
Nearest Neighbor Classifiers

CSE 4308/5360: Artificial Intelligence I

University of Texas at Arlington

1

The Nearest Neighbor Classifier

• Let X be the space of all possible patterns for some
classification problem.

• Let F be a distance function defined in X.

– F assigns a distance to every pair v1, v2 of objects in X.

• Examples of such a distance function F?

2

The Nearest Neighbor Classifier

• Let X be the space of all possible patterns for some
classification problem.

• Let F be a distance function defined in X.

– F assigns a distance to every pair v1, v2 of objects in X.

• Examples of such a distance function F?

3

– The L2 distance (also known as
Euclidean distance, straight-line
distance) for vector spaces.

𝐿2 𝑣1, 𝑣2 = 𝑣1,𝑖 − 𝑣2,𝑖
2

𝐷

𝑖=1

– The L1 distance (Manhattan
distance) for vector spaces.

𝐿1 𝑣1, 𝑣2 = 𝑣1,𝑖 − 𝑣2,𝑖

𝐷

𝑖=1

The Nearest Neighbor Classifier

• Let F be a distance function defined in X.

– F assigns a distance to every pair v1, v2 of objects in X.

• Let x1, …, xn be training examples.

• The nearest neighbor classifier classifies any pattern v
as follows:

– Find the training example NN(v) that is the nearest neighbor
of v (has the shortest distance to v among all training data).

– Return the class label of NN(v).

• In short, each test pattern v is assigned the class of its
nearest neighbor in the training data. 4

NN(𝑣) = argmax𝑥 ∈ 𝑥1,…, 𝑥𝑛 𝐹 𝑣, 𝑥

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have a test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

5

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have a test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

• NN(v):

• Class of NN(v): red.

• Therefore, v is classified
as red.

6

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have another test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

7

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have another test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

• NN(v):

• Class of NN(v): yellow.

• Therefore, v is classified
as yellow.

8

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have another test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

9

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

Example

• Suppose we have a problem where:
– We have three classes (red, green, yellow).

– Each pattern is a two-dimensional vector.

• Suppose that the training data is given below:

• Suppose we have another test
pattern v, shown in black.

• How is v classified by the
nearest neighbor classifier?

• NN(v):

• Class of NN(v): green.

• Therefore, v is classified
as green.

10

0 1 2 3 4 5 6 7 8

 x axis

y
 a

x
is

0

 1

 2

 3

 4

 5

 6

The K-Nearest Neighbor Classifier

• Instead of classifying the test pattern based on its nearest
neighbor, we can take more neighbors into account.

• This is called k-nearest neighbor classification.

• Using more neighbors can help avoid mistakes due to noisy data.

• In the example shown on the
figure, the test pattern is in a
mostly “yellow” area, but its
nearest neighbor is red.

• If we use the 3 nearest
neighbors, 2 of them are yellow.

11

Normalizing Dimensions

• Suppose that your test patterns are 2-dimensional vectors,
representing stars.
– The first dimension is surface temperature, measured in Fahrenheit.

– Your second dimension is weight, measured in pounds.

• The surface temperature can vary from 6,000 degrees to
100,000 degrees.

• The weight can vary from 1029 to 1032.

• Does it make sense to use the Euclidean distance or the
Manhattan distance here?

12

Normalizing Dimensions

• Suppose that your test patterns are 2-dimensional vectors,
representing stars.
– The first dimension is surface temperature, measured in Fahrenheit.

– Your second dimension is weight, measured in pounds.

• The surface temperature can vary from 6,000 degrees to
100,000 degrees.

• The weight can vary from 1029 to 1032.

• Does it make sense to use the Euclidean distance or the
Manhattan distance here?

• No. These distances treat both dimensions equally, and
assume that they are both measured in the same units.

• Applied to these data, the distances would be dominated by
differences in mass, and would mostly ignore information
from surface temperatures.

13

Normalizing Dimensions

• It would make sense to use the Euclidean or
Manhattan distance, if we first normalized
dimensions, so that they contribute equally to the
distance.

• How can we do such normalizations?

• There are various approaches. Two common
approaches are:

– Translate and scale each dimension so that its minimum
value is 0 and its maximum value is 1.

– Translate and scale each dimension so that its mean value
is 0 and its standard deviation is 1.

14

Normalizing Dimensions –
A Toy Example

15

Original Data Min = 0, Max = 1 Mean = 0, std = 1

Object

ID

Temp.

(F)

Weight

(lb.)
Temp. Weight Temp. Weight

1 4700 1.5*1030 0.0000 0.0108 -0.9802 -0.6029

2 11000 3.5*1030 0.1525 0.0377 -0.5375 -0.5322

3 46000 7.5*1031 1.0000 1.0000 1.9218 1.9931

4 12000 5.0*1031 0.1768 0.6635 -0.4673 1.1101

5 20000 7.0*1029 0.3705 0.0000 0.0949 -0.6311

6 13000 2.0*1030 0.2010 0.0175 -0.3970 -0.5852

7 8500 8.5*1029 0.0920 0.0020 -0.7132 -0.6258

8 34000 1.5*1031 0.7094 0.1925 1.0786 -0.1260

Scaling to Lots of Data

• Nearest neighbor classifiers become more accurate
as we get more and more training data.

• Theoretically, one can prove that k-nearest neighbor
classifiers become Bayes classifiers (and thus
optimal) as training data approaches infinity.

• One big problem, as training data becomes very
large, is time complexity.

– What takes time?

– Computing the distances between the test pattern and all
training examples.

16

Nearest Neighbor Search

• The problem of finding the nearest neighbors of a pattern is called
“nearest neighbor search”.

• Suppose that we have N training examples.

• Suppose that each example is a D-dimensional vector.

• What is the time complexity of finding the nearest neighbors of a
test pattern?

17

Nearest Neighbor Search

• The problem of finding the nearest neighbors of a pattern is called
“nearest neighbor search”.

• Suppose that we have N training examples.

• Suppose that each example is a D-dimensional vector.

• What is the time complexity of finding the nearest neighbors of a
test pattern?

• O(ND).
– We need to consider each dimension of each training example.

• This complexity is linear, and we are used to thinking that linear
complexity is not that bad.

• If we have millions, or billions, or trillions of data, the actual time
it takes to find nearest neighbors can be a big problem for real-
world applications.

18

Indexing Methods

• As we just mentioned, measuring the distance
between the test pattern and each training example
takes O(ND) time.

• This method of finding nearest neighbors is called
“brute-force search”, because we go through all the
training data.

• There are methods for finding nearest neighbors that
are sublinear to N (even logarithmic, at times), but
exponential to D.

• Can you think of an example?

19

Indexing Methods

• As we just mentioned, measuring the distance
between the test pattern and each training example
takes O(ND) time.

• This method of finding nearest neighbors is called
“brute-force search”, because we go through all the
training data.

• There are methods for finding nearest neighbors that
are sublinear to N (even logarithmic, at times), but
exponential to D.

• Can you think of an example?

• Binary search (applicable when D=1) takes O(log N)
time.

20

Indexing Methods

• In some cases, faster algorithms exist that, however, are
approximate.

– They do not guarantee finding the true nearest neighbor all
the time.

– They guarantee that they find the true nearest neighbor with a
certain probability.

• This was the topic of my Ph.D. thesis, so I can talk for
days about it (but I won’t).

21

The Curse of Dimensionality

• The “curse of dimensionality” is a commonly used term in
artificial intelligence.
– Common enough that it has a dedicated Wikipedia article.

• It is actually not a single curse, it shows up in many different
ways.

• The curse consists of the fact that lots of AI methods are very
good at handling low-dimensional data, but horrible at
handling high-dimensional data.

• The nearest neighbor problem is an example of this curse.
– Finding nearest neighbors in low dimensions (like 1, 2, 3 dimensions)

can be done in close to logarithmic time.

– However, these approaches take time exponential to D.

– By the time you get to 50, 100, 1000 dimensions, they get hopeless.

– Data in AI oftentimes has thousands or millions of dimensions.

22

More Exotic Distance Measures

• The Euclidean and Manhattan distance are the most
commonly used distance measures.

• However, in some cases they do not make much
sense, or they cannot even be applied.

• In such cases, more exotic distance measures can be
used.

• A few examples (this is not required material, it is
just for your reference):

– The edit distance for strings (hopefully you’ve seen it in
your algorithms class).

– Dynamic time warping for time series.

– Bipartite matching for sets. 23

Nearest Neighbor Classification:
Recap

• Nearest neighbor classifiers can be pretty simple to
implement.

• They become increasingly accurate as we get more
training examples.

• Normalizing the values in each dimension may be
necessary, before measuring distances.

• Finding nearest neighbors in high-dimensional
spaces can be very, very slow, when we have lots of
training data.

24

