the shortest distance to v among all training data).

NN(v) = argmaxy e (x,..., x,}(F (v, X))

— Return the class label of NN(v).

In short, each test pattern v is assigned the class of its
nearest neighbor in the training data.

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.
Suppose that the training data is given below:
Suppose we have a test

pattern v, shown in black. © ®
How is v classified by the ©“ @ ®
. . ®
nearest neighbor classifier? < ®
o ®
s ™ ® e
>
N o ®
— ®
o

X axis

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.
Suppose that the training data is given below:
Suppose we have a test

pattern v, shown in black. © ®
How is v classified by the © @ ®
nearest neighbor classifier? 1> @ ®
NN(v): — %0 |® @ ¢
Class of NN(v): red. N ® ®
Therefore, v is classified - ®
as red. o

0 1 2 3

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.
Suppose that the training data is given below:
Suppose we have another test

pattern v, shown in black. © ®
How is v classified by the O ®
. . ®
nearest neighbor classifier? < ®
o ®
s ™ ® e
>
N o ®
— ®
o

X axis

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.

Suppose that the training data is given below:

Suppose we have another test

pattern v, shown in black. © ®
How is v classified by the O ®
. . ®
nearest neighbor classifier? < ®
© @
NN(v): = ® >
Class of NN(v): yellow. N o ® o
Therefore, v is classified - ®
as yellow. -
0 1 2 3 4 5

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.
Suppose that the training data is given below:
Suppose we have another test

pattern v, shown in black. © ®
How is v classified by the O ®
. e o ®
nearest neighbor classifier: < ®
o o
s ™ ®
> ®
Q ®
— ®
o
0o 1 2 3

Example

Suppose we have a problem where:
— We have three classes (red, green, yellow).

— Each pattern is a two-dimensional vector.
Suppose that the training data is given below:
Suppose we have another test

pattern v, shown in black. © ®
How is v classified by the O ®
. . ®
nearest neighbor classifier? < ® e
™

NN(v):
Class of NN(v): green.

Therefore, v is classified - ®
as green.

10

The K-Nearest Neighbor Classifier

Instead of classifying the test pattern based on its nearest
neighbor, we can take more neighbors into account.

This is called k-nearest neighbor classification.

Using more neighbors can help avoid mistakes due to noisy data.

In the example shown on the

figure, the test patternisin a ®
mostly “yellow” area, but its ®
nearest neighbor is red. ® : ®
If we use the 3 nearest o
neighbors, 2 of them are yellow. e ® o
. e

11

Normalizing Dimensions

Suppose that your test patterns are 2-dimensional vectors,
representing stars.

— The first dimension is surface temperature, measured in Fahrenheit.

— Your second dimension is weight, measured in pounds.

The surface temperature can vary from 6,000 degrees to
100,000 degrees.

The weight can vary from 10%° to 103

Does it make sense to use the Euclidean distance or the
Manhattan distance here?

12

Normalizing Dimensions

Suppose that your test patterns are 2-dimensional vectors,
representing stars.
— The first dimension is surface temperature, measured in Fahrenheit.

— Your second dimension is weight, measured in pounds.

The surface temperature can vary from 6,000 degrees to
100,000 degrees.

The weight can vary from 10%° to 103

Does it make sense to use the Euclidean distance or the
Manhattan distance here?

No. These distances treat both dimensions equally, and
assume that they are both measured in the same units.

Applied to these data, the distances would be dominated by
differences in mass, and would mostly ignore information

from surface temperatures. .

Normalizing Dimensions

e |t would make sense to use the Euclidean or
Manhattan distance, if we first normalized
dimensions, so that they contribute equally to the
distance.

e How can we do such normalizations?

e There are various approaches. Two common
approaches are:

— Translate and scale each dimension so that its minimum
value is O and its maximum value is 1.

— Translate and scale each dimension so that its mean value
is 0 and its standard deviation is 1.

14

Normalizing Dimensions —
A Toy Example

Original Data Min =0, Max =1 Mean =0, std =1
I%bJeCt Te(an)p. V\/(Iet;.g)ht Temp. Weight Temp. Weight

1 4700 | 1.5*10%0 0.0000 0.0108| -0.9802| -0.6029

2 11000 | 3.5*10%0 0.1525 0.0377| -0.5375| -0.5322

3 46000 | 7.5*103! 1.0000 1.0000 1.9218 1.9931

4 12000 | 5.0*103! 0.1768 0.6635| -0.4673 1.1101

5 20000 | 7.0*102%° 0.3705 0.0000 0.0949| -0.6311

6 13000 | 2.0*10%0 0.2010 0.0175| -0.3970| -0.5852

7 8500 | 8.5*102%° 0.0920 0.0020| -0.7132| -0.6258

8 34000 | 1.5*1031 0.7094 0.1925 1.0786 | -0.1260

15

Scaling to Lots of Data

e Nearest neighbor classifiers become more accurate
as we get more and more training data.

e Theoretically, one can prove that k-nearest neighbor
classifiers become Bayes classifiers (and thus
optimal) as training data approaches infinity.

e One big problem, as training data becomes very
large, is time complexity.
— What takes time?

— Computing the distances between the test pattern and all
training examples.

16

Nearest Neighbor Search

The problem of finding the nearest neighbors of a pattern is called
“nearest neighbor search”.

Suppose that we have N training examples.
Suppose that each example is a D-dimensional vector.

What is the time complexity of finding the nearest neighbors of a
test pattern?

17

Nearest Neighbor Search

The problem of finding the nearest neighbors of a pattern is called
“nearest neighbor search”.

Suppose that we have N training examples.
Suppose that each example is a D-dimensional vector.

What is the time complexity of finding the nearest neighbors of a
test pattern?
O(ND).

— We need to consider each dimension of each training example.

This complexity is linear, and we are used to thinking that linear
complexity is not that bad.

If we have millions, or billions, or trillions of data, the actual time
it takes to find nearest neighbors can be a big problem for real-
world applications.

18

Indexing Methods

As we just mentioned, measuring the distance
between the test pattern and each training example
takes O(ND) time.

This method of finding nearest neighbors is called
“brute-force search”, because we go through all the
training data.

There are methods for finding nearest neighbors that
are sublinear to N (even logarithmic, at times), but
exponential to D.

Can you think of an example?

19

Indexing Methods

As we just mentioned, measuring the distance
between the test pattern and each training example
takes O(ND) time.

This method of finding nearest neighbors is called
“brute-force search”, because we go through all the
training data.

There are methods for finding nearest neighbors that
are sublinear to N (even logarithmic, at times), but
exponential to D.

Can you think of an example?

Binary search (applicable when D=1) takes O(log N)
time.

20

Indexing Methods

e |n some cases, faster algorithms exist that, however, are

approximate.

— They do not guarantee finding the true nearest neighbor all
the time.

— They guarantee that they find the true nearest neighbor with a
certain probability.

e This was the topic of my Ph.D. thesis, so | can talk for
days about it (but | won’t).

21

The Curse of Dimensionality

The “curse of dimensionality” is a commonly used term in
artificial intelligence.
— Common enough that it has a dedicated Wikipedia article.

It is actually not a single curse, it shows up in many different
ways.

The curse consists of the fact that lots of Al methods are very
good at handling low-dimensional data, but horrible at
handling high-dimensional data.

The nearest neighbor problem is an example of this curse.

— Finding nearest neighbors in low dimensions (like 1, 2, 3 dimensions)
can be done in close to logarithmic time.

— However, these approaches take time exponential to D.
— By the time you get to 50, 100, 1000 dimensions, they get hopeless.

— Data in Al oftentimes has thousands or millions of dimensions.
22

More Exotic Distance Measures

The Euclidean and Manhattan distance are the most
commonly used distance measures.

However, in some cases they do not make much
sense, or they cannot even be applied.

In such cases, more exotic distance measures can be
used.

A few examples (this is not required material, it is
just for your reference):

— The edit distance for strings (hopefully you’ve seen it in
your algorithms class).

— Dynamic time warping for time series.
— Bipartite matching for sets.

23

Nearest Neighbor Classification:
Recap

Nearest neighbor classifiers can be pretty simple to
implement.

They become increasingly accurate as we get more
training examples.

Normalizing the values in each dimension may be
necessary, before measuring distances.

Finding nearest neighbors in high-dimensional
spaces can be very, very slow, when we have lots of
training data.

24

