Optimization, Gradient Descent,
and Backpropagation

CSE 4308/5360: Artificial Intelligence |
University of Texas at Arlington

Optimization

In Al (and many other scientific and engineering areas), our
goal is oftentimes to construct a “good” function F for a
certain task.

For example, we may want to construct:
— a “good” decision tree.

— a “good” mixture of Gaussians.

— a “good” neural network

How do we define what “good” is?

We have an optimization criterion, that quantitatively
measures how good a function is.

— When we have choices to make about how to construct the function,
the optimization criterion is used to pick the best choice.

Optimization Criteria

e What examples of optimization criteria have we
seen?

e For decision trees:

e For mixtures of Gaussians:

Optimization Criteria

e What examples of optimization criteria have we
seen?

e For decision trees:
— Information gain.

e For mixtures of Gaussians:
— Log likelihood of the training data.

Optimization Criteria

e What optimization criterion can we use for neural networks?

Optimization Criteria

e What optimization criterion can we use for neural networks?

— Training error: the sum, over all training data x;, of absolute
differences between the output h(xj) of the neural network and the
actual class label y; of x..

Ei= 9’=1 |h(xj) — Yj|

— Squared error: the sum of squared differences between the output
h(x;) of the neural network and the actual class label y; of x;.

E,= 9’=1(h(xj) - yf)z

e Forreasons that will be clarified later, we like squared errors
better.

— Preview: Absolute values are not differentiable at 0.
— We like optimization criteria that are differentiable everywhere.

Perceptron - Notation

e For this presentation, we will assume that the bias

input is always equal to 1.

— Note that in the slides the bias is set to -1, in the textbook
itis 1.

e Suppose that each pattern x is D-dimensional.
— X = (Xq, vy Xp)-
e To account for the perceptron’s bias input, we will
represent x as a D+1 dimensional vector:
— X=(1, Xy, «e, Xp)-
— So, for all x, x, = 1.

Perceptron - Notation

The perceptron has a (D+1)-dimensional vector w of
weights: w = (w,, ..., W)

— W, is the weight for the bias input.

We will denote as <w, x> the dot product of w and x.
< w,x >=Y0_ waxg

Note that the textbook and slides use the variable in
for that dot product.

Perceptron - Notation

e Suppose that we are given N training data, X, ..., Xy,
together with their associated class labels vy, ..., yy.

* Each class label y; is either O or 1.

Optimization Criterion - Perceptron

e The perceptron output on any x is denoted as h(x).
e The training squared error E of the perceptron is:

£ =) (h(5) =)’

* Note that h(x) depends on the weight vector w.

e “Learning” or “training” the perceptron essentially means
finding good weights for w.

e The output h(x) and the error E both depend on w.
e To show this dependency, we re-write the error equation as:

E(w) = Z(hw(xj) -)’

10

Optimization Criterion - Perceptron

E(w) = Z(hw(xj) -)’

e So, the error E is a function of w.
e \We want to find a w that minimizes the error.

e This is a classic optimization problem:

— We have a function E(w), taking as input a D-dimensional
vector w, and outputting a real number.

— We want to find the w that minimizes (or maximizes, in
some problems) E(w).

— We will talk about how to minimize E(w), but the process
for maximizing E(w) is similar.

11

Globally and Locally Optimal Solutions

E(w) = Z(hw(xj) -)’

e We want to find the w that minimizes E(w).

e |n general, there are two types of solutions we can look for:
— Finding the globally optimal w, such that E(w) <= E(w’) for any w’ I=w.

— Finding a locally optimal w, such that E(w) <= E(w’) for all w’ within
some distance € of w.

e Usually, finding the globally optimal w is infeasible:
— Takes time exponential to D: the number of dimensions of w.
— Essentially we need to try a lot of values for w.

e There are exceptions: specific problems where we can find
globally optimal solutions.

e For most problems, we just live with locally optimal solutions. 1,

Gradient Descent

E(w) = Z(hw(xj) -)’

We want to find the w that minimizes E(w).
How can we find a locally optimal solution here?

There is a standard recipe, applicable in lots of
optimization problems, that is called gradient
descent.

To apply gradient descent, we just need E(w) to be
differentiable, so that we can compute its gradient
vector.

13

Gradient Descent

e Gradient descent is performed as follows:

1.

2.

4.
5.

Let w be some initial value (chosen randonly or manually).

OE

Compute the gradient Ee

OE
Ifﬁ < T, where t is some predefined thershold, exit.

Updatew: W = w + S—.

Go to step 2.

e Note parameter s at step 4, called the learning rate:

— It must be chosen carefully.

— If sis too large, we may overshoot and miss the minimum.

— If s is too small, it may take too many iterations to stop.

14

Learning a Perceptron

Suppose that a perceptron is using the step function
as its activation function.

Can we apply gradient descent in that case?

No, because E(w) is not differentiable.

— Small changes of w usually lead to no changes in h,(x),
until we make a change large enough to cause h,(x) to
switch from 0 to 1 (or from 1 to 0).

This is why we use the sigmoid activation function g:

1

-h,(x) =g(<w,x>) =

— Given an input x, we compute the weighted sum
<w, x>, and feed that to the sigmoid g.

— The output of g is the output of the perceptron.

15

Learning a Perceptron

1

¢ hyy(x) = g(<Kw,x >) =

e Then, measured just on the single training object x,
the error E(w) is defined as:

EWw) = (y —hy()

" 2
= <y 1 + e—<w,x>)

e |n this form, E(w) is differentiable, and we can

OE

compute the gradient —.
P g P

16

Learning a Perceptron

e Measured just on x, the error E(w) is defined as:

Ew) = (y — hy(x)’

. . OE : .
e Computing the gradient oo 1S @ bit of a pain, so we

will skip it.
— The textbook has all the details.

— The details involve applications of relatively simple and
well known rules of computing derivatives, such as the
chain rule.

17

Learning a Perceptron

e Measured just on x, the error E(w) is defined as:

Ew) = (y — hy(x)’

e We will skip to the solution:

9E — (y = hy(0) * () * (1 = hy () * %

w

OE . . .
e Note that o isa (D+1) dimensional vector. It is a

scalar (shown in red) multiplied by vector x.

18

Weight Update

OE

= (V= hw(0) * hy(x) * (1 — hy () * x

ow

e So, to apply the gradient descent update rule, we
update the weight vector w as follows:

w=w+sx(y— hy(0)* hy(0) * (1= hy () * x

e Remember that s is the learning rate, it is a positive
real number that should be chosen carefully, so as not
to be too big or too small.

* |n terms of individual weights w, the update rule is:

Wg =wgq +5* (y — hy(x)) * hy (x) * (1 = hy (x)) * Xq,

Perceptron Learning Algorithm

Inputs:
— N D-dimensional training objects x;, ..., Xy.

— The associated class labels y;, ..., yy, which are 0 or 1.

Extend each x; to a (D+1) dimensional vector, by adding the bias
input as the value for the zero-th dimension.

Initialize weights w, to small random numbers.

— For example, set each w, between -1 and 1.
Forj=1to N:

1. Compute hw(xj).

2. Ford=0toD:

Wqg= Wq + S * (y — hw(xj)) * hw(xj) * (1 — hw(xj)) * Xj g
If some stopping criterion has been met, exit.
Else, go to step 3.

20

Updates for Each Example

e One interesting thing in the perceptron learning
algorithm is that weights are updated every time we
see a training example.

e This is different from learning decision trees,
Gaussians, or mixtures of Gaussians, where we have
to look at all examples before we make an update.

21

Stopping Criterion

e At step 4 of the perceptron learning algorithm, we
need to decide whether to stop or not.

e One thing we can do is:

— Compute the cumulative squared error E(w) of the
perceptron at that point:

E(w) = Z(hw(xj) -)’

— Compare E(w) with the cumulative error we have
computed at the previous iteration.

— If the difference is too small (e.g., smaller than 0.00001)
we stop.

Using Perceptrons for Multiclass
Problems

A perceptron outputs a number between 0 and 1.

This is sufficient only for binary classification
problems.

For more than two classes, there are many different
options.

We will follow a general approach called one-versus-

all classification.

23

One-Versus-All Perceptrons

Suppose we have M classes C,, ..., Cy,, where L > 2.

For each class C_, train a perceptron h_ by using:
— y; = 0 if the class of x; is not C ..

— y;=1if the class of x; is C_.

So, perceptron h_ is trained to recognize if an object
is of class C_ or not.

In total, we train M perceptrons, one for each class.

24

One-Versus-All Perceptrons

e To classify a test pattern x:
— Compute the responses h_(x) for all M perceptrons.

— Find the class C, such that the response h_.(x) is higher
than all other responses.

— Output that the class of xis C ..

e S0, we assign x to the class whose perceptron gave
the highest response for x.

25

Neural Network Structure

Perceptrons are organized into layers:

There is the input layer.

— Here, there are no actual perceptrons, just D+1 inputs, which are set to the
values of each example x that is fed to the network.

— Each input is connected to some perceptrons in the first hidden layer.

There are one or more hidden layers.

— Each perceptron here receives as inputs the outputs of allperceptrons from
the previous layer.

— Each perceptron provides its output as input to all perceptrons in the next
layer.
There is an output layer.

— Each perceptron here receives as inputs the outputs of all perceptrons from
the previous layer.

— |If we have a binary classification problem, we have one output perceptron.
— Otherwise, we have as many output perceptrons as the number of classes. 26

Neural Network Notation

Our training and test data is again D-dimensional.

We extend our data to be (D+1) dimensional, so as to include
the bias input.

We have U perceptrons.
For each perceptron P, we denote by a, its output.

We denote by w, , the weight of the edge connecting the
output of perceptron P, with an input of perceptron P,

Each class label y; is now a vector.

To make notation more convenient, we will treat y; as a U-
dimensional vector. (U is the total number of perceptrons).

If P, is the m-th output vector, and X; belongs to class m, then:

— y; will have value 1 in the u-th dimension.

— vy, will have values 0 in all other dimensions.

27

Squared Error for Neural Networks

Let h,(x) be the output of a neural network. The output now is a
vector, since there can be many output perceptrons.

The optimization criterion is the squared error, but it must be
adjusted to account for vector output:

N
2
E(w) = z z (:Vj,u - au)
= u:P, € output layer

This is now a double summation.
— We sum over all training examples x;.
— For each x;, we sum over all perceptrons in the output layer.

— We sum the squared difference between the actual output, and what it
should be.

— We denote by y; , the u-th dimension of class label y..)3

Error on a Single Training Example

e As we did for single perceptrons, we can measure the error of

the neural network on a single training example x, and its
associated class label y.

— Note that now we denote by y, the u-th dimension of y.

2
E(w) = E (Vju = au)
u:P,, € output layer

e Assuming that each unit in the network uses the sigmoid
activation function, E(w) is differentiable again.

OE
e We can compute the gradient P

e Based on the gradient, we can update all weights.

29

Backpropagation

S . OE
We will skip the actual calculation ofﬁ.

— The textbook has all the details.
We will just show the formulas for how to update
weights after we see a training example x.

There is a different formula for the weights of edges
leading to the output layer, and a different formula for
the rest of the edges.

The algorithm that uses these formulas for training
neural networks is called backpropagation.

The next slides describe this algorithm.

30

Step 1: Compute Outputs

e Given a training example x, and its class label y, we first
must compute the outputs of all units in the network.

e We follow this process:
// Update the input layer, set inputs equal to x.
1. Foru=0toD:
- a, = xy(where x, is the u-th dimension of x).
// Update the rest of the layers:

2. Forl=2tolL (wherelisthe number of layers):
— For each perceptron P, in layer I

e In, = Zu: P, € layerl-1 Wy,vQy
e a, = g(in,), where g is the sigmoid activation function.

31

Step 2: Update Weights

e For each perceptron P,in the output layer:
- Alv] = g(iny) * (1-g(iny)) * (v, — ay)
— For each perceptron P, in the preceding layer L-1:

°* Wy = Wy, + 5 *ay *x AlV]

e Forl|l=1L-1to 2:
— For each perceptron P, in layer I:

° A[U] = g(inv) * (1 - g(inv)) * Zz: P, € layerl+1(Wv,z * A[Z])
e For each perceptron P,in the preceding layer I-1:

~ Wy = Wy + S *ay * Alv]

32

Backpropation Summary

Inputs:
— N D-dimensional training objects x;, ..., Xy.

— The associated class labels y;, ..., y, Which are U-dimensional vectors.

Extend each x; to a (D+1) dimensional vector, by adding the bias
input as the value for the zero-th dimension.

Initialize weights w,, , to small random numbers.

— For example, set each w,, between -1 and 1.

last_error = E(w)

Forj=1to N:

— Update weights w, , as described in the previous slides.

err = E(w)

If |err —last_error| < threshold, exit. // threshold can be 0.00001.
Else: last_error = err, go to step 3.

33

Classification with Neural Networks

Suppose we have M classes C,, ..., C,.
Each class C , corresponds to an output perceptron P,,.
Given a test pattern x = (x,, ..., Xp) to classify:
Compute outputs for all units, as we did in training.
Foru=0toD:a, = x,
For | =2 to L (where L is the number of layers):

— For each perceptron P, in layer I

e In, = Zu: P, € layerl-1 Wy,vQy
e a, = g(in,), where g is the sigmoid activation function.

Find the output unit P, with the highest response a,,.
Return the class that corresponds to P,.

34

Structure of Neural Networks

Backpropagation describes how to learn weights.

However, it does not describe how to learn the
structure:

— How many layers?

— How many units at each layer?

These are parameters that we have to choose
somehow.

A good way to choose such parameters is by using a
validation set, containing examples and their class
labels.

— The validation set should be separate (disjoint) from the
training set. .

Structure of Neural Networks

e To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

e For each choice of parameters:
— We train several neural networks using backpropagation.

— We measure how well each neural network classifies the
validation examples.

— Why not train just one neural network?

36

Structure of Neural Networks

e To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

e For each choice of parameters:

— We train several neural networks using backpropagation.

— We measure how well each neural network classifies the
validation examples.

— Why not train just one neural network?
— Each network is randomly initialized, so after
backpropagation it can be different from the other networks.

e At the end, we select the neural network that did best
on the validation set.

37

