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The Nearest Neighbor Classifier 

• Let X be the space of all possible patterns for some 
classification problem. 

• Let F be a distance function defined in X. 

– F assigns a distance to every pair v1, v2 of objects in X. 

• Examples of such a distance function F? 
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• Examples of such a distance function F? 
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– The L2 distance (also known as 
Euclidean distance, straight-line 
distance) for vector spaces. 
  

𝐿2 𝑣1, 𝑣2 =  𝑣1,𝑖 − 𝑣2,𝑖
2

𝐷

𝑖=1

 

– The L1 distance (Manhattan 
distance) for vector spaces. 

 

𝐿1 𝑣1, 𝑣2 = 𝑣1,𝑖 − 𝑣2,𝑖
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The Nearest Neighbor Classifier 

• Let F be a distance function defined in X. 

– F assigns a distance to every pair v1, v2 of objects in X. 

• Let x1, …, xn be training examples. 

• The nearest neighbor classifier classifies any pattern v 
as follows: 

– Find the training example NN(v)  that is the nearest neighbor 
of v (has the shortest distance to v among all training data). 
 
 
 

– Return the class label of NN(v). 

• In short, each test pattern v is assigned the class of its 
nearest neighbor in the training data. 4 

NN(𝑣) = argmax𝑥 ∈ 𝑥1,…, 𝑥𝑛 𝐹 𝑣, 𝑥  



Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have a test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 
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Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have a test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 

• NN(v): 

• Class of NN(v): red. 

• Therefore, v is classified 
as red. 
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Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have another test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 
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Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have another test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 

• NN(v): 

• Class of NN(v): yellow. 

• Therefore, v is classified 
as yellow. 
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Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have another test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 
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Example 

• Suppose we have a problem where: 
– We have three classes (red, green, yellow). 

– Each pattern is a two-dimensional vector. 

• Suppose that the training data is given below: 

• Suppose we have another test 
pattern v, shown in black. 

• How is v classified by the  
nearest neighbor classifier? 

• NN(v): 

• Class of NN(v): green. 

• Therefore, v is classified 
as green. 
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The K-Nearest Neighbor Classifier 

• Instead of classifying the test pattern based on its nearest 
neighbor, we can take more neighbors into account. 

• This is called k-nearest neighbor classification. 

• Using more neighbors can help avoid mistakes due to noisy data. 

• In the example shown on the  
figure, the test pattern is in a  
mostly “yellow” area, but its 
nearest neighbor is red. 

• If we use the 3 nearest  
neighbors, 2 of them are yellow. 
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Normalizing Dimensions 

• Suppose that your test patterns are 2-dimensional vectors, 
representing stars. 
– The first dimension is surface temperature, measured in Fahrenheit. 

– Your second dimension is weight, measured in pounds. 

• The surface temperature can vary from 6,000 degrees to 
100,000 degrees. 

• The weight can vary from 1029 to 1032. 

• Does it make sense to use the Euclidean distance or the 
Manhattan distance here? 
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Normalizing Dimensions 

• Suppose that your test patterns are 2-dimensional vectors, 
representing stars. 
– The first dimension is surface temperature, measured in Fahrenheit. 

– Your second dimension is weight, measured in pounds. 

• The surface temperature can vary from 6,000 degrees to 
100,000 degrees. 

• The weight can vary from 1029 to 1032. 

• Does it make sense to use the Euclidean distance or the 
Manhattan distance here? 

• No. These distances treat both dimensions equally, and 
assume that they are both measured in the same units. 

• Applied to these data, the distances would be dominated by 
differences in mass, and would mostly ignore information 
from surface temperatures. 
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Normalizing Dimensions 

• It would make sense to use the Euclidean or 
Manhattan distance, if we first normalized 
dimensions, so that they contribute equally to the 
distance. 

• How can we do such normalizations? 

• There are various approaches. Two common 
approaches are: 

– Translate and scale each dimension so that its minimum 
value is 0 and its maximum value is 1. 

– Translate and scale each dimension so that its mean value 
is 0 and its standard deviation is 1. 
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Normalizing Dimensions –  
A Toy Example 
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Original Data Min = 0, Max = 1 Mean = 0, std = 1 

Object 

ID 

Temp. 

(F) 

Weight 

(lb.) 
Temp. Weight Temp. Weight 

1 4700 1.5*1030 0.0000 0.0108 -0.9802 -0.6029 

2 11000 3.5*1030 0.1525 0.0377 -0.5375 -0.5322 

3 46000 7.5*1031 1.0000 1.0000 1.9218 1.9931 

4 12000 5.0*1031 0.1768 0.6635 -0.4673 1.1101 

5 20000 7.0*1029 0.3705 0.0000 0.0949 -0.6311 

6 13000 2.0*1030 0.2010 0.0175 -0.3970 -0.5852 

7 8500 8.5*1029 0.0920 0.0020 -0.7132 -0.6258 

8 34000 1.5*1031 0.7094 0.1925 1.0786 -0.1260 



Scaling to Lots of Data 

• Nearest neighbor classifiers become more accurate 
as we get more and more training data. 

• Theoretically, one can prove that k-nearest neighbor 
classifiers become Bayes classifiers (and thus 
optimal) as training data approaches infinity. 

• One big problem, as training data becomes very 
large, is time complexity. 

– What takes time? 

– Computing the distances between the test pattern and all 
training examples. 
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Nearest Neighbor Search 

• The problem of finding the nearest neighbors of a pattern is called 
“nearest neighbor search”. 

• Suppose that we have N training examples. 

• Suppose that each example is a D-dimensional vector. 

• What is the time complexity of finding the nearest neighbors of a 
test pattern? 
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Nearest Neighbor Search 

• The problem of finding the nearest neighbors of a pattern is called 
“nearest neighbor search”. 

• Suppose that we have N training examples. 

• Suppose that each example is a D-dimensional vector. 

• What is the time complexity of finding the nearest neighbors of a 
test pattern? 

• O(ND). 
– We need to consider each dimension of each training example. 

• This complexity is linear, and we are used to thinking that linear 
complexity is not that bad. 

• If we have millions, or billions, or trillions of data, the actual time 
it takes to find nearest neighbors can be a big problem for real-
world applications. 
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Indexing Methods 

• As we just mentioned, measuring the distance 
between the test pattern and each training example 
takes O(ND) time. 

• This method of finding nearest neighbors is called 
“brute-force search”, because we go through all the 
training data. 

• There are methods for finding nearest neighbors that 
are sublinear to N (even logarithmic, at times), but 
exponential to D. 

• Can you think of an example? 
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Indexing Methods 

• As we just mentioned, measuring the distance 
between the test pattern and each training example 
takes O(ND) time. 

• This method of finding nearest neighbors is called 
“brute-force search”, because we go through all the 
training data. 

• There are methods for finding nearest neighbors that 
are sublinear to N (even logarithmic, at times), but 
exponential to D. 

• Can you think of an example? 

• Binary search (applicable when D=1) takes O(log N) 
time. 
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Indexing Methods 

• In some cases, faster algorithms exist that, however, are 
approximate. 

– They do not guarantee finding the true nearest neighbor all 
the time. 

– They guarantee that they find the true nearest neighbor with a 
certain probability. 

• This was the topic of my Ph.D. thesis, so I can talk for 
days about it (but I won’t). 
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The Curse of Dimensionality 

• The “curse of dimensionality” is a commonly used term in 
artificial intelligence. 
– Common enough that it has a dedicated Wikipedia article. 

• It is actually not a single curse, it shows up in many different 
ways. 

• The curse consists of the fact that lots of AI methods are very 
good at handling low-dimensional data, but horrible at 
handling high-dimensional data. 

• The nearest neighbor problem is an example of this curse. 
– Finding nearest neighbors in low dimensions (like 1, 2, 3 dimensions) 

can be done in close to logarithmic time. 

– However, these approaches take time exponential to D. 

– By the time you get to 50, 100, 1000 dimensions, they get hopeless. 

– Data in AI oftentimes has thousands or millions of dimensions. 
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More Exotic Distance Measures 

• The Euclidean and Manhattan distance are the most 
commonly used distance measures. 

• However, in some cases they do not make much 
sense, or they cannot even be applied. 

• In such cases, more exotic distance measures can be 
used. 

• A few examples (this is not required material, it is 
just for your reference): 

– The edit distance for strings (hopefully you’ve seen it in 
your algorithms class). 

– Dynamic time warping for time series. 

– Bipartite matching for sets. 23 



Nearest Neighbor Classification: 
Recap 

• Nearest neighbor classifiers can be pretty simple to 
implement. 

• They become increasingly accurate as we get more 
training examples. 

• Normalizing the values in each dimension may be 
necessary, before measuring distances. 

• Finding nearest neighbors in high-dimensional 
spaces can be very, very slow, when we have lots of 
training data. 
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