
Optimization, Gradient Descent,
and Backpropagation

CSE 4308/5360: Artificial Intelligence I

University of Texas at Arlington

1

Optimization

• In AI (and many other scientific and engineering areas), our
goal is oftentimes to construct a “good” function F for a
certain task.

• For example, we may want to construct:
– a “good” decision tree.

– a “good” mixture of Gaussians.

– a “good” neural network

• How do we define what “good” is?

• We have an optimization criterion, that quantitatively
measures how good a function is.
– When we have choices to make about how to construct the function,

the optimization criterion is used to pick the best choice.

2

Optimization Criteria

• What examples of optimization criteria have we
seen?

• For decision trees:

• For mixtures of Gaussians:

3

Optimization Criteria

• What examples of optimization criteria have we
seen?

• For decision trees:

– Information gain.

• For mixtures of Gaussians:

– Log likelihood of the training data.

4

Optimization Criteria

• What optimization criterion can we use for neural networks?

5

Optimization Criteria

• What optimization criterion can we use for neural networks?
– Training error: the sum, over all training data xj, of absolute

differences between the output h(xj) of the neural network and the
actual class label yj of xj.

– Squared error: the sum of squared differences between the output
h(xj) of the neural network and the actual class label yj of xj.

• For reasons that will be clarified later, we like squared errors
better.
– Preview: Absolute values are not differentiable at 0.

– We like optimization criteria that are differentiable everywhere. 6

𝐸1= |ℎ 𝑥𝑗 − 𝑦𝑗|
𝑁
𝑗=1

𝐸2= ℎ 𝑥𝑗 − 𝑦𝑗
2𝑁

𝑗=1

Perceptron - Notation

• For this presentation, we will assume that the bias
input is always equal to 1.

– Note that in the slides the bias is set to -1, in the textbook
it is 1.

• Suppose that each pattern x is D-dimensional.

– x = (x1, …, xD).

• To account for the perceptron’s bias input, we will
represent x as a D+1 dimensional vector:

– x = (1, x1, …, xD).

– So, for all x, x0 = 1.

7

Perceptron - Notation

• The perceptron has a (D+1)-dimensional vector w of
weights: w = (w0, …, wD).

– w0 is the weight for the bias input.

• We will denote as <w, x> the dot product of w and x.

• < 𝑤, 𝑥 > = 𝑤𝑑𝑥𝑑
𝐷
𝑑=0

• Note that the textbook and slides use the variable in
for that dot product.

8

Perceptron - Notation

• Suppose that we are given N training data, x1, …, xN,
together with their associated class labels y1, …, yN.

• Each class label yj is either 0 or 1.

9

Optimization Criterion - Perceptron

• The perceptron output on any x is denoted as h(x).

• The training squared error E of the perceptron is:

• Note that h(x) depends on the weight vector w.

• “Learning” or “training” the perceptron essentially means
finding good weights for w.

• The output h(x) and the error E both depend on w.

• To show this dependency, we re-write the error equation as:

10

𝐸 = ℎ 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

Optimization Criterion - Perceptron

• So, the error E is a function of w.

• We want to find a w that minimizes the error.

• This is a classic optimization problem:

– We have a function E(w), taking as input a D-dimensional
vector w, and outputting a real number.

– We want to find the w that minimizes (or maximizes, in
some problems) E(w).

– We will talk about how to minimize E(w), but the process
for maximizing E(w) is similar.

11

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

Globally and Locally Optimal Solutions

• We want to find the w that minimizes E(w).

• In general, there are two types of solutions we can look for:
– Finding the globally optimal w, such that E(w) <= E(w’) for any w’ != w.

– Finding a locally optimal w, such that E(w) <= E(w’) for all w’ within
some distance ε of w.

• Usually, finding the globally optimal w is infeasible:
– Takes time exponential to D: the number of dimensions of w.

– Essentially we need to try a lot of values for w.

• There are exceptions: specific problems where we can find
globally optimal solutions.

• For most problems, we just live with locally optimal solutions. 12

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

Gradient Descent

• We want to find the w that minimizes E(w).

• How can we find a locally optimal solution here?

• There is a standard recipe, applicable in lots of
optimization problems, that is called gradient
descent.

• To apply gradient descent, we just need E(w) to be
differentiable, so that we can compute its gradient
vector.

13

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

Gradient Descent

• Gradient descent is performed as follows:

1. Let w be some initial value (chosen randonly or manually).

2. Compute the gradient
𝜕𝐸

𝜕𝑤
.

3. If
𝜕𝐸

𝜕𝑤
< 𝑡, where t is some predefined thershold, exit.

4. Update w: 𝑤 = 𝑤 + 𝑠
𝜕𝐸

𝜕𝑤
.

5. Go to step 2.

• Note parameter s at step 4, called the learning rate:

– It must be chosen carefully.

– If s is too large, we may overshoot and miss the minimum.

– If s is too small, it may take too many iterations to stop.

14

Learning a Perceptron

• Suppose that a perceptron is using the step function
as its activation function.

• Can we apply gradient descent in that case?

• No, because E(w) is not differentiable.

– Small changes of w usually lead to no changes in hw(x),
until we make a change large enough to cause hw(x) to
switch from 0 to 1 (or from 1 to 0).

• This is why we use the sigmoid activation function g:

– ℎ𝑤 𝑥 = 𝑔 < 𝑤, 𝑥 > =
1

1+ 𝑒−<𝑤,𝑥>

– Given an input x, we compute the weighted sum
<w, x>, and feed that to the sigmoid g.

– The output of g is the output of the perceptron. 15

Learning a Perceptron

• ℎ𝑤 𝑥 = 𝑔 < 𝑤, 𝑥 > =
1

1+ 𝑒−<𝑤,𝑥>

• Then, measured just on the single training object x,
the error E(w) is defined as:

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

 = 𝑦 −
1

1 + 𝑒−<𝑤,𝑥>

2

• In this form, E(w) is differentiable, and we can

compute the gradient
𝜕𝐸

𝜕𝑤
.

16

Learning a Perceptron

• Measured just on x, the error E(w) is defined as:

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

• Computing the gradient
𝜕𝐸

𝜕𝑤
 is a bit of a pain, so we

will skip it.

– The textbook has all the details.

– The details involve applications of relatively simple and
well known rules of computing derivatives, such as the
chain rule.

17

Learning a Perceptron

• Measured just on x, the error E(w) is defined as:

𝐸 𝑤 = 𝑦 − ℎ𝑤 𝑥
2

• We will skip to the solution:

𝜕𝐸

𝜕𝑤
= 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥 ∗ (1 − ℎ𝑤 𝑥) ∗ 𝑥

• Note that
𝜕𝐸

𝜕𝑤
 is a (D+1) dimensional vector. It is a

scalar (shown in red) multiplied by vector x.

18

Weight Update

𝜕𝐸

𝜕𝑤
= 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥 ∗ (1 − ℎ𝑤 𝑥) ∗ 𝑥

• So, to apply the gradient descent update rule, we
update the weight vector w as follows:

𝑤 = 𝑤 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥 ∗ (1 − ℎ𝑤 𝑥) ∗ 𝑥

• Remember that s is the learning rate, it is a positive
real number that should be chosen carefully, so as not
to be too big or too small.

• In terms of individual weights wd, the update rule is:

𝑤𝑑 = 𝑤𝑑 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥 ∗ ℎ𝑤 𝑥 ∗ (1 − ℎ𝑤 𝑥) ∗ 𝑥𝑑

19

Perceptron Learning Algorithm

• Inputs:
– N D-dimensional training objects x1, …, xN.

– The associated class labels y1, …, yN, which are 0 or 1.

1. Extend each xj to a (D+1) dimensional vector, by adding the bias
input as the value for the zero-th dimension.

2. Initialize weights wd to small random numbers.
– For example, set each wd between -1 and 1.

3. For j = 1 to N:

1. Compute ℎ𝑤 𝑥𝑗 .

2. For d = 0 to D:

 𝑤𝑑= 𝑤𝑑 + 𝑠 ∗ 𝑦 − ℎ𝑤 𝑥𝑗 ∗ ℎ𝑤 𝑥𝑗 ∗ (1 − ℎ𝑤 𝑥𝑗) ∗ 𝑥𝑗,𝑑

4. If some stopping criterion has been met, exit.

5. Else, go to step 3.
20

Updates for Each Example

• One interesting thing in the perceptron learning
algorithm is that weights are updated every time we
see a training example.

• This is different from learning decision trees,
Gaussians, or mixtures of Gaussians, where we have
to look at all examples before we make an update.

21

Stopping Criterion

• At step 4 of the perceptron learning algorithm, we
need to decide whether to stop or not.

• One thing we can do is:

– Compute the cumulative squared error E(w) of the
perceptron at that point:

– Compare E(w) with the cumulative error we have
computed at the previous iteration.

– If the difference is too small (e.g., smaller than 0.00001)
we stop.

22

𝐸(𝑤) = ℎ𝑤 𝑥𝑗 − 𝑦𝑗
2

𝑁

𝑗=1

Using Perceptrons for Multiclass
Problems

• A perceptron outputs a number between 0 and 1.

• This is sufficient only for binary classification
problems.

• For more than two classes, there are many different
options.

• We will follow a general approach called one-versus-
all classification.

23

One-Versus-All Perceptrons

• Suppose we have M classes C1, …, CM, where L > 2.

• For each class Cm, train a perceptron hm by using:

– yj = 0 if the class of xj is not Cm.

– yj = 1 if the class of xj is Cm.

• So, perceptron hm is trained to recognize if an object
is of class Cm or not.

• In total, we train M perceptrons, one for each class.

24

One-Versus-All Perceptrons

• To classify a test pattern x:

– Compute the responses hm(x) for all M perceptrons.

– Find the class Cm’ such that the response hm’(x) is higher
than all other responses.

– Output that the class of x is Cm’.

• So, we assign x to the class whose perceptron gave
the highest response for x.

25

Neural Network Structure

• Perceptrons are organized into layers:

• There is the input layer.
– Here, there are no actual perceptrons, just D+1 inputs, which are set to the

values of each example x that is fed to the network.

– Each input is connected to some perceptrons in the first hidden layer.

• There are one or more hidden layers.
– Each perceptron here receives as inputs the outputs of allperceptrons from

the previous layer.

– Each perceptron provides its output as input to all perceptrons in the next
layer.

• There is an output layer.
– Each perceptron here receives as inputs the outputs of all perceptrons from

the previous layer.

– If we have a binary classification problem, we have one output perceptron.

– Otherwise, we have as many output perceptrons as the number of classes. 26

Neural Network Notation

• Our training and test data is again D-dimensional.

• We extend our data to be (D+1) dimensional, so as to include
the bias input.

• We have U perceptrons.

• For each perceptron Pu, we denote by au its output.

• We denote by wu,v the weight of the edge connecting the
output of perceptron Pu with an input of perceptron Pv.

• Each class label yj is now a vector.

• To make notation more convenient, we will treat yj as a U-
dimensional vector. (U is the total number of perceptrons).

• If Pu is the m-th output vector, and xj belongs to class m, then:
– yj will have value 1 in the u-th dimension.

– yi will have values 0 in all other dimensions.

27

Squared Error for Neural Networks

• Let hw(x) be the output of a neural network. The output now is a
vector, since there can be many output perceptrons.

• The optimization criterion is the squared error, but it must be
adjusted to account for vector output:

• This is now a double summation.
– We sum over all training examples xj.

– For each xj, we sum over all perceptrons in the output layer.

– We sum the squared difference between the actual output, and what it
should be.

– We denote by yj,u the u-th dimension of class label yj. 28

𝐸(𝑤) = 𝑦𝑗,𝑢 − 𝑎𝑢
2

𝑢:𝑃𝑢 ∈ output layer

𝑁

𝑗=1

Error on a Single Training Example

• As we did for single perceptrons, we can measure the error of
the neural network on a single training example x, and its
associated class label y.
– Note that now we denote by yu the u-th dimension of y.

• Assuming that each unit in the network uses the sigmoid
activation function, E(w) is differentiable again.

• We can compute the gradient
𝜕𝐸

𝜕𝑤
.

• Based on the gradient, we can update all weights.

 29

𝐸(𝑤) = 𝑦𝑗,𝑢 − 𝑎𝑢
2

𝑢:𝑃𝑢 ∈ output layer

Backpropagation

• We will skip the actual calculation of
𝜕𝐸

𝜕𝑤
.

– The textbook has all the details.

• We will just show the formulas for how to update
weights after we see a training example x.

• There is a different formula for the weights of edges
leading to the output layer, and a different formula for
the rest of the edges.

• The algorithm that uses these formulas for training
neural networks is called backpropagation.

• The next slides describe this algorithm.

30

Step 1: Compute Outputs

• Given a training example x, and its class label y, we first
must compute the outputs of all units in the network.

• We follow this process:

// Update the input layer, set inputs equal to x.

1. For u = 0 to D:

– 𝑎𝑢 = 𝑥𝑢(where xu is the u-th dimension of x).

// Update the rest of the layers:

2. For l = 2 to L (where L is the number of layers):

– For each perceptron Pv in layer l:

• in𝑣 = 𝑤𝑢,𝑣𝑎𝑢𝑢: 𝑃𝑢 ∈ layer 𝑙−1

• 𝑎𝑣 = 𝑔(in𝑣), where g is the sigmoid activation function.
31

Step 2: Update Weights

• For each perceptron Pv in the output layer:

– Δ[𝑣] = 𝑔(in𝑣) * (1 - 𝑔(in𝑣)) * (𝑦𝑣 − 𝑎𝑣)

– For each perceptron Pu in the preceding layer L-1:

• 𝑤𝑢,𝑣 = 𝑤𝑢,𝑣 + 𝑠 ∗ 𝑎𝑢 ∗ Δ[v]

• For l = L-1 to 2:

– For each perceptron Pv in layer l:

• Δ[𝑣] = 𝑔(in𝑣) * (1 - 𝑔(in𝑣)) * 𝑤𝑣,𝑧 ∗ Δ[z]𝑧: 𝑃𝑧 ∈ layer 𝑙+1

• For each perceptron Pu in the preceding layer l-1:

– 𝑤𝑢,𝑣 = 𝑤𝑢,𝑣 + 𝑠 ∗ 𝑎𝑢 ∗ Δ[v]

32

Backpropation Summary
• Inputs:

– N D-dimensional training objects x1, …, xN.

– The associated class labels y1, …, yN, which are U-dimensional vectors.

1. Extend each xj to a (D+1) dimensional vector, by adding the bias
input as the value for the zero-th dimension.

2. Initialize weights wu,v to small random numbers.
– For example, set each wu,v between -1 and 1.

3. last_error = E(w)

4. For j = 1 to N:
– Update weights wu,v as described in the previous slides.

4. err = E(w)

5. If |err – last_error| < threshold, exit. // threshold can be 0.00001.

6. Else: last_error = err, go to step 3.

33

Classification with Neural Networks

• Suppose we have M classes C1, …, CM.

• Each class Cm corresponds to an output perceptron Pu.

• Given a test pattern x = (x0, …, xD) to classify:

• Compute outputs for all units, as we did in training.

1. For u = 0 to D: 𝑎𝑢 = 𝑥𝑢

2. For l = 2 to L (where L is the number of layers):

– For each perceptron Pv in layer l:

• in𝑣 = 𝑤𝑢,𝑣𝑎𝑢𝑢: 𝑃𝑢 ∈ layer 𝑙−1

• 𝑎𝑣 = 𝑔(in𝑣), where g is the sigmoid activation function.

• Find the output unit Pu with the highest response au.

• Return the class that corresponds to Pu.

34

Structure of Neural Networks

• Backpropagation describes how to learn weights.

• However, it does not describe how to learn the
structure:

– How many layers?

– How many units at each layer?

• These are parameters that we have to choose
somehow.

• A good way to choose such parameters is by using a
validation set, containing examples and their class
labels.

– The validation set should be separate (disjoint) from the
training set.

35

Structure of Neural Networks

• To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

• For each choice of parameters:

– We train several neural networks using backpropagation.

– We measure how well each neural network classifies the
validation examples.

– Why not train just one neural network?

36

Structure of Neural Networks

• To choose the best structure for a neural network using
a validation set, we try many different parameters
(number of layers, number of units per layer).

• For each choice of parameters:

– We train several neural networks using backpropagation.

– We measure how well each neural network classifies the
validation examples.

– Why not train just one neural network?

– Each network is randomly initialized, so after
backpropagation it can be different from the other networks.

• At the end, we select the neural network that did best
on the validation set.

37

