Alpha-Beta Search

function AlphaBetaDecision(state) returns an action
$v=$ MaxValue(state, -infinity, +infinity)
return the a in Actions(state) leading to a successor state with utility v.
function MaxValue(state, alpha, beta) returns a utility value
if TerminalTest(state) then return Utility(state)
$v=-$ infinity
for a, s in Successors(state) do
$v=\operatorname{Max}(\mathrm{v}, \operatorname{MinValue}(\mathrm{s}$, alpha, beta))
if $v>=$ beta then return v
alpha $=\operatorname{Max}($ alpha, $v)$
return v
function MinValue(state, alpha, beta) returns a utility value
if TerminalTest(state) then return Utility(state)
$v=+$ infinity
for a, s in Successors(state) do
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, \operatorname{MaxValue}(\mathrm{s}$, alpha, beta) $)$
if $\mathrm{v}<=$ alpha then return v
beta $=$ Min(beta, v)
return v

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity)

- MinValue(B1, -infinity, +infinity)
- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, + infinity $)$

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B1) $=\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3\}$
$\mathrm{s}=\mathrm{C} 1$
$\operatorname{MaxValue}(s$, alpha, beta) $=\operatorname{MaxValue}(\mathrm{C} 1$, -infinity,+ infinity $)=3$

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, + infinity $)$

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B1) $=\{C 1, C 2, C 3\}$
$\mathrm{s}=\mathrm{C} 1$
MaxValue(s, alpha, beta) $=\operatorname{MaxValue}(\mathrm{C} 1$, -infinity, + infinity $)=3$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 3)=\operatorname{Min}(+i n f i n i t y, 3)=3$
v <= alpha? 3 <= -infinity? No

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity)

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B1) $=\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3\}$
$\mathrm{s}=\mathrm{C} 1$
MaxValue(s, alpha, beta) $=$ MaxValue(C1, -infinity, + infinity $)=3$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 3)=\operatorname{Min}(+$ infinity, 3$)=3$
v <= alpha? $3<=$-infinity? No
beta $=\operatorname{Min}($ beta, $v)=\min (+$ infinity, 3$)=3$
state $=\mathrm{A} 1$
alpha = -infinity
beta $=+$ infinity
$v=-$ infinity
$\mathrm{s}=\mathrm{B} 1$
state = B1
alpha $=$-infinity
beta $=3$
$v=3$
$\mathrm{s}=\mathrm{C} 1$
$\mathrm{s}=\mathrm{Cl}$

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity)

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors $(B 1)=\{C 1, C 2, C 3\}$
$\mathrm{s}=\mathrm{C} 2$
$\operatorname{MaxValue}(\mathrm{s}$, alpha, beta) $=\operatorname{MaxValue}(\mathrm{C} 2$, -infinity, 3) $=12$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 12)=\operatorname{Min}(3,12)=3$
v <= alpha? 3 <= -infinity? No
beta $=\operatorname{Min}($ beta, $v)=\min (3,3)=3$
state = A1
alpha = -infinity beta $=+$ infinity
$v=-$ infinity
$\mathrm{s}=\mathrm{B} 1$

```
state \(=\mathrm{B} 1\)
alpha = -infinity
beta \(=3\)
\(\mathrm{v}=3\)
\(\mathrm{s}=\mathrm{C} 2\)
```

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity)

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors $(B 1)=\{C 1, C 2, C 3\}$
$\mathrm{s}=\mathrm{C} 3$
MaxValue(s, alpha, beta) $=$ MaxValue(C3, -infinity, 3) $=8$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 8)=\operatorname{Min}(3,12)=3$
v <= alpha? 3 <= -infinity? No
beta $=\operatorname{Min}($ beta, $v)=\min (3,3)=3$
state $=\mathrm{A} 1$
alpha = -infinity beta $=+$ infinity
$v=-$ infinity
$\mathrm{s}=\mathrm{B} 1$
state $=B 1$
alpha =-infinity
beta $=3$
$\mathrm{v}=3$
$s=C 3$
val

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, + infinity $)$

- MinValue(B1, -infinity, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B1) $=\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3\}$
$\mathrm{s}=\mathrm{C} 3$
MaxValue(s, alpha, beta) $=$ MaxValue(C3, -infinity, 3) $=8$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 8)=\operatorname{Min}(3,12)=3$
v <= alpha? 3 <= -infinity? No
beta $=\operatorname{Min}($ beta, $v)=\min (3,3)=3$
return v: returns 3
state $=$ A1
alpha = -infinity beta $=+$ infinity
$v=-$ infinity
$\mathrm{s}=\mathrm{B} 1$

```
state \(=B 1\)
alpha = -infinity
beta \(=3\)
\(\mathrm{v}=3\)
\(s=C 3\)
```

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity $)=3$
$\mathrm{v}=\operatorname{Max}(\mathrm{v}, \operatorname{MinValue}(\mathrm{B} 1,-$ infinity, +infinity $))=\operatorname{Max}(-i n f i n i t y, 3)=3$

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 1$
MinValue(s, alpha, beta) $=$ MinValue(B1, -infinity, +infinity $)=3$
$v=\operatorname{Max}(\mathrm{v}, \operatorname{MinValue}(B 1$, -infinity, +infinity $))=\operatorname{Max}(-i n f i n i t y, 3)=3$
$v>=$ beta? $3>=+$ infinity? No
alpha $=\operatorname{Max}($ alpha, $v)=\operatorname{Max}(-$ infinity, 3$)=3$

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$

$$
\begin{aligned}
& \text { state = A1 } \\
& \text { alpha }=3 \\
& \text { beta }=+ \text { infinity } \\
& v=3 \\
& s=B 2
\end{aligned}
$$

$$
\mathrm{s}=\mathrm{B} 2
$$

MinValue(s, alpha, beta) $=$ MinValue(B2, 3, +infinity)

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$

$$
\begin{aligned}
& \text { state = A1 } \\
& \text { alpha }=3 \\
& \text { beta }=+ \text { infinity } \\
& v=3 \\
& s=B 2
\end{aligned}
$$

$\mathrm{s}=\mathrm{B} 2$
MinValue(s, alpha, beta) $=$ MinValue(B2, 3, +infinity)

- MinValue(B2, 3, +infinity)

```
state = B2
alpha = 3
beta = +infinity
```

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) = \{B1, B2, B3\}

$$
\begin{aligned}
& \text { state = A1 } \\
& \text { alpha }=3 \\
& \text { beta }=+ \text { infinity } \\
& v=3 \\
& s=B 2
\end{aligned}
$$

$\mathrm{s}=\mathrm{B} 2$
MinValue(s, alpha, beta) $=$ MinValue(B2, 3, +infinity)

- MinValue(B2, 3, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B2) $=\{\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6\}$
$\mathrm{s}=\mathrm{C} 4$
MaxValue(s, alpha, beta) $=$ MaxValue(C4, 3, +infinity) $=2$

- MaxValue(A1,-infinity,+infinity)

TerminalState(A1)? No
$v=-$ infinity
Successors(A1) $=\{B 1, B 2, B 3\}$
$\mathrm{s}=\mathrm{B} 2$
MinValue(s, alpha, beta) $=$ MinValue (B2, 3, +infinity $)$

- MinValue(B2, 3, +infinity)

TerminalState(B1)? No
v = +infinity
Successors(B2) $=\{\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6\}$
$\mathrm{s}=\mathrm{C} 4$
MaxValue(s, alpha, beta) $=$ MaxValue(C4, 3, +infinity) $=2$
$\mathrm{v}=\operatorname{Min}(\mathrm{v}, 3)=\operatorname{Min}(+$ infinity, 2$)=2$
$v<=$ alpha? $2<=3$? YES
return v: returns 2

