
Optimization, Gradient Descent, 
and Backpropagation 

CSE 4308/5360: Artificial Intelligence I 

University of Texas at Arlington 

1 



Optimization 

• In AI (and many other scientific and engineering areas), our 
goal is oftentimes to construct a “good” function F for a 
certain task. 

• For example, we may want to construct: 
– a “good” decision tree. 

– a “good” mixture of Gaussians.  

– a “good” neural network 

• How do we define what “good” is? 

• We have an optimization criterion, that quantitatively 
measures how good a function is. 
– When we have choices to make about how to construct the function, 

the optimization criterion is used to pick the best choice. 
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Optimization Criteria 

• What examples of optimization criteria have we 
seen? 

• For decision trees:  

 

• For mixtures of Gaussians: 
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Optimization Criteria 

• What examples of optimization criteria have we 
seen? 

• For decision trees:  

– Information gain. 

• For mixtures of Gaussians: 

– Log likelihood of the training data. 
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Optimization Criteria 

• What optimization criterion can we use for neural networks? 
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Optimization Criteria 

• What optimization criterion can we use for neural networks? 
– Training error: the sum, over all training data xj, of absolute 

differences between the output h(xj) of the neural network and the 
actual class label yj of xj. 

 

 
 

– Squared error: the sum of squared differences between the output 
h(xj) of the neural network and the actual class label yj of xj. 
 
 
 

• For reasons that will be clarified later, we like squared errors 
better. 
– Preview: Absolute values are not differentiable at 0. 

– We like optimization criteria that are differentiable everywhere. 6 
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Perceptron - Notation 

• For this presentation, we will assume that the bias 
input is always equal to 1. 

– Note that in the slides the bias is set to -1, in the textbook 
it is 1. 

• Suppose that each pattern x is D-dimensional. 

– x = (x1, …, xD). 

• To account for the perceptron’s bias input, we will 
represent x as a D+1 dimensional vector: 

– x = (1, x1, …, xD). 

– So, for all x, x0 = 1. 
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Perceptron - Notation 

• The perceptron has a (D+1)-dimensional vector w of 
weights: w = (w0, …, wD). 

– w0 is the weight for the bias input. 

• We will denote as <w, x> the dot product of w and x. 

• <  𝑤, 𝑥 > =  𝑤𝑑𝑥𝑑
𝐷
𝑑=0  

• Note that the textbook and slides use the variable in 
for that dot product. 
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Perceptron - Notation 

• Suppose that we are given N training data, x1, …, xN, 
together with their associated class labels y1, …, yN. 

• Each class label yj is either 0 or 1. 
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Optimization Criterion - Perceptron 

• The perceptron output on any x is denoted as h(x). 

• The training squared error E of the perceptron is: 

 

 

 

• Note that h(x) depends on the weight vector w. 

• “Learning” or “training” the perceptron essentially means 
finding good weights for w. 

• The output h(x) and the error E both depend on w. 

• To show this dependency, we re-write the error equation as:  
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𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁
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Optimization Criterion - Perceptron 

• So, the error E is a function of w. 

• We want to find a w that minimizes the error. 

• This is a classic optimization problem: 

– We have a function E(w), taking as input a D-dimensional 
vector w, and outputting a real number. 

– We want to find the w that minimizes (or maximizes, in 
some problems) E(w). 

– We will talk about how to minimize E(w), but the process 
for maximizing E(w) is similar. 
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𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
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Globally and Locally Optimal Solutions 

• We want to find the w that minimizes E(w). 

• In general, there are two types of solutions we can look for: 
– Finding the globally optimal w, such that E(w) <= E(w’) for any w’ != w. 

– Finding a locally optimal w, such that E(w) <= E(w’) for all w’ within 
some distance ε of w. 

• Usually, finding the globally optimal w is infeasible:  
– Takes time exponential to D: the number of dimensions of w. 

– Essentially we need to try a lot of values for w. 

• There are exceptions: specific problems where we can find 
globally optimal solutions. 

• For most problems, we just live with locally optimal solutions. 12 

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
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Gradient Descent 

• We want to find the w that minimizes E(w). 

• How can we find a locally optimal solution here? 

• There is a standard recipe, applicable in lots of 
optimization problems, that is called gradient 
descent. 

• To apply gradient descent, we just need E(w) to be 
differentiable, so that we can compute its gradient 
vector.  
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Gradient Descent 

• Gradient descent is performed as follows: 

1. Let w be some initial value (chosen randonly or manually). 

2. Compute the gradient 
𝜕𝐸

𝜕𝑤
. 

3. If 
𝜕𝐸

𝜕𝑤
< 𝑡, where t is some predefined thershold, exit.  

4. Update w: 𝑤 =  𝑤 + 𝑠
𝜕𝐸

𝜕𝑤
. 

5. Go to step 2. 

• Note parameter s at step 4, called the learning rate:  

– It must be chosen carefully. 

– If s is too large, we may overshoot and miss the minimum. 

– If s is too small, it may take too many iterations to stop. 
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Learning a Perceptron 

• Suppose that a perceptron is using the step function 
as its activation function. 

• Can we apply gradient descent in that case? 

• No, because E(w) is not differentiable. 

– Small changes of w usually lead to no changes in hw(x), 
until we make a change large enough to cause hw(x) to 
switch from 0 to 1 (or from 1 to 0). 

• This is why we use the sigmoid activation function g:  

– ℎ𝑤 𝑥 = 𝑔 < 𝑤, 𝑥 > =
1

1+ 𝑒−<𝑤,𝑥>
 

– Given an input x, we compute the weighted sum  
<w, x>, and feed that to the sigmoid g. 

– The output of g is the output of the perceptron. 15 



Learning a Perceptron 

• ℎ𝑤 𝑥 = 𝑔 < 𝑤, 𝑥 > =
1

1+ 𝑒−<𝑤,𝑥>
 

 

• Then, measured just on the single training object x, 
the error E(w) is defined as:  
 

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

 
 

           = 𝑦 −
1

1 + 𝑒−<𝑤,𝑥>

2

 

 

• In this form, E(w) is differentiable, and we can 

compute the gradient 
𝜕𝐸

𝜕𝑤
. 
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Learning a Perceptron 

• Measured just on x, the error E(w) is defined as:  
 

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

 
 

• Computing the gradient 
𝜕𝐸

𝜕𝑤
 is a bit of a pain, so we 

will skip it. 

– The textbook has all the details. 

– The details involve applications of relatively simple and 
well known rules of computing derivatives, such as the 
chain rule. 
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Learning a Perceptron 

• Measured just on x, the error E(w) is defined as:  
 

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

 
 

• We will skip to the solution:  

 
𝜕𝐸

𝜕𝑤
= 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥  ∗ (1 − ℎ𝑤 𝑥 ) ∗ 𝑥 

 

• Note that 
𝜕𝐸

𝜕𝑤
 is a (D+1) dimensional vector. It is a 

scalar (shown in red) multiplied by vector x. 
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Weight Update 

𝜕𝐸

𝜕𝑤
= 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥  ∗ (1 − ℎ𝑤 𝑥 ) ∗ 𝑥 

 

• So, to apply the gradient descent update rule, we 
update the weight vector w as follows:  
 

𝑤 = 𝑤 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥  ∗ (1 − ℎ𝑤 𝑥 ) ∗ 𝑥 
 

• Remember that s is the learning rate, it is a positive 
real number that should be chosen carefully, so as not 
to be too big or too small. 

• In terms of individual weights wd, the update rule is: 
 

𝑤𝑑 = 𝑤𝑑 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥  ∗ (1 − ℎ𝑤 𝑥 ) ∗ 𝑥𝑑 
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Perceptron Learning Algorithm 

• Inputs:  
– N D-dimensional training objects x1, …, xN. 

– The associated class labels y1, …, yN, which are 0 or 1. 

1. Extend each xj to a (D+1) dimensional vector, by adding the bias 
input as the value for the zero-th dimension. 

2. Initialize weights wd to small random numbers. 
– For example, set each wd between -1 and 1. 

3. For j = 1 to N: 

1. Compute ℎ𝑤 𝑥𝑗 . 

2. For d = 0 to D: 

               𝑤𝑑= 𝑤𝑑 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥𝑗 ∗ ℎ𝑤 𝑥𝑗  ∗ (1 − ℎ𝑤 𝑥𝑗 ) ∗ 𝑥𝑗,𝑑 

4. If some stopping criterion has been met, exit. 

5. Else, go to step 3. 
20 



Updates for Each Example 

• One interesting thing in the perceptron learning 
algorithm is that weights are updated every time we 
see a training example. 

• This is different from learning decision trees, 
Gaussians, or mixtures of Gaussians, where we have 
to look at all examples before we make an update. 
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Stopping Criterion 

• At step 4 of the perceptron learning algorithm, we 
need to decide whether to stop or not. 

• One thing we can do is: 

– Compute the cumulative squared error E(w) of the 
perceptron at that point: 

 

 

 
 

– Compare E(w) with the cumulative error we have 
computed at the previous iteration. 

– If the difference is too small (e.g., smaller than 0.00001) 
we stop. 
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𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁
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Using Perceptrons for Multiclass 
Problems 

• A perceptron outputs a number between 0 and 1. 

• This is sufficient only for binary classification 
problems. 

• For more than two classes, there are many different 
options. 

• We will follow a general approach called one-versus-
all classification. 
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One-Versus-All Perceptrons 

• Suppose we have M classes C1, …, CM, where L > 2. 

• For each class Cm, train a perceptron hm by using: 

– yj = 0 if the class of xj is not Cm. 
 

– yj = 1 if the class of xj is Cm. 
 

• So, perceptron hm is trained to recognize if an object 
is of class Cm or not. 

• In total, we train M perceptrons, one for each class. 
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One-Versus-All Perceptrons 

• To classify a test pattern x: 

– Compute the responses hm(x) for all M perceptrons. 

– Find the class Cm’ such that the response hm’(x) is higher 
than all other responses. 

– Output that the class of x is Cm’. 

• So, we assign x to the class whose perceptron gave 
the highest response for x. 
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Neural Network Structure 

• Perceptrons are organized into layers: 

• There is the input layer. 
– Here, there are no actual perceptrons, just D+1 inputs, which are set to the 

values of each example x that is fed to the network. 

– Each input is connected to some perceptrons in the first hidden layer. 

• There are one or more hidden layers. 
– Each perceptron here receives as inputs the outputs of allperceptrons from 

the previous layer. 

– Each perceptron provides its output as input to all perceptrons in the next 
layer. 

• There is an output layer. 
– Each perceptron here receives as inputs the outputs of all perceptrons from 

the previous layer. 

– If we have a binary classification problem, we have one output perceptron. 

– Otherwise, we have as many output perceptrons as the number of classes. 26 



Neural Network Notation 

• Our training and test data is again D-dimensional. 

• We extend our data to be (D+1) dimensional,  so as to include 
the bias input. 

• We have U perceptrons. 

• For each perceptron Pu, we denote by au  its output. 

• We denote by wu,v the weight of the edge connecting the 
output of perceptron Pu with an input of perceptron Pv. 

• Each class label yj is now a vector. 

• To make notation more convenient, we will treat yj as a U-
dimensional vector.  (U is the total number of perceptrons). 

• If Pu is the m-th output vector, and xj belongs to class m, then: 
– yj will have value 1 in the u-th dimension. 

– yi will have values 0 in all other dimensions. 
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Squared Error for Neural Networks 

• Let hw(x) be the output of a neural network. The output now is a 
vector, since there can be many output perceptrons. 

• The optimization criterion is the squared error, but it must be 
adjusted to account for vector output: 
 

 

 
 

• This is now a double summation. 
– We sum over all training examples xj. 

– For each xj, we sum over all perceptrons in the output layer. 

– We sum the squared difference between the actual output, and what it 
should be. 

– We denote by yj,u the u-th dimension of class label yj. 28 

𝐸(𝑤) =  𝑦𝑗,𝑢 − 𝑎𝑢
2

𝑢:𝑃𝑢 ∈ output layer

𝑁

𝑗=1

 



Error on a Single Training Example 

• As we did for single perceptrons, we can measure the error of 
the neural network on a single training example x, and its 
associated class label y. 
– Note that now we denote by yu the u-th dimension of y. 

 
 
 
 
 

• Assuming that each unit in the network uses the sigmoid 
activation function, E(w) is differentiable again. 

• We can compute the gradient 
𝜕𝐸

𝜕𝑤
. 

• Based on the gradient, we can update all weights.  

 29 

𝐸(𝑤) = 𝑦𝑗,𝑢 − 𝑎𝑢
2

𝑢:𝑃𝑢 ∈ output layer
 



Backpropagation 

• We will skip the actual calculation of 
𝜕𝐸

𝜕𝑤
. 

– The textbook has all the details. 

• We will just show the formulas for how to update 
weights after we see a training example x. 

• There is a different formula for the weights of edges 
leading to the output layer, and a different formula for 
the rest of the edges. 

• The algorithm that uses these formulas for training 
neural networks is called backpropagation. 

• The next slides describe this algorithm. 

30 



Step 1: Compute Outputs 

• Given a training example x, and its class label y, we first 
must compute the outputs of all units in the network. 

• We follow this process: 

// Update the input layer, set inputs equal to x. 

1. For u = 0 to D:  

– 𝑎𝑢 = 𝑥𝑢(where xu is the u-th dimension of x). 

// Update the rest of the layers: 

2. For l = 2 to L (where L is the number of layers): 

– For each perceptron Pv in layer l:  

• in𝑣  =   𝑤𝑢,𝑣𝑎𝑢𝑢: 𝑃𝑢 ∈  layer 𝑙−1
 

• 𝑎𝑣 = 𝑔(in𝑣), where g is the sigmoid activation function. 
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Step 2: Update Weights 

• For each perceptron Pv in the output layer: 

– Δ[𝑣]  =  𝑔(in𝑣) * (1 - 𝑔(in𝑣)) * (𝑦𝑣 − 𝑎𝑣) 

– For each perceptron Pu in the preceding layer L-1: 

• 𝑤𝑢,𝑣 = 𝑤𝑢,𝑣 + 𝑠 ∗ 𝑎𝑢 ∗ Δ[v] 

 

• For l = L-1 to 2: 

– For each perceptron Pv in layer l: 

• Δ[𝑣]  =  𝑔(in𝑣) * (1 - 𝑔(in𝑣)) *  𝑤𝑣,𝑧 ∗ Δ[z]𝑧: 𝑃𝑧 ∈  layer 𝑙+1
 

• For each perceptron Pu in the preceding layer l-1: 

– 𝑤𝑢,𝑣 = 𝑤𝑢,𝑣 + 𝑠 ∗ 𝑎𝑢 ∗ Δ[v] 
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Backpropation Summary 
• Inputs:  

– N D-dimensional training objects x1, …, xN. 

– The associated class labels y1, …, yN, which are U-dimensional vectors. 

1. Extend each xj to a (D+1) dimensional vector, by adding the bias 
input as the value for the zero-th dimension. 

2. Initialize weights wu,v to small random numbers. 
– For example, set each wu,v between -1 and 1. 

3. last_error = E(w) 

4. For j = 1 to N: 
– Update weights wu,v as described in the previous slides. 

4. err = E(w) 

5. If |err – last_error| < threshold, exit. // threshold can be 0.00001. 

6. Else: last_error = err, go to step 3. 
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Classification with Neural Networks 

• Suppose we have M classes C1, …, CM. 

• Each class Cm corresponds to an output perceptron Pu. 

• Given a test pattern x = (x0, …, xD) to classify: 

• Compute outputs for all units, as we did in training. 

1. For u = 0 to D: 𝑎𝑢 = 𝑥𝑢  

2. For l = 2 to L (where L is the number of layers): 

– For each perceptron Pv in layer l:  

• in𝑣  =   𝑤𝑢,𝑣𝑎𝑢𝑢: 𝑃𝑢 ∈  layer 𝑙−1
 

• 𝑎𝑣 = 𝑔(in𝑣), where g is the sigmoid activation function. 

• Find the output unit Pu with the highest response au. 

• Return the class that corresponds to Pu. 
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Structure of Neural Networks 

• Backpropagation describes how to learn weights. 

• However, it does not describe how to learn the 
structure: 

– How many layers? 

– How many units at each layer? 

• These are parameters that we have to choose 
somehow.  

• A good way to choose such parameters is by using a 
validation set, containing examples and their class 
labels. 

– The validation set should be separate (disjoint) from the 
training set. 
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Structure of Neural Networks 

• To choose the best structure for a neural network using 
a validation set, we try many different parameters 
(number of layers, number of units per layer). 

• For each choice of parameters: 

– We train several neural networks using backpropagation. 

– We measure how well each neural network classifies the 
validation examples. 

– Why not train just one neural network? 
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Structure of Neural Networks 

• To choose the best structure for a neural network using 
a validation set, we try many different parameters 
(number of layers, number of units per layer). 

• For each choice of parameters: 

– We train several neural networks using backpropagation. 

– We measure how well each neural network classifies the 
validation examples. 

– Why not train just one neural network? 

– Each network is randomly initialized, so after 
backpropagation it can be different from the other networks. 

• At the end, we select the neural network that did best 
on the validation set. 
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