INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2

Chapter 4, Sections 1-2 1

Outline

> Best-first search
> A* search

> Heuristics

Chapter 4, Sections 1-2 2

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1-2 3

Best-first search

|dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Chapter 4, Sections 1-2 4

Romania with step costs in km

] Oradea

Arad
Sibiu g9 Fagaras
118
80
.. Rimnicu Vilcea
Timisoara -
11 . .
M Lugoj Pitesti
70 =
H Mehadia 10
75 138
Dobreta [] 120
J Craiova

211

Neamt
u 87
[] lasi
92
] Vaslui
142
98
85 [O] Hirsova
Urziceni
[86
Bucharest
90]
Eforie
] Giurgiu

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Chapter 4, Sections 1-2 5

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1-2 6

Greedy search example

366

Chapter 4, Sections 1-2 7

Greedy search example

253 329 374

Chapter 4, Sections 1-2 8

Greedy search example

366 176 380 193

Chapter 4, Sections 1-2 9

Greedy search example

Chapter 4, Sections 1-2 10

Properties of greedy search

Complete??

Chapter 4, Sections 1-2 11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time??

Chapter 4, Sections 1-2 12

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1-2 13

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement
Space?? O(b")—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2 14

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b")—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1-2 15

A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

(n) = cost so far to reach n
n) = estimated cost to goal from n

g
h(
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1-2

16

A" search example

366=0+366

Chapter 4, Sections 1-2 17

A" search example

393=140+253 447=118+329 449=75+374

Chapter 4, Sections 1-2 18

A" search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Chapter 4, Sections 1-2 19

A" search example

" Ad
sbu_ Cimisoara) C Zerind >

447=118+329 449=75+374

CArad D PCFagaras> COradea > @imios Viced>

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > _Shbiu_>

526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 20

A" search example

" Ad
sbu_ Cimisoara) C Zerind >

447=118+329 449=75+374

Cra> > o> @D

646=280+366 671=291+380

T R R G G R

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 21

A" search example

" Ad
sbu_ Cimisoara) C Zerind >

447=118+329 449=75+374

Crad > (Fagaras COradea > Elmnion Ve

646=280+366 671=291+380
CSbiu > BucharesD
591=338+253 450=450+0 526=366+160

C Craiova)

418=418+0 615=455+160 607=414+193

Chapter 4, Sections 1-2 22

Optimality of A* (standard proof)

Suppose some suboptimal goal (5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal (5.
Start

N

XD G,

=
2
S
[
=
D
S

since h(G2) =0
q(Gh) since Gy is suboptimal

AVARRY,
P
3

since h 1s admissible

Since f(G5) > f(n), A* will never select (&5 for expansion

Chapter 4, Sections 1-2 23

Properties of A*

Complete??

Chapter 4, Sections 1-2 25

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time??

Chapter 4, Sections 1-2 26

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)
Time?? Exponential in [relative error in i X length of soln.]

Space??

Chapter 4, Sections 1-2 27

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)
Time?? Exponential in [relative error in i X length of soln.]
Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2 28

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)
Time?? Exponential in [relative error in i X length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f;. until f; is finished

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-2 29

l«] 1 =[xl orevic
Next: Example Up: 13 Previous: Optimality of A*

IDA*

Series of Depth-First Searches

Like Iterative Deepening Search, except use A* cost threshold instead of depth threshold

Ensures optimal solution

queueing-fn is enqueue-at-front if f(child) < threshold

Threshold is h(root) for first pass

Next threshold is f(min_child),
where min_child is cutoff child with minimum f value

This conservative increase ensures cannot look past optimal cost solution

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

lhmit =£(C) =2

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~

I~J

4
B T
/ 3 4 5
@? 2 1 44

lhmit =£(C) =2

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

lhmit =£(C) =2

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

2

4 1 2 3

B T O P
/ 3 4 5 / 555

@T«" 2 1 44 ©0 8 10
1
e}

lhmit =£(C) =2

Nodes on frontier: B (3+4=7), O(242=4), P(243=3)
New limit ={(0)=4

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit =£(0) =4

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~

I~J

4
B T
/ 3 4 5
@? 2 1 44

limit =£(0) =4

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

4
B
/ 3 4 5
@? 2 1 44

limit =£(0) =4

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit =£(0) =4

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit =£(0) =4

Nodes on frontier: B (3+4=7), P (243=5)
1 (6+1=7), N (7+44=51)
New limit =f(P) =5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = f(P) = 5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~

I~J

4
B T
/ 3 4 5
@? 2 1 44

limit = f(P) = 5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

4
B
/ 3 4 5
@? 2 1 44

limit = f(P) = 5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit = f(P) = 5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit = f(P) = 5

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = f(P) = 5

[=11 [x [x] previc
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = f(P) = 5

[=11 [x [x] previc
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = (L) = 6

Nodes on frontier: B (3+4=7). 1 (6+1=7), N (7+44=51)
L (6+0=6), F (7+8=15), D (7+10=17)

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = (L) = 6

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = (L) = 6

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit = (L) = 6

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

I~J

limit = (L) = 6

l«] 1 =[xl orevic
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = (L) = 6

[=11 [x [x] previc
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

limit = (L) = 6

[=11 [x [x] previc
Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Click mouse to advance to next frame.

GOAL FOUND!

limit = (L) = 6

l=] 1 =[xl orevic
Next: RBES Up: 13 Previous: Eight Puzzle Example

Analysis
Some redundant search, but small amount compared to work done on last iteration

Dangerous if f values are very close

If threshold = 21.1 and next value is 21.2, probably only include 1 new node each iteration

Time: (O{b™) Space: O(m)

SMA* search can be used to remember some nodes from one iteration to the next.

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')
If h is consistent, we have c(n,a,n’)

f(n') = g(n) + h(n)
g(n) + c(n,a,n’) + h(n')
(

g(n) + h(n)
f(n)

l.e., f(n) is nondecreasing along any path.

v

S

Chapter 4, Sections 1-2 30

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
5 6
8 3 1

1 2 3
4 5 6
7 8

Start State

Goal State

Chapter 4, Sections 1-2

31

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
5 6
8 3 1

1 2 3
4 5 6
7 8

hi(S) =77 6

ho(S) =77 44+043+3+1+0+2+1 = 14

Start State

Goal State

Chapter 4, Sections 1-2

32

Dominance

If ho(n) > hi(n) for all n (both admissible)
then ho dominates h; and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d = 24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hsy) = 1,641 nodes

Given any admissible heuristics h,, hy,
h(n) = max(h,(n), hy(n))

is also admissible and dominates h,, h;

Chapter 4, Sections 1-2 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then hy(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then hy(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1-2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1-2

35

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest A
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1-2 36

