Optimization, Gradient Descent, and Backpropagation

CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Optimization

- In AI (and many other scientific and engineering areas), our goal is oftentimes to construct a "good" function F for a certain task.
- For example, we may want to construct:
 - a "good" decision tree.
 - a "good" mixture of Gaussians.
 - a "good" neural network
- How do we define what "good" is?
- We have an **optimization criterion**, that quantitatively measures how good a function is.
 - When we have choices to make about how to construct the function, the optimization criterion is used to pick the best choice.

- What examples of optimization criteria have we seen?
- For decision trees:
- For mixtures of Gaussians:

- What examples of optimization criteria have we seen?
- For decision trees:
 - Information gain.
- For mixtures of Gaussians:
 - Log likelihood of the training data.

• What optimization criterion can we use for neural networks?

- What optimization criterion can we use for neural networks?
 - Training error: the sum, over all training data x_j , of absolute differences between the output $h(x_j)$ of the neural network and the actual class label y_j of x_j .

$$E_1 = \sum_{j=1}^N |h(x_j) - y_j|$$

- Squared error: the sum of <u>squared</u> differences between the output $h(x_i)$ of the neural network and the actual class label y_i of x_i .

$$E_2 = \sum_{j=1}^N \left(h(x_j) - y_j \right)^2$$

- For reasons that will be clarified later, we like squared errors better.
 - Preview: Absolute values are not differentiable at 0.
 - We like optimization criteria that are differentiable everywhere.

Perceptron - Notation

- For this presentation, we will assume that the bias input is always equal to 1.
 - Note that in the slides the bias is set to -1, in the textbook it is 1.
- Suppose that each pattern x is D-dimensional.

 $- x = (x_1, ..., x_D).$

• To account for the perceptron's bias input, we will represent x as a D+1 dimensional vector:

$$- x = (1, x_1, ..., x_D).$$

- So, for all x, $x_0 = 1$.

Perceptron - Notation

 The perceptron has a (D+1)-dimensional vector w of weights: w = (w₀, ..., w_D).

 $- w_0$ is the weight for the bias input.

• We will denote as <w, x> the dot product of w and x.

• <
$$w, x > = \sum_{d=0}^{D} w_d x_d$$

• Note that the textbook and slides use the variable **in** for that dot product.

Perceptron - Notation

- Suppose that we are given N training data, x₁, ..., x_N, together with their associated class labels y₁, ..., y_N.
- Each class label y_i is either 0 or 1.

Optimization Criterion - Perceptron

- The perceptron output on any x is denoted as h(x).
- The training squared error E of the perceptron is:

$$E = \sum_{j=1}^{N} \left(h(x_j) - y_j \right)^2$$

- Note that h(x) depends on the weight vector w.
- "Learning" or "training" the perceptron essentially means finding good weights for w.
- The output h(x) and the error E both depend on w.
- To show this dependency, we re-write the error equation as:

$$E(w) = \sum_{j=1}^{N} (h_w(x_j) - y_j)^2$$

Optimization Criterion - Perceptron

$$E(w) = \sum_{j=1}^{N} (h_w(x_j) - y_j)^2$$

- So, the error E is a function of w.
- We want to find a w that minimizes the error.
- This is a classic optimization problem:
 - We have a function E(w), taking as input a D-dimensional vector w, and outputting a real number.
 - We want to find the w that minimizes (or maximizes, in some problems) E(w).
 - We will talk about how to minimize E(w), but the process for maximizing E(w) is similar.

Globally and Locally Optimal Solutions

$$E(w) = \sum_{j=1}^{N} (h_w(x_j) - y_j)^2$$

- We want to find the w that minimizes E(w).
- In general, there are two types of solutions we can look for:
 - Finding the **globally optimal** w, such that $E(w) \le E(w')$ for any w' != w.
 - Finding a <u>locally optimal</u> w, such that E(w) <= E(w') for all w' within some distance ε of w.
- Usually, finding the globally optimal w is infeasible:
 - Takes time exponential to D: the number of dimensions of w.
 - Essentially we need to try a lot of values for w.
- There are exceptions: specific problems where we can find globally optimal solutions.
- For most problems, we just live with locally optimal solutions. 12

Gradient Descent

$$E(w) = \sum_{j=1}^{N} (h_w(x_j) - y_j)^2$$

- We want to find the w that minimizes E(w).
- How can we find a locally optimal solution here?
- There is a standard recipe, applicable in lots of optimization problems, that is called <u>gradient</u>
 <u>descent</u>.
- To apply gradient descent, we just need E(w) to be differentiable, so that we can compute its gradient vector.

Gradient Descent

- Gradient descent is performed as follows:
 - 1. Let w be some initial value (chosen randonly or manually).

2. Compute the gradient
$$\frac{\partial E}{\partial w}$$
.

3. If $\frac{\partial E}{\partial w} < t$, where t is some predefined thershold, **exit**.

- 4. Update w: $w = w + s \frac{\partial E}{\partial w}$.
- 5. Go to step 2.
- Note parameter s at step 4, called the learning rate:
 - It must be chosen carefully.
 - If s is too large, we may overshoot and miss the minimum.
 - If s is too small, it may take too many iterations to stop.

- Suppose that a perceptron is using the step function as its activation function.
- Can we apply gradient descent in that case?
- No, because E(w) is not differentiable.
 - Small changes of w usually lead to no changes in h_w(x), until we make a change large enough to cause h_w(x) to switch from 0 to 1 (or from 1 to 0).
- This is why we use the sigmoid activation function g:

$$-h_w(x) = g(\langle w, x \rangle) = \frac{1}{1 + e^{-\langle w, x \rangle}}$$

- Given an input x, we compute the weighted sum
 <w, x>, and feed that to the sigmoid g.
- The output of g is the output of the perceptron.

•
$$h_w(x) = g(\langle w, x \rangle) = \frac{1}{1 + e^{-\langle w, x \rangle}}$$

 Then, measured just on the single training object x, the error E(w) is defined as:

$$E(w) = \left(y - h_w(x)\right)^2$$
$$= \left(y - \frac{1}{1 + e^{-\langle w, x \rangle}}\right)^2$$

• In this form, E(w) is differentiable, and we can compute the gradient $\frac{\partial E}{\partial w}$.

• Measured just on x, the error E(w) is defined as:

$$E(w) = \left(y - h_w(x)\right)^2$$

- Computing the gradient $\frac{\partial E}{\partial w}$ is a bit of a pain, so we will skip it.
 - The textbook has all the details.
 - The details involve applications of relatively simple and well known rules of computing derivatives, such as the chain rule.

• Measured just on x, the error E(w) is defined as:

$$E(w) = \left(y - h_w(x)\right)^2$$

• We will skip to the solution:

$$\frac{\partial E}{\partial w} = \left(y - h_w(x)\right) * h_w(x) * \left(1 - h_w(x)\right) * x$$

• Note that $\frac{\partial E}{\partial w}$ is a (D+1) dimensional vector. It is a scalar (shown in red) multiplied by vector x.

Weight Update

$$\frac{\partial E}{\partial w} = \left(y - h_w(x)\right) * h_w(x) * \left(1 - h_w(x)\right) * x$$

• So, to apply the gradient descent update rule, we update the weight vector w as follows:

$$w = w + s * (y - h_w(x)) * h_w(x) * (1 - h_w(x)) * x$$

- Remember that s is the learning rate, it is a positive real number that should be chosen carefully, so as not to be too big or too small.
- In terms of individual weights w_d, the update rule is:

$$w_{d} = w_{d} + s * (y - h_{w}(x)) * h_{w}(x) * (1 - h_{w}(x)) * x_{d_{19}}$$

Perceptron Learning Algorithm

- Inputs:
 - N D-dimensional training objects $x_1, ..., x_N$.
 - The associated class labels $y_1, ..., y_N$, which are 0 or 1.
- Extend each x_j to a (D+1) dimensional vector, by adding the bias input as the value for the zero-th dimension.
- 2. Initialize weights w_d to small random numbers.
 - For example, set each w_d between -1 and 1.
- 3. For j = 1 to N:
 - 1. Compute $h_w(x_j)$.
 - 2. For d = 0 to D:

$$w_d = w_d + s * (y - h_w(x_j)) * h_w(x_j) * (1 - h_w(x_j)) * x_{j,d}$$

- 4. If some stopping criterion has been met, exit.
- 5. Else, go to step 3.

Updates for Each Example

- One interesting thing in the perceptron learning algorithm is that weights are updated every time we see a training example.
- This is different from learning decision trees, Gaussians, or mixtures of Gaussians, where we have to look at all examples before we make an update.

Stopping Criterion

- At step 4 of the perceptron learning algorithm, we need to decide whether to stop or not.
- One thing we can do is:
 - Compute the cumulative squared error E(w) of the perceptron at that point:

$$E(w) = \sum_{j=1}^{N} (h_w(x_j) - y_j)^2$$

- Compare E(w) with the cumulative error we have computed at the previous iteration.
- If the difference is too small (e.g., smaller than 0.00001) we stop.

Using Perceptrons for Multiclass Problems

- A perceptron outputs a number between 0 and 1.
- This is sufficient only for binary classification problems.
- For more than two classes, there are many different options.
- We will follow a general approach called <u>one-versus-</u> <u>all classification</u>.

One-Versus-All Perceptrons

- Suppose we have M classes $C_1, ..., C_M$, where L > 2.
- For each class C_m, train a perceptron h_m by using:
 y_j = 0 if the class of x_j is not C_m.

 $- y_j = 1$ if the class of x_j is C_m .

- So, perceptron h_m is trained to recognize if an object is of class C_m or not.
- In total, we train M perceptrons, one for each class.

One-Versus-All Perceptrons

- To classify a test pattern x:
 - Compute the responses $h_m(x)$ for all M perceptrons.
 - Find the class $C_{m'}$ such that the response $h_{m'}(x)$ is higher than all other responses.
 - Output that the class of x is $C_{m'}$.
- So, we assign x to the class whose perceptron gave the highest response for x.

Neural Network Structure

- Perceptrons are organized into layers:
- There is the input layer.
 - Here, there are no actual perceptrons, just D+1 inputs, which are set to the values of each example x that is fed to the network.
 - Each input is connected to some perceptrons in the first hidden layer.
- There are one or more hidden layers.
 - Each perceptron here receives as inputs the outputs of allperceptrons from the previous layer.
 - Each perceptron provides its output as input to all perceptrons in the next layer.
- There is an output layer.
 - Each perceptron here receives as inputs the outputs of all perceptrons from the previous layer.
 - If we have a binary classification problem, we have one output perceptron.
 - Otherwise, we have as many output perceptrons as the number of classes. 26

Neural Network Notation

- Our training and test data is again D-dimensional.
- We extend our data to be (D+1) dimensional, so as to include the bias input.
- We have U perceptrons.
- For each perceptron P_u , we denote by a_u its output.
- We denote by $w_{u,v}$ the weight of the edge connecting the output of perceptron P_u with an input of perceptron P_v .
- Each class label y_i is now a vector.
- To make notation more convenient, we will treat y_j as a Udimensional vector. (U is the total number of perceptrons).
- If P_u is the m-th output vector, and x_i belongs to class m, then:
 - $-y_i$ will have value 1 in the u-th dimension.
 - y_i will have values 0 in all other dimensions.

Squared Error for Neural Networks

- Let h_w(x) be the output of a neural network. The output now is a vector, since there can be many output perceptrons.
- The optimization criterion is the squared error, but it must be adjusted to account for vector output:

$$E(w) = \sum_{j=1}^{N} \sum_{u:P_u \in \text{output layer}} (y_{j,u} - a_u)^2$$

- This is now a double summation.
 - We sum over all training examples x_i.
 - For each x_i , we sum over all perceptrons in the output layer.
 - We sum the squared difference between the actual output, and what it should be.
 - We denote by $y_{i,u}$ the u-th dimension of class label y_i .

Error on a Single Training Example

- As we did for single perceptrons, we can measure the error of the neural network on a single training example x, and its associated class label y.
 - Note that now we denote by y_u the u-th dimension of y.

$$E(w) = \sum_{u:P_u \in \text{output layer}} (y_{j,u} - a_u)^2$$

- Assuming that each unit in the network uses the sigmoid activation function, E(w) is differentiable again.
- We can compute the gradient $\frac{\partial E}{\partial w}$.
- Based on the gradient, we can update all weights.

Backpropagation

• We will skip the actual calculation of $\frac{\partial E}{\partial w}$.

The textbook has all the details.

- We will just show the formulas for how to update weights after we see a training example x.
- There is a different formula for the weights of edges leading to the output layer, and a different formula for the rest of the edges.
- The algorithm that uses these formulas for training neural networks is called **backpropagation**.
- The next slides describe this algorithm.

Step 1: Compute Outputs

- Given a training example x, and its class label y, we first must compute the outputs of all units in the network.
- We follow this process:
- // Update the input layer, set inputs equal to x.
- 1. For u = 0 to D:

- $a_u = x_u$ (where x_u is the u-th dimension of x).

- // Update the rest of the layers:
- 2. For I = 2 to L (where L is the number of layers):
 - For each perceptron P_v in layer I:

•
$$\operatorname{in}_{v} = \sum_{u: P_u \in \operatorname{layer} l-1} w_{u,v} a_u$$

• $a_v = g(in_v)$, where g is the sigmoid activation function.

Step 2: Update Weights

• For each perceptron P_v in the output layer:

$$-\Delta[v] = g(in_v) * (1 - g(in_v)) * (y_v - a_v)$$

- For each perceptron P_u in the preceding layer L-1:

•
$$w_{u,v} = w_{u,v} + s * a_u * \Delta[v]$$

- For I = L-1 to 2:
 - For each perceptron P_v in layer I:
 - $\Delta[v] = g(in_v) * (1 g(in_v)) * \sum_{z: P_z \in layer l+1} (w_{v,z} * \Delta[z])$
 - For each perceptron P_u in the preceding layer I-1:

$$-w_{u,v} = w_{u,v} + s * a_u * \Delta[v]$$

Backpropation Summary

- Inputs:
 - N D-dimensional training objects $x_1, ..., x_N$.
 - The associated class labels $y_1, ..., y_N$, which are U-dimensional vectors.
- Extend each x_j to a (D+1) dimensional vector, by adding the bias input as the value for the zero-th dimension.
- 2. Initialize weights $w_{u,v}$ to small random numbers.
 - For example, set each $w_{u,v}$ between -1 and 1.
- 3. last_error = E(w)
- 4. For j = 1 to N:
 - Update weights $w_{u,v}$ as described in the previous slides.
- 4. err = E(w)
- 5. If |err last_error | < threshold, exit. // threshold can be 0.00001.
- 6. Else: last_error = err, go to step 3.

Classification with Neural Networks

- Suppose we have M classes C₁, ..., C_M.
- Each class C_m corresponds to an output perceptron P_u.
- Given a test pattern $x = (x_0, ..., x_D)$ to classify:
- Compute outputs for all units, as we did in training.
- 1. For u = 0 to D: $a_u = x_u$
- 2. For I = 2 to L (where L is the number of layers):
 - For each perceptron P_v in layer I:
 - $\operatorname{in}_{v} = \sum_{u: P_u \in \operatorname{layer} l-1} w_{u,v} a_u$
 - $a_v = g(in_v)$, where g is the sigmoid activation function.
- Find the output unit P_u with the highest response a_u .
- Return the class that corresponds to P_u.

Structure of Neural Networks

- Backpropagation describes how to learn weights.
- However, it does not describe how to learn the structure:
 - How many layers?
 - How many units at each layer?
- These are parameters that we have to choose somehow.
- A good way to choose such parameters is by using a validation set, containing examples and their class labels.
 - The validation set should be separate (disjoint) from the training set.

Structure of Neural Networks

- To choose the best structure for a neural network using a validation set, we try many different parameters (number of layers, number of units per layer).
- For each choice of parameters:
 - We train several neural networks using backpropagation.
 - We measure how well each neural network classifies the validation examples.
 - Why not train just one neural network?

Structure of Neural Networks

- To choose the best structure for a neural network using a validation set, we try many different parameters (number of layers, number of units per layer).
- For each choice of parameters:
 - We train several neural networks using backpropagation.
 - We measure how well each neural network classifies the validation examples.
 - Why not train just one neural network?
 - Each network is randomly initialized, so after backpropagation it can be different from the other networks.
- At the end, we select the neural network that did best on the validation set.